Archivum Mathematicum

Judita Lihova

On the lattice of convexly compatible topologies on a partially ordered set

Archivum Mathematicum, Vol. 15 (1979), No. 4, 217--231

Persistent URL: http://dml.cz/dmlcz/107046

Terms of use:
© Masaryk University, 1979
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to

digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/107046
http://project.dml.cz

ARCH. MATH. 4, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS
XV: 217—232, 1979

ON THE LATTICE OF CONVEXLY COMPATIBLE
TOPOLOGIES ON A PARTIALLY ORDERED SET

JUDITA LIHOVA, Kogice
(Received October 17, 1977)

The notion of the convex compatibility and the convex weak compatibility of
a topology with an ordering was introduced in [3]. Let (4, <) be a partially ordered
set. The system of all topologies on 4 in the sense of Cech, which are convexly
compatible and convexly weakly compatible with the ordering <, will be denoted
by a(4, <) and B(4, £), respectively. If a(4, <), (4, ) are partially ordered
in a natural way, both these systems turn to be lattices. In this note some properties
of these lattices are investigated. Analogous problems for other systems of topologies
on a fixed set are studied in papers [2], [5], [6].

1. PRELIMINARIES
For the sake of completeness let us recall some definitions introduced in [3].

Denote by 27 the system of all subsets of a set P. We start with the basic definition.

1.1. Definition. Let P be a given set. A mapping u: 2° — 2% is said to be a topology
on P, if the following three axioms are satisfied:

) ud = 0,
) McP=>McuM,
)] M,c M, cP=uM, c uM,.

If u is a topology on P, the pair (P, u) is called a topological space. The system of all
topologies on P is denoted by I (P).

1.2. Definition. 4 set O < P is said to be a neighborhood of an element x € P in the
space (P, u), if x ¢ u(P — O). The notation D(x) is used for the system of all neigh-
borhoods of x in (P, u).
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We shall often use the following statement which enables to introduce a topology
into a set P (cf. [1], 4.1).

1.3. Theorem. 1. Let (P, u) be a topological space, x € P. The system D,(x) has the

Jollowing properties:
@ D(x) # 9,

(i) Oe D(x)=> x€O,

(iii) O < 0y, O e D(x) = O, € D,(x).

2. Let P be an arbitrary set and let D(x) be a nonvoid family of subsets of P, assigned
to each element x € P, satisfying:
) OeD(x)=x€0,
2) 0 c 0,, 0€ D(x) = 0, € D(x).

If we define a mapping u : 2° — 2% in such a way that x e uM (M < P)iff P — M ¢ D(x),
then u is a topology on P and for each x € P it is D (x) = D(x).

The following theorem was proved in [1].

1.4. Theorem. If P is an arbitrary set, then the set I (P) of all topologies on P
is a complete lattice with respect to the relation < defined as follows:

usv(uveI(P) iff uM < vM for every M < P.

A topology u is an infimum of {u, : i€ I} = F(P) if and only if one of the following two
conditions is fulfilled: )
(@) uM = n{uM :ieI} for every M c P,
(b) D(x) = U{D,(x):iel} for every x€P,
and dually for v = V{u;:iel}.
The least element of I (P) is a topology u® such that u°M = M for every M c P.
The greatest topology u' satisfies u'(8) = 0, u'(M) = P for every 9 # M c P.

The algebraic characterization of the lattice 7 (P) is given in [4].

1.5. Theorem. The lattice T (P) is isomorphic to a complete ring of sets.

1.6. Definition. Let (4, <) be a partially ordered set. A topology u on A will be
said to be convexly compatible with the ordering <, if it has the following property:

(«) If a, b e A and if U is a neighborhood of a with b ¢ U, then there exists a convex
neighborhood V of a such that b ¢ V.

1.7. Definition, Let (4, <) be a partially ordered set. A topology u on A will be
called convexly weakly compatible with the ordering <, if it has the following property:
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(B) If a and b are comparable elements of A and if U is a neighborhood of a with
b ¢ U, then there exists a convex neighborhood V of a such that b¢ V.

Let (X, <) be a partially ordered set. If a, be X, a < b, the interval {xe X :a S
=< x £ b}isdenoted by {a, b). For the incomparability of a, b € X we use the notation
a| b. If M is a subset of X, the symbol [M] is used for the convex hull of M in X.
For the cardinality of a set Y we use the notation card Y.

2. THE PARTIAL ORDERING ON THE SETS «(4, £), (4, =)

Let (4, <) be a partially ordered set. The set of all topologies on 4 which are
convexly compatible and convexly weakly compatible with the ordering < will be
denoted by a(4, <) and B(4, <), respectively. Clearly a(4, <) = B(4, <) and both
these sets are subsets of the complete lattice 9 (4). A question arises, whether
a(A4, <), f(4, £) are sublattices of I (4).

2.1. Lemma. Let {u;:iel} be a nonempty subset of the set o(4, L), u =
= A{u;:iel} in the complete lattice T (A). Then uea(d, £).
Proof. Take a, b € A such that there exists U e D, (a) with b ¢ U. By 1.4 there is

Ue D,(a) for some i€l The assumption that u; € a(4, ) yields the existence of
a convex set ¥V € D, (a) with b ¢ V. Obviously ¥ € D(a).

2.2, Lemma. Let {u, : i€ I} be a nonempty subset of the set p(4, ), u = N{u;:iel}
in the complete lattice T (A). Then u e B(A, £).
The proof is analogous to that of 2.1.

2.3. Theorem. The set B(A, <) is a closed sublatice of the complete lattice T (A).

Proof. In view of the foregoing lemma, to prove 2.3, it is sufficient to show
that if 0 # {y,:iel} < f(4, L), v=V {u,:iel} in T(A4), then ve p(4, S).
. Suppose that a, b are comparable elements of 4 such that there exists Ue D (a)
not containing b. By 1.4 it is U € D, (a) for each i € I. Since all u, are convexly weakly
compatible with the ordering <, we can find for every i€ I a convex set ¥, € D, (a)
that does not contain b. Put ¥V = u {V;:ieI}. Obviously Ve D,(a) which implies
that the convex hult [V'] of ¥ also belongs to D,(a). Assume be[V]. Then there
exist elements xe ¥, ye ¥, such that x < b < y. If a < b, from the relations
a<b<y,a,yeV,; and from the convexity of V,, we get b e V;,, a contradiction.
The inequality @ > b yields a contradiction analogously. Therefore b ¢ [ V] and the
proof of 2.3 is complete.

It can be shown by examples that the join of two topologies from‘a(4, <) in I (A4)
does not belong to a(A4, <) in general. Hence the set (4, <) need not be a.closed
sublattice of the complete lattice 7 (4). But since the finest topology and the coarsest
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one on A are convexly compatible with every ordering on A4, in view of 2.1 the set
a(A, £) is a complete lattice.

By 2.1 the meet of a nonempty subset {u; : i € I'} of the set a(4, <) in the complete
lattice a(4, <) is the same as in the complete lattice 7(4) and we shall denote it by
A {u, : i € I}. The join of the set {u, : i € I} in 7 (A) will be denoted by V {u, :ie I}
while for the join of this set in a(4, <) there will be used the notation V*{u, : i e I}.

We are going to describe V*{u, : i € I} for an arbitrary subset {u; :ie I} of the
set a(4, ). "

If ve 7(4), ae A, we denote by c,(a) the set n {[V]: Ve D(a)}.

24. Lemma. Let ve 7 (A), ac A. The system D(a) = {O € DJa): c(a) = O}
has the following properties:

(i) D(a) # 9,
(ii) Oe D(a) =>ac O,
(iii) O, > O € D(a) = O, € D(a).
Proof. The assertion (iii) is trivial. Since 4 € D(a), it holds (i). The validity of (ii)
follows from D(a) = D, (a).

2.5. Theorem. Let ve I (A) and let ¥ be a topology on A such that Dya) =
= {0 e D,(a) : c,(a) = O} for every ac A. Then

¢y 720,
2 vea(4, ),
3) uea(Ad, <), u = vimpliesu = v.

Proof. The existence of the topology # with the above-mentioned éystems of
neighborhoods follows from 2.4 and 1.3. It is evident that Dy(@) = D (a) for every
ae A. Hence (1) holds. To prove (2), suppose that for some a, b € A there exists
a set U € Dy(a) not containing b. Since c,(a) = U, it must be b ¢ c,(a). Thus b ¢ [o]
for some O e D,{(a). Evidently [0] € D(a), c,(a) = [O], hence [O] € D;(a). We have
found a convex set [O] e Dy(a) not containing b, as desired.

Let the assumptions of (3) hold. It is sufficient to prove that D (a) = Da) for
each ae A. Let O € D (a). Then evidently O € D (a). Suppose that there exists an
element b € c,(a) — O. Since O e D,(a), b¢ O, ue a(4, <), there exists a convex set
Ue D,(a) not containing b. From be€c,(a), Ue D,(a) we obtain be[U] = U,
a contradiction. Therefore c,(a) = O which implies O € D;(a).

2.6. Remark. Let v be a topology on A. In what follows the symbol © will be used
Sor the topology fulfilling (1)—(3) of 2.5.

27 Theorem. Let {u;:i€l} be a nonempty subset of the set a(A <) and le;
V{u:iel},w=V*{u,:iel}. Thenw = 5.
Thls theorem follows immediately from 2.5.
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3. DISTRIBUTIVITY OF THE LATTICE «(4, £)

It was proved that the lattice f(4, <) is a closed sublattice -of the lattice J(A).
Hence by 1.5 the lattice f(A4, <) is distributive. On the other hand the lattice a(4, <)
is not distributive in general. The purpose of this section is to described directed
sets (4, £) for which the lattice a(4, <) is distributive.

3.1. Theorem. If (A, <) is a chain, then the lattice a(A, <) is distributive.
Proof. It is evident that if (4, <) is a chain, then a(4, <) = (A4, <). The lattice
B(A, <) is by 1.5 distributive.

3.2. Definition. A partially ordered set (A, £) will be said to have the propertj;
(mnd), if 4 has the least element o, the greatest element i and A — {o, i} is an antichain.

In what follows we denote by o and i the least and the greatest element of (4, <),
respectively, if such an element exists.

3.3. Lemma, Let (A, £) be a directed set which is not a chain and has not the
property (mnd). Then the lattice a(A, <) is not modular.

Proof. Since (4, £) has not the property (mnd), there exist noncomparable
elements a, b € A such that there are either at least two elements which are less than b
or at least two elements which are greater than b. Suppose that the first case occurs.
In the second case we should proceed analogously as in the first one. Let ¢ < a,
c<b,d>a,d>b,e<b, e# c. Withoutloss of generality we can suppose that
e < c. Define topologies u, v, w as follows:

D(@={0cA:0>5{c,a) or0>[{ace}l]}
D,a) = {0Oc A:0 > {a,d)}, :
D,(a) = {0 c 4:0 > {c,a)},

DS2) = D,(z) = D,(z) = {4} foreveryze A,z # a.

Evidently u, v, we a(4, £), u < w. We shall prove D, ey)aw(@ # D, u(oawy(@) by
showing that [{a, e}] U {a,d) € D, e (oan)(@ — Dyyaryan(@). It i Dyeoawy(@) =
={0eD,,oaw(@ : 0 D cyyuawy@}. It is clear that D,,,.w)@) = D(a) N
A (D(a)uD,(a) ={0c A:0 ><c,ayor0 > [{a e}] U <a,d)}, thus[{a, e}]u
v {a, d) belongs to D,,,, (). Further we have to prove that [{a, e}] U (a,d)
contains ¢,y wam)@ = {c,a) n[[{a,e}]Ula,d)]. Let c<s=<a x=sZy,
where x, y e [{a, e}] U <a, d). Distinguish two cases:

1) xe<a,d); Thena £ x < 5 £ a, from where we get s = a e [{a, e}] U <a, d).

2) xe[{a, e}]; If x 2 a, we proceed as in 1). If x  a, we have x 2 e, which
implies e<x<s=<a Hence se[{ge}] = [{ae}]uad). Consequently
[{a,e}] U <a,d) € D, ey (@) .

It remains to show that [{a, e}] U <@, d) ¢ D, ay)yo(@). It is D, (a) = D (a) r*
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AD@) ={0cA:0>(c,a)ulady or O>[{ae}]u<ad)), D, ., =
={0eD,,a): 0 > [{c, @) U <a, D] n [[{a, e}]] U <a, D]}, Dyyeryanl@®) =
= D, ,.,(@) U D,(a). Obviously [{a, e}] U <a, d)¢D,..,(a), since b¢[{a, e}]u
v <a, d), be[<c, a) U {a,d)] n [[{a, €}] v <a, d)]. Finally, [{a, e}] U {a, d) ¢
¢ D,(a), as c ¢ [{a, e}] L <a, d).

3.4. Theorem. Let (A, <) be a partially ordered set with the property (mnd)
containing at least 5 elements. Then the lattice a(A, <) is not modular.

Proof. Take arbitrary various elements a, b, c€ A — {o, i}. Consider topologies
u, v, w on A such that

D, a) = {O < A4:{a, o0} < 0},

Dya) = {0 < A:{a,i} < 0},

D,a) ={0c A:{a,c 0} = Oor{ab,o} < 0},
D(z) = D(z) = D,(z) = {A} forevery z€ 4, z # a.

Evidently u, v, we a(4, <) and u < w. We shall prove u V* (v A w) # (U VD) A W
by showing that {a, 0, i} € D,va(waw)(@) — D(yyeryan(@. It is Dy, ,,w)(@) = Dy(@) N
A (D@ v D) = {0 = A4 : {a,0,i} = Oor {a,c o0} < Oor {ab, o} < 0},
D,eioam(@ = {0 €D, am@:0 > [{a o,i}] 0 [{a c 0}] n[{a b 0}]} =

= D,,waw(@). Therefore {a, 0,i} € D, «(,a.)(@). It is easy to show that D, .,(a) =

= {A}, hence D, ;). (@) = D,(a). Thus {a, o, i} ¢ D yes)aw(@), completing the
proof. .

3.5. Theorem. Let (A, ) be the Boolean algebra containing four elements. Then
the lattice a(A, <) is distributive.

Proof. Let 4 = {o, i, a, b}. It is sufficient to prove that for every xe 4 and
topologies u, v, w € a(4, L) itis Dy, , ) va (uaw)(¥) E Dy o (vvew)(X)- Pick an element x € 4
and suppose that O € D, ,)vewaw)X)s i-€. O € Dy v uawy(¥)s O D €y (uam)(X)-
It holds D(lm v)v(uaw)(x) = (D,,(x) v D,,(x)) N (D“(X) v Dw(x)) = Du(x) v (D,,(X) N
N D,(x)) and this implies that either O € D(x) or O € D,(x) N D(x) = D,, ,(x).
If the first possibility occurs, then evidently O € D,, (,yaw)(¥). Assume O ¢ D (x).
Then O€ D, ,(x) and it remains to show that O o c,,.(x). If O is convex, it is
nothing to prove. Suppose that O is not convex. Then O = {0, i, a} or O = {o, i, b}
or 0 = {o, i}.

Analyse the first poss1b1hty In the second case we should proceed analogously.
We need eliminate the relation b € c,,,(x). Assume b € ¢, (). It is easy to show
that ¢, , o) vwaw(®) = € (x) N ¢, (x). Using the assumption O o cuy) v uaw)(X) WE
obtain b ¢ c,(x). Thus b does not belong to some convex set ¥V € D (x). Then V < O,
which implies O € D,(x), a contradiction.

Finally let O = {0, i}. Without loss of generality we can suppose that x = o.
As {o,i} e D,,,(0) = D (o) n Do) and v, w are convexly compatible with the
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ordering < on 4, it is {0} € D,(0) or {0} ¢ D,(0) but {0, i}, {o, a}, {0, b} € D(0) and
analogously for w. From O ¢ D (o) we obtain {0} ¢ D,(0), hence D (o) < D,,,(0).
We conclude that ¢, ,(0) = Cuavyvwaw(@) = O, completing the proof.

From 3.3, 3.4, 3.5 we have immediately:

3.6. Theorem. Let (A, <) be a directed set, which is not a chain. The lattice (A, <)
is distributive if and only if (A, £) is the Boolean algebra with four elements. If A
contains more than four elements, the lattice a(A, £) is not even modular.

4. RELATIVE COMPLEMENTS IN THE LATTICES
T (P), «(4, =), p(4, £)

Let v, u, w be topologies of the lattice 7 (P) and a(4, <) and f(4, <), respectively,
such that v £ u < w. In the following there are investigated conditions under which
the topology u has a relative complement in the interval (v, w) of (P) and a(4, <)
and (A, £), respectively.

4.1. Theorem. Let v, u, w be topologies on a set P with v < u S w. Then u has
a relative complement in the interval {v, w) of the lattice T (P) if and only if the follow-
ing condition is satisfied:

(r) If xe P and O € D (x) — D,(x), then for every subset U of O containing x either
Ue D(x) or Ué¢ D,x) holds.

Proof. Let the condition (r) be satisfied. Set D(x) = D, (x) U (D (x) — D,(x)) for
every x € P. Evidently D(x) # 0 and each set from D(x) contains x. Suppose O, >
> 0 € D(x). We shall show that O, € D(x). If O, € D,(x), it is nothing to prove.
Assume that O, ¢ D (x). Then O ¢ D,(x) and it follows that O e D(x) — D,(x).
The last relation implies O, € D,(x). Further O, ¢ D(x), for otherwise O € D(x)
or O ¢ D,(x) by (r), which is a contradiction. In view of 1.3 there exists a topology '
on P such that D,(x) = D(x) for every x € P. It is easy to verify that #’ is a comple-
ment of u in the interval {v, w).

To prove the converse, assume that there exists a topology «' on P such that
uAu =v, uVu = w. Further let U< O e D,(x) — D,(x), xe U for some x € P.
From D,(x) = D,(x) n D,(x) we obtain O ¢ D,(x). Now if Ue Dy(x) = D(x) u
v D, (x), then U e D (x), as desired.

4.2, Remark. Since in view of 1.5 the lattice 7 (P) is distributive, the topology u has
in the interval (v, w) (u,v,we T (P), v £ u S w) at most one relative complement.

4.3. Corollary. 4 topology u € F(P) has a complement in the lattice I (P) if and,
only if for each x € P either D (x) = {P} or D(x) = {O = P : x € O} holds.
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4.4, Corollary. Complemented elements of the lattice 3 (P) form a complete Boolean
algebra.

Proof. By 1.5 the lattice (P) is completely distributive, hence also infinitely
distributive. Complemented elements of an arbitrary infinitely distributive complete
lattice form a closed sublattice.

4.5. Lemma. Let (A, <) be a partially ordered set and let v, we a(A4, £), v < w.
If for topologies u, u’' € 7 (A) the equalities u Au' = v, uV u’' = w hold, then u, u’' €
€ (4, <).

Proof. We prove that « is convexly compatible with the ordering <. Takea,be 4
such that there exists O € D,(a) not containing b. Then 4 — {b} € D (a). Since
by 4.1 and 4.2 it is D(a) = D,(a) U (D,(a) — D,(a)), we have 4 — {b} € D,(a) or
A — {b} e D,(a) — D,(a). In the first case there exists a convex set Ue D, (a) =
< D,(a) not containing b. If 4 — {b} e D,(a) — D,(a), then be V for every Ve
€ D, (a). Since ve a(d, £), there exists a convex set U; € D,(a) not containing b.
But then U, ¢ D,(a) and as D (a) = D, (a) v D,(a), we get U, € D (a). Therefore
u € a(A, £). Analogously it can be shown that 4’ € a(4, £).

4.6. Lemma. Let v, w € f(A4, <), v £ w. If for topologies u, ' € 7 (A) the equalities
uAu =v,uVvVu = whold, then u, u' € p(4, <).

The proof of this lemma is analogous to that of 4.5.

The following theorem is a direct consequence of 2.3 and 4.6.

4.7. Theorem. Let (A, <) be a partially ordered set and let v, u, w e p(4, =),
v S u S w. A topology u' is a relative complement of u in the interval {v, w) of the
lattice B(A, <) if and only if the same holds in the lattice T (A).

Using 2.7 we obtain the following theorem.

~ 4.8, Theorem, Let (A, <) be a partially ordered set and let v, u, w e (4, <),
vSus w. A topology u' € a(A, £) is a relative complement of u in the interval
{v, w) of the lattice a(A, <) if and only if ' is a relative complement of u in the interval
(v, t) of T (A) for some te T(A) withu < t, i = w.

\5. THE CONSTRUCTION OF THE SET {veJ(4):9 = u}
FOR A GIVEN TOPOLOGY uea4, =)

Iﬂ connection with searching for relative complements to a topology of the
lattice (4, <) in a fixed interval of a(4, <), a question arises, in which way we
can construct all the topologies v € 7(4) with the property & = u, for a given u e
€ a(4, ). o
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If ue I (A), ae A, we denote by 5,(a) the set n {0 : O € D (a)}.

5.1. Lemma. Let (A, <) be a partially ordered set and let u be a topology on A
convexly compatible with the ordering <. Take ae€ A and an arbitrary fixed system
S'(a) of sets O; — B,, indexed by I, such that O, € D (a), 9 # B; < s, a), a¢ B,. Let
S@) ={0—-B:0>0,;, 9+# Bc B, for some icl}. Then the system D(a) =
= D, (a) v S(a) has the following properties:

(i) D(a) # 9,
(ii) Ue D(@) =>ae U,
(iii) U, o Ue D(a) = U, € D(a).

Proof. The assertions (i), (ii) can be easy verified. Let U; > Ue D(a). If U, €
€ D,(a), then U, € D(a). Hence we can suppose that U; ¢ D,(a). Then also U ¢ D (a),
which implies U e S(a). Consequently, U = O — B, where O o O, § # B c B,
for some iel Now U, $ sa), for otherwise U, > O, contrary to U, ¢ D, (a).
Hence s,(a) — U, # 9 and obviously U, = (U; U 5,(a)) — (s,(@) — U,). Since U, U
U s,@ > 0;,and 0 # s,(a) — U, cs,(a) — U= Bc By, itis U, € S(a).

5.2. Theorem. Let u € a(A, <) and let for every ae A D(a) be the system defined
in the foregoing lemma derived from a system S'(a) fulfilling in addition to the assump-
tions of 5.1 also the condition:

(t) If b € B,, then there exist elements 0,, 0, € O; — B; with 0, < b < 0,.

Let v be a topology on A such that D(a) = D(a) for every ac A. Then ¥ = u.

Proof. The existence of a topology v on 4 with D (a) = D(a) for every ae A
follows from 1.3 and 5.1. To prove the equality & = u, by 2.5, it suffices to show that
UeDa) iff Ue D,(a) and c,(a) = U. Hence let Ue D (a). Then obviously Ue
€ D(a) = D,(a). Suppose that there exists b€ c,(a) — U. Since the topology u is
convexly compatible with the ordering <, there exists a convex set W e D,(a) with
b¢ W. As We D(a) c DJfa), it is be [W] = W, a contradiction.

Conversely, let Ue D,(a), c,(a) = U. Suppose that U ¢ D (a). Then U = O — B,
where O o 0,,9 # B c B, for some i € I. Clearly, s,(a) ¢ U. We prove that s,(a) =
< [W] for every We Dya). If WeDja), it is s,(a) € W< [W]. Let WeS(a),
W=0 —PB,0 > 0,0+ B < B, for some je I Then for every bes,(a) ~ W
it is b B’, which implies, by (t), € [W]. Therefore s,(a) < c,(a). As c,(a) = U,
we get 5,(@) = U, a contradiction.

5.3. Corollary. Let uc a(A, <). Then u = ¥ for some ve I (4) — a(A, =) if and
only if there exist elements ac A and b € s,(a), b # a, such that b is neither maximal
nor minimal element of A. :

Proof. Suppose that u = ¥ for some ve I (4) — a(4, ). Then v < u, so that
there exists a € 4 with D (a) & D,(a). Let O € D (a) — D,(a). Then c,(a) ¢ O. Take
an arbitrary element b € ¢, (@) — O. Using 2.5, it is not hard to see that c,(a) = s,(a).
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Hence b e s,(a) and obviously b # a. As bec,(a) = [0] and b¢ O, b is neither
maximal nor minimal.

Conversely, suppose that for some a € A there exists b € s,(a) — {a} such that
is neither maximal nor minimal of 4. Keeping notations as in 5.1, put S'(a) =
= {4 — {b}}, $'(x) = 0 for x # a. Then D(a) = D,(a) U {4 — {b}}, D(x) = D,(x)
for x # a. Let v be a topology on A4 such that D (z) = D(z) for every ze A. By 5.2,
¥ = u and obviously v < u.

5.4. Theorem. Let u € (A, ). The construction described in 5.2 gives all topologies
veJ(A) witht = u.

Proof. Let v be a topology on 4 with & = u. First we show that if Ue D (a) —
— Dy(a), then U can be expressed in the form O — B, where O € D;(a),8 # B < s;3(a),
a¢ B and for every be B there exist elements x, ye U with x < b < y. Denote
0 = Uy sy(a), B = s(a) — U. Trivially, U = O — B. Since O o U e D,(a), s;(a) <
< 0, using 2.5, we get O € Dy(a). Obviously B < s;(a) — {a}. Further B is nonempty,
for otherwise s;(@) = U, which implies, using U e D (a) and 2.5, U e D;(a), a con-
tradiction. If we take an arbitrary element be B, then be sy (a) = c,(a) = [U],
b ¢ U which implies the existence of elements x, y € U with x < b < y.

It remains to show that if O’ > 0, 9 # B’ = B (O, B have the same meaning
as above), then O’ — B’ € D,(a) — Dy(a). Since O' — B >0 — B, itis O' — B' e
€ D,(a). Suppose O’ — B’ € Di(a). Then s,(a@) = c,(a) « O’ — B’, a contradiction.

6. ATOMS, DUAL ATOMS OF THE LATTICES a(4, £), B(A, <)

In this section the atoms and the dual atoms of the lattices a(4, <) and f(4, £)
are described and the conditions on a partially ordered set (4, <) are investigated,
under which these lattices are weakly atomic, atomic, weakly dually atomic, dually
atomic, in the sense of the definitions given below. Throughout this section we
suppose card 4 = 2. ’

6.1, Definition. A4 partially ordered set (X, <) with the least element o is said to be
weakly atomic, if for every x € X, x # o there exists an atom a < x.
The. weakly dually atomic partially ordered set is defined dually.

6.2. Definition. The lattice L with the least element o is said to be atomic, if every
element x € L, x # o is a join of a nonempty set of atoms of L.
The dually atomic lattice is defined dually.

6.3. Lemma. Let a topology v be an atom of the lattice a(A, ) or (A, <). Then
there exists a€ A such that {a} ¢ D (a) and for every x€ A different from a it is
{x} € Dy(x).
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Proof. If v is an atom, then v is not the least topology, hence there exists ae 4
with {a} ¢ D,(a). Suppose that {a,} ¢ D(a,) and {a,} ¢ D (a,) for some a,, a, € 4,
a, # a,. Consider a topology u defined as follows:

Da,) = Da,),
D(2)={0OcA:z€0} foreveryze A,z # a,.

If vis conyexly compatible with the ordering <, so is u. If ve f(4, <), it is also
ue B(4, £). Obviously u < v, u is not the least topology, a contradiction.

Consider the following conditions for an element a of a partially ordered set
“, =)

(1) a is neither the least nor the greatest element of A;

(2) ais the greatest element of A but there does not exist a dual atom of A comparable
with every element of A;

(2') the dual of (2);

(3) a is the greatest element of A and there exists a dual atom b of A comparable
with every element of A;

(3") the dual of (3).

Evidently each element of A fulfils just one of these conditions.

6.4. Theorem. Let ay(A, <) and Bo(A, ) be the set of all atoms of the lattice
(4, £) and P(A4, <), respectively. Then og(A, S) = fo(A4, ) = {v(a) : a€ 4},
where v(a) is a topology described as follows: :

If a fulfils one of the conditions (1), (2), (2), then D, a) = {O < A:a€O,
card O 2 2}, D,,(2) = {Oc A:2€ 0} for each ze A, z # a.

If a fulfils (3) or (3'), then D,,(@) = {0 = A : {a, b} = 0}, Dy,(2) =
={0OcA:ze€0} foreachze 4, z # a.

Hence the number of atoms of the lattices a(A, £) and B(A, <) is card 4.

Proof. Let a be an arbitrary fixed element of 4. First we prove that the topology
v(a) is convexly compatible with the ordering <. Let Ue D,,)(x), y¢ U. If x # a,
then {x} is a convex neighborhood of x not containing y. Hence we can suppose
that x = q. Assume that a fulfils (1). Then there exist x,, x, € Awitha & x,,a £ x,.
We have three possibilities: (i) a < y, (ii) @ > y, (iii) @, y are noncomparable. In the
first and second case [{a, x,}] and [{a, x,}], respectively, is a convex neighborhood
of a not containing y. If (iii) occurs, pick an arbitrary c € U, ¢ # a. The set [{a, c}]
is a convex neighborhood of a that does not contain y, Further assume that a fulfils (2).
Then there exists ce 4, ¢ # a with ¢ £ y. It is [{a, c}] € D(@), y ¢ [{a, c}] If a
fulfils (2'), we use the dual consideration. Finally, if a fulfils (3) or (3'), then {a, b}
.is a convex neighborhood of @ not containing y.

Evidently the topology v(a) is not the least one. If a fulfils one of the conditions
(1), (2), (2), the topology (@) is an atom of the lattice I (4), hence v(a) is an atom
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of the lattices a(4, <), B(4, <) as well. Assume that a fulfils (3) or (3'). Let v < v(a)
for some v € f(A4, <). We need to show that v is the least topology. The inequality
v < v(a) implies D, (a) < D,(a). Hence there exists Ue D,(a) not containing b.
As a, b are eomparable and the topology v is convexly weakly compatible with the
ordering <, there exists a convex set ¥V € D,(a) that does not contain b. It must be
V = {a}.

We complete the proof of 6.4 by showing that if w is an arbitrary topology with
the property (B), different from the least one, then there exists @ € 4 such that v(a) <
< w. If the topology w is not the least one, there exists ae 4 with {a} ¢ D (a).
Obviously D,(x) = D, (x) for every x € A, x # a. It is easy to see that if a fulfils (1),
(2) or (2'), then D (a) = D,,\(a). If a fulfils (3) or (3') and O € D,(a), it must be
b e O. Suppose this is not the case. Then there exists a convex set ¥V e D, (a) with
b¢V, hence V = {a} € D,(a), a contradiction. The proof of 6.4 is complete.

During the proof of 6.4 we also proved the following theorem.

6.5. Theorem. The lattices a(A4, <), P(A, <) are weakly atomic.

Now we will be concerned with the atomicity of the lattices a(4, <), B(4, £).

6.6. Lemma. Let a topology w € T (A) be a join of a nonempty set of atoms of the
lattices a(A, £), B(4, £) in the lattice T (A). Then w is convexly compatible with the
ordering < and it can be described as follows: There exists a nonempty subset A,
of A such that for every ae A it holds:

{OcA:ae0}ifa¢ A,;

{OcA:a€0,card O = 2} if ae A, and a fulfils one of the condttzons
(1), 2), (2); |

{0 c A:{a,b} < 0} if ac A, and a fulfils (3) or (3.

This statement is an immediate consequence of 1.4 and 6.4.

6.7. Theorem. The lattices a(A, <), B(A, <) are atomic if and only if card 4 = 2.

Proof. The sufficiency is clear. To prove the necessity, consider the greatest
topology u'. It isu' = v {v(a) : @€ 4}, hence {4} = N {D,,(x):a€ A} = Dyy(x)
for every x € A. The system D,,(x) contains a two-element set, hence it must be
card 4 = 2.

The results of the remaining part of this paper deal with the questions of the dual
atomicity of the lattices a(4, <), (4, ).

D,(a) =

The proof of the following lemma is analogous to that of 6.3.

6.8. Lemma. Let a topology v be a dual atom of the lattice a(4, <) or (4, £).
Then there exists a € A such that D (a) # {A} and for every x€ A, x # aitis D(x) =

= {4).
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Denote by A° and 4! the set of all minimal and maximal elements of the pamally
ordered set (4, <), respectively.

Let a, b be arbitrary fixed elements of 4, a # b. Denote by v(a, b) a topology on A
defined as follows:

D,,;(a) = {4 — {b}, 4},
D, (2) = {4} foreveryze A,z # a.

The following statement holds true.

6.9. Theorem. Let a,(A, <) and B,(A, <) be the set of all dual atoms of the lattice
a(4, <) and B(A, <), respectively. Then a,(4, S) = {v(a,b) :ae 4, be A° U A‘}
Bi(A, £) = {v(a,b):a,be A,a || bor be A° LU A'}.

Proof. If a, b € A, a # b, then the topology v(a, b) is obviously a dual atom of the
lattice I (A4). 1t is easy to see that if be A° U A!, then v(a, b) € (4, ) < (4, L)
and if a || b, then v(a, b) € f(4, £).

Now let we a,(4, £). We will prove that w = v(a, b) for some a,be 4, a # b,
be A° U A'. By 6.8, there exists ae 4 such that D (a) # {4}, D,(2) = {4} for
everyz€ A,z # a.Since D (a) # {A},thereexistsbe 4,b # awith 4 — {b} € D, (a).
If be A° U A*, then trivially w = v(a, b). Suppose b ¢ A° U A'. Then 4 — {b} is
not a convex set and w e a(4, £) implies the existence of a convex set We D, (a)
not containing b. Theneither W < {xe A : x 2 bjor W e {xe 4 : x £ b}. Analyse,
‘e.g., the first possibility. As b is not a maximal element, there exists c€ 4, ¢ > b.
Define D, (@ ={0OcA:0>{xed:x % c}}, D,,(2) = {4} for each ze 4,
z # a. Evidently w; is a topology which is different from the greatest one and convexly
compatible with the ordering <. Since {xe 4 :x % c}e D,(a) and W ¢ D, (a),
we have w < w,, a contradiction.

Finally, let we B,(4, £). Then there exist elements a, be A, a # b such that
A — {b} e D,(a), D,(z) = {A} for every z€ A, z # a. If a, b are noncomparable or
be A° U A, it is nothing to prove. Suppose that b ¢ A° U A* and a, b are comparable
elements. Then 4 — {b} is not a convex set and using the assumption w € f(4, =),
we infer a contradiction analogously as above.

The following theorem shows that the lattices a(4, <), f(4, <) are not weakly
dually atomic, in general.
6.10. Theorem. The following conditions are equivalent:

(1) The lattice (A, =) is weakly dually atomic.
(2) The lattice p(A, <) is weakly dually atomic.
(3) For every b e A there exist elements ce A*, de A° withd £ b < c.

Proof. Let the condition (1) be fulfilled. We prove that (2) holds. Take a topology
w € (4, <) different from the greatest one. Then there exist elements a, b € 4 with
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A — {b} € D (a). If a, b are noncomparable, then v(a, b) € f,(4, <) and obviously
w S v(a, b). Therefore suppose that as soon as 4 — {b} € D,(a) for some a,be 4,
the elements a, b are comparable. Then w e a(4, =) and using (1) we obtain w <
< v(@, b’') for some v(a’, b') € a,(4, L) = B,(4, £).

Further we prove that (2) implies (3). Take b € 4. We will show that there exists
ce A! with ¢ = b. Distinguish two cases: 1) b ¢ 4% 2) be A4°. If 1) occurs, there
exists a€ A with a < b. Since ae {xe A : x 2 b}, we can define a topology w as
follows: D,(@) = {Oc A: 0> {xeA:x 2 b}}, D,(2) = {4} for every z€ 4,
z # a. Obviously w is not the greatest topology and w € (4, £), hence there exists
ce A with w £ v(a, c), where a, ¢ are noncomparable elements or c € A° U 4'. The
inequality w < v(a,c) implies 4 — {c}eD,(a), i.e. A — {c} > {xeAd:x % b}.
Hence ¢ = b. As b > a, the elements a, ¢ are comparable. Consequently c € A° U A
It follows from ¢ > a that c € A*. If 2) occurs and b ¢ A, there exists b’ € 4, b’ > b.
Using what was proved above, there exists ce A', ¢ = b'. Then also ¢ = b.
Analogously we can prove that if b€ 4, then b = d for some d e A°.

Finally, the condition (3) implies the condition (1). Take an arbitrary topology
w € a(4, <) different from the greatest one. Then there exist a, b€ A with 4 — {b} €
€ D (a). Since w is convexly compatible with the ordering <, there exists a convex
set W e D, (a) not containing b. Itis W< {xeAd:x 2 b}or W {xed:x £ b}.
Analyse, e.g., the first case. Let ce A%, ¢ = b. As obviously a # c, it is v(g, c) €
€a,(4, ) and w < v(a, ¢), for otherwise ce W < {xe 4 : x } b}, a contradiction.
The proof of 6.10 is complete.

With respect to 1.4 and 6.9 it is not hard to prove the following lemnias.

6.11. Lemma. Let w be a topology on A with the property (a), different from the
greatest one. Then w is a meet of a nonempty set of dual atoms of the lattice a(A, <)
if and only if the following condition is fulfilled for every a€ A:

If Oe D, (a), O # A, then there exists be A° U A* with O = A — {b}.

6.12. Lemma. Let w be a topology on A with the property (), different from the
greatest one. Then w is a meet of a nonempty set of dual atoms of the lattice (4, <)
if and only if the following condition is fulfilled for every a € 4:

If 0 e D,(a), O # A, then there exists b € 4 such that O = 4 — {b} and either b
is noncomparable with a or be 4° U A*.

6.13. Theorem. The lattice a(A, <) is dually atomic if and only if card A = 2.

Proof. If the lattice a(4, <) is dually atomic, then the least topology is
A{v(a,b):ae A, be A° U A'}. Applying 6.11, we get, that for every ae A there
exists be A° U A' with {a} = 4 — {b}. Hence card A = 2. The sufficiency is
obvious.
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Analogously there can be proved the last theorem.

6.14. Theorem. The lattice B(A, <) is dually atomic if and only if card A = 2.
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