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ARCH. MATH. 3, SCRIPTA FAC SCI. NAT. UJEP BRUNENSIS 
XII: 117—142 1976 

THE APPROXIMATION OF FUNCTIONS 
IN THE SENSE OF TCHEBYCHEV II 

JIŘÍ ŠMERK, Brno 
(Received May 27, 1974) 

This paper gives a certain generalization of the (classical) Haar condition and the 
corresponding theory of the approximation. 

The detailed knowledge of all the theory, the notation and the terminology given 
in the paper [1] is necessary for understanding this paper. 

1. THE HAAR DECOMPOSITION C O N D I T I O N 

Assumption (for § 1.). Let B be a set, ne N9 S = R or S = C, let card B ^ n. 
Let Jl be a decomposition of the set B. Let coeJt\j {0}. 

Definition 1. Let V be an /i-dimensional subspace of SB. We shall say that V 
satisfies the Haar decomposition condition (with respect to B, Jt9 co) iff every 
non-trivial polynomial QeV has at most n — 1 zeros in distinct classes of 
Jt - {co}. 

Remark. If card (Jt — {co}) <£ n — 1, then every ^-dimensional subspace of 
SB satisfies the Haar decomposition condition. 

Theorem 1. Let card (Jt — {co}) > n. Let V be a subspace of SB generated by 
functions Ql9 ..., Qn e SB. Then the following assertions are equivalent: 

(1) Ql9 ...9Qn form a basis of V and V satisfies the Haar decomposition con­
dition. 

(2) If xt, ..., xn e B — co are in distinct classes of Jt9 then det Qk(x3) ^ 0. 
Proof. The proof of the assertion is simple. 

Theorem 2. Let card (Jt - {co}) = n. Let V be a subspace of SB
9 dim V ^n. 

Then the following assertions are equivalent: 
(1) dim V = n and V satisfies the Haar decomposition condition. 
(2) If xl9 ..., xn eB — co are in distinct classes of Jt and if yl9 --,yn€S are 

arbitrary, then there exists exactly one Pe V such that P(xj) = yj forj = 1, ..., n. 
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(3) If 1 ^ m S n and if xx, ...,xmeB — co are in distinct classes of Jt, then 
d i \ x/ = ? w ' 

Proof. We shall prove that (1) implies (3); the rest of the proof is simple. Let (1) 
hold, let xl9 ..., xme B — co be in distinct classes. If m = n, then the assertion 
dim{xu^Xn}V = n follows from Theorem 1(2) and from Theorem 23(2) of [1], Let 
m < n; we can add such points xm+l, ...,xneB — co that the points xl9 ..., xn are 
in distinct classes and hence dim{;ci> ...t Xn)V = n. By Theorems 23(4) and 23(1) of [1], 
we have n = dim{jci> ...fXn}V ^ d i m ^ Xm}V + (n — m) ^ m -f- (n — m) = n, hence 
dim^1}...jJCm)V = w and (3) is valid. 

Remark. If Jt = {{x}/x G B} and co = 0, then the Haar decomposition condition 
is equivalent to the (classical) Haar condition (see [2], p. 25). 

Theorem 3. Let D cz B. Let us denote Jf = {a n D/a G.y#} — {0}, x = co n D. 
Then .yV is a decomposition of D and a: zJf u {0}. 

Let card (Jf — {x}) = w. Let V be an rc-dimensional subspace of SB satisfying 
the Haar decomposition condition with respect to B, Jt, co; let us denote W = 
= {QDIQ G V}. Then W is an ^-dimensional subspace of SD satisfying the Haar 
decomposition condition with respect to D,Jf, x. 

Proof. The assertion is obvious. 

2. T H E Q U O T I E N T F U N C T I O N p(x,y) 

Assumption (for § 2.). Let B be a set, n e N, S = JR or S = C, let card B .= n. 
Let Jt be a decomposition of 5 ; let ~ denote the equivalence on B corresponding 
to Ji. Let coeJt^j {&}. 

Let us suppose that for each x, y e B — co of the same class of Jt there is given 
a fixed non-zero number p(x, y)e S. If x, y, z € B — co and x ~ y and j ~ z, let 
the relation P(x, z) = p(x, j ) -p(y, z) hold. 

Let us denote Y = 7(5, «Jf, co, p, S) = {g e SB/g(x) = 0 for all x e co, g(x) = 
= PC*> y) • #(y) for x, y G B — co and x ~ j } . (In what follows we shall deal only 
with the functions of Y.) 

Theorem 4. (1) We have p(x9 x) = 1 for all x G B — co. 
(2) If x, y e B — co and x ~ y, then p(x, y) • p(y> x) = 1. 
(3) Y is a subspace of SB. 
(4) If <Jf = {{x}/x G 5} and co = 0, then Y = SB. 
(5) Let us choose for each class aeJt — {co} a fixed point xa e a and a number 

ca G S. Then there exists one and only one g G Y such that g(xa) = ca for all 
aeJt — {co}. 

Proof. (1) p(x, x) = p(x, x) >p(x, x) and p(x, x) ^ 0, hence p(x, x) = 1. 
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(2) We have p(x, y) .p(y, x) = p(x, x) = 1. 
(5) Let g e Y be such that g(xa) = ca for all a eJt - {co}. 
Then g(x) = 0 for all x e co. If x e B — co, then there exists one and only one 

aieJf - {co} such that xe<x; we have g(x) = p(x, xa) -g(xa) = p(x, xa) • ca. Hence 
there exists at most one g e Y such that g(xa) = ca for all a eM — {co}. 

On the other hand, let us define g e SB by the relations: g(x) = 0 for x e co, g(x) = 
= p(x, xa) - ca for x e a where a e « i - {co}. Then g e F and g(*a) = ca for all 
VLeJt — {co}. 

Definition 2. A point xeB will be called a significant point iff xe B — co and 
| p(y9 x)\ = 1 for all y e B — co such that y ~ x. 

Theorem 5. Let V be an w-dimensional subspace of Y, fe Y. 

(1) We have card (J? - {co}) = n. 
(2) If xeco, then Q(x) - f(x) = 0 for all QeV. 
(3)lfx,yeB-co and x ~ y, then Q(y) - f(y) = p(j>, x) • [Q(x) - f (x ) ] for all 

QeV. 
(4) Let x be a significant point. If y ~ x, then | Q(y) - fOO | <; | Q(x) - f(x) | for 

all Q e V. 
(5) Let Pe V and 0 < | |P - f | | < + co. Let xeB be such a point that 

| P(x) —f(*) | = || P - / | | (such a point is called an extreme point of B). Then x 
is a significant point. 

Proof. (1) Let Ql9 ..., Qn form a basis of V. By Theorem 21 or [1], there exist 
points xl9 ...,xneB such that det Qk(xJ) ^ 0. Evidently Xj^co for j = 1, ..., n. 
Let us admit that xt ~ Xj and / # J. Then Qk(xt) = p(xf, x7) • Qk(xj) fork = 1,... ,n, 
hence det GjtC ĵ) = 0, which is a contradiction. Therefore xl9 ..., xn are in distinct 
classes of M — {co}, hence card(^# — {co}) = «. 

(5) Necessarily x e B — co. Let us admit that there exists y e B such that y ~ x 
and | p ( y , * ) | > l . Then by (3), | P(y) - f(y) \ = \p(y,x) \ • \P(x) - f(x) \ > 
> | P(x) — f(x) | = | |P — f | | , which is a contradiction. 

Theorem 6. Let V be an ^-dimensional subspace of Y satisfying the Haar de­
composition condition. Letfe Y, let us denote fi = min || Q ~ / | | . 

QeV 

(1) Let M ?-= 0 be a minimal set (i.e. \i > 0, f$ V). Then: 

a) M n co = 0; 
b) the points of M are in distinct classes of Jt — {co}; 
c) if x e M, then x is a significant point; 
d) card M = « + 1 (and if S = i*, then card M = w + 1); 
e) dimMV = n. 
(2) Suppose that there exists a minimal set M # 0. If P e V and || P — f | | = /*, 

then P has at least n + 1 extreme points in distinct classes of Jt — {co}. 
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(3) Suppose that there exists a minimal set M. Then there exists one and only one 
Pe V such that | |P - ~ / | | = /i. 

P r o o f . ( l ) a ) L e t u s a d m i t t h a t x e M n o ) . W e h a v e | | Q -f\\Mr_{x} = || Q - / | | M 

for all QeV, hence ju(M - {x}) = p(M), which is a contradiction. Hence i ¥ n o ) = 
= 0. 

b) Let us admit that x,yeM and x ~ j . Since p(x, y) • p(y, x) = 1, we may assume 
\p(x,y) | = 1. By Theorem 5(3), | Q(x) - f(x) \ S | Q(y) ~ / ( y ) | for all Q e V, 
which is in contradiction with Theorem 16(1) of [1]. 

c) Let x e M, let P e V be such a polynomial that || P — / | | = jn. By Theorems 
9(4) and 17 of [1], we have |P(x) - f(x) = \i = | |P - / | | . Since \x > 0, x is 
a significant point by Theorem 5(5). 

d) Let us admit that card M = m ^ n. By a), b) and Theorem 2, we have dimMV = 
= m. By Theorem 24 of [1], we have \i = \i(M) = 0, which is a contradiction. Hence 
card M = n + 1. 

e) By a), b), d) and by Theorem 2, we have dimDV = n even for each subset 
D a M with at least n points. Hence dimMV = n, too. 

(2) By Theorems 9(4) and 17 of [1], we have | P(x) - f(x) \ = ju for all xeM. 
The assertion follows now from (la), (lb), (Id). 

(3) If M = 0, t h e n / e V and the assertion is evident. If M T~= 0, then dimMV = « 
by (le) and the assertion follows from Theorem 20(3) of [1]. 

Remark. Theorem 6(3) is a generalization of the classical Haar theorem, namely 
of the assertion of the sufficiency (see Theorem 19 of [2]). We can generalize also the 
assertion of the necessity (see Theorem 20 of [2]); we need, however, stronger assump­
tions. Theorem 7 is not used in the following theory. 

Theorem 7. Suppose that there exists a number d > 0 such that for each a e 
eJf — {co} there exists a point za e a such that | p(x, za)\ ^ d for all x e a. 

Let D be such a subset of B that p(x, y) = 1 for x, y e D — co and x ~ y. Let ZT 
be a topology on D. Let us denote JV = {a n D/a eM} — {0}; thene^V is a decom­
position of D. Let us denote 3F = {stf c= Jf\Ustf eZT}; then !F is a topology cmJf. 
Suppose that (Jf, $F) is a compact Hausdorff T-space. 

Let V be an w-dimensional subspace of Y not satisfying the Haar decomposition 
condition (with respect to B, Jt, co). Let P be a non-trivial polynomial of V having 
zeros x!, ..., x„ in distinct classes a t , ...,aneJi — {co}. Suppose that P is bounded 
in B and continuous in D with respect to the topology 3~. 

Then there exists a function fe Y continuous in D with respect to £T which has 
infinitely many polynomials of the best approximation in V. 

Proof. We give only the principle ideas: 

1. We may assume || P || = - j , xk = zak and xk e D for <xk n D # 0. 
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2. There exist bt, ..., bn e S not all zero such that £ bjQ(Xj) = 0 for all QeV. 
1=1 

3. There exist a function g e SD continuous in D with respect to 9~ with the follow­
ing properties: g(x) = 0 for all x e D n co; g(x) = g(y) for x, y e D — co and x ~ y; 
g(xk) = sign b* for <xk n D -̂  0; | g(x) | <J 1 for all x e D. 

4. Let us define fe SB in this way: f(x) = 0 for xeco and for x € a, a n D = 0, 
a£{a1? ...,a„}; f(x) = p(x, Za)-£(Za)-(1 - | P(Za) |) for xea , a n D # 0;f(x) = 
= P(x> **) • (sign bk) • (1 - | P(x*) j) for x e a*, a* n D = 0. Then\i = min || Q - f | | = 

= 1 and || aP - f | | = 1 for all aeS such that | a | g 1. 

Remark. In Theorem 20 of [2] there are the following assumptions: B is a compact 
Hausdorff T-space, V is an w-dimensional subspace of C(B) not satisfying the 
(classical) Haar condition. We take M = {{x}/x e B}, co = 0, D = B. Then^ = M 
and (Jf, $F) is a compact Hausdorff T-space. If x ~ y, then x = y and p(x, y) = 1. 
By Theorem 7, there exists fe C(B) having infinitely many polynomials of the best 
approximation in V. 

3. THE APPROXIMATION 

Assumption (for § 3.). Let n e N, S = R. Let D be a set, Jf a decomposition of D 
(~ the corresponding equivalence on D), x eJf u {0}. Let us suppose that for each 
x, y e D — x of the same class of̂ V there is given a fixed non-zero number q(x, y) e R. 
If x, y, z e D — x and x ~ y and y ~ Z, let the relation q(x, Z) = q(x, j ) • q(y, z) hold. 

Let i? be a subset of D. Let us denote M = {a n i?/a e«yV} — {0}, co = x n B. 
Let us suppose card(^# — {co}) g: » + 1. 

Let W be an ^-dimensional subspace of Y(D,Jr,x, q, R) satisfying the Haar 
decomposition condition with respect to D,Jf, x. Let Qy, ..., Qn form a basis of W. 

Suppose that there are given an interval / a R*9 a set / c D — x and a one-one 
mapping £ of / onto /. Let every QeW have the following property: if Q[£(s)] is 
non-zero in a subinterval <c, d> c / , then Q[£(c)] • Q[£(d)] > 0. (The same is true 
e.g. when QK(s)] is continuous in /.) 

Let fe RB be such a function that f(x) = 0 for all x e co and f(x) = q(x, y) .f(y) 
for x, y e B — co, x ~ y. 

Remark. (1) M is a decomposition of i?, co eM u {0}. 
(2) If x, j e i? and x ~ y, then we define p(x, y) = q(x, y). The function p satisfies 

the requirements of the Assumption for § 2 with respect to B, M, co. We have 
Y(B,M,co,p,R) = {geRB/g(x) = 0 for xeco,g(x) =q(x,y)-g(y) for x,yeB-co 
and x ~ j} , i.e. fe Y(B,M, co,p, R). 

(3) Let us denote V = {Qu/G e W). We can easily prove (by Theorem 3 etc.) 
that V is an ^-dimensional subspace of Y(B,M, co,p, R) satisfying the Haar de­
composition condition with respect to B, M, co. 
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(4) Let us denote \i = min || Q - / | | . If Qe W, let us denote || Q - / | | = 

= sup | Q(x) -f(x) | = || QB ~ / | | . Then ji = min || Q ~ / | | , too. 

(5) The restrictions of the functions Qi9 ..., e« to the set B form a basis of V. 
When we apply the theorems of [1] and of § 1 and § 2, we must realize that under the 
basis of V these restrictions must be understood. However, in the theorems and 
formulae we shall speak only about the polynomials of W. 

(6) For x,ye I let us denote: x < yifi £~x(x) < %~~1(y),x -^y iff x < yor x = y. 
(7) If B = A then M = Jf9 co = x, p = q, V = W, too. If we consider such 

a case, we shall speak only about B, JK9 co, p9 V. 
(8) If I c (D — x) n -R* is an interval and if each polynomial Q e Wis continuous 

in I, we take mostly / = I, £(x) = x. Then x -< j> iff x < >>. 
(9) All these assumptions and constructions are necessary for the applications; 

see § 4. 
Theorem 8. Let xl < ... -< xn+1 be such points in I that xt ^ x ^ xn+1 and 

x ~ xfc implies x = xk (for each x G I and k = 1, ..., n + 1). For k = 1, ..., n 4- 1 
let us denote 

I ei(*i) -. Gi(**-i) eife+i) -. Gifo+i) 
cfe = ( - i r i . | ; 

i e«(^ i ) . . . en(xk-i) e « ( ^ + i ) . . . e«(*«+i) 

Then the numbers C l5 ..., Cn+1 are non-zero and alternate their signs. 

Proof. Let ke{\, . . . ,«}. For all xeD let us put 

ei(x i ) . . . Cife- i ) 6 i W ei te+2) . . . Oi(x,.+i) 

e«(-^l) •• e«(^fc-l) QnW Qn(xk + 2) .. gnfoi+l) 
Ô(*) = 

Then QeW. If se<^1<x&), ^_1(xfe+1)>, then the points xl9...9xk-l9 £(s), 
xh+2> • -•> xn+i a r e m distinct classes of Jf — {:*}, hence SKC-7)] # 0 by Theorem 1. 
Hence (by the Assumption) Q(xk) • e(*fc+i) > 0. We have Ck = (- l) f c _ 1 Q(xk+1) 
Ck+i = (-1)* Q(xk), hence Ck • Ck+1 < 0. 

Remark. If each class a eJf — {x} has at most one point in the set {x e I\xx ^ x ^ 
^ xn+1}, then the assumption of Theorem 8 is fulfilled. 

Theorem 9. Let Pe Whave the following property: there exist points xx -< ... -< 
-<xn+i in /such that xx ^ x ^ xn+1 andx ~ x̂  implies x = xk(xel, k = 1,...,«-[-1), 
points ti, ..., tn+1 e i? and a number A e { — 1, +1} such that for k = 1, ...,« + 1 
we have rfc ~ xfc and 

P(h) ~ f(h) = h • sign q(f&, x*) • ( - l)k• dh9 where dk >= 0. 
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(1) For k = 1, ..., n + 1 let us denote 

fii('i) ••• Gifo-i) 0 i t t + i ) ••• Gi(l«+i) 
Л - l . -?_ = (-iy 

Q„(t.) ••• Q„(^-i) Q„(t*+i)... Q„(tB+i) 

Then n Z *{/_, ..., tn+1}) = l i f t H ffi)-/(fr) 1 ^ m i n | * < , _ . _ / ( _> | . 
Z*\Uk\ fc=l, . . . , » + -

(2) Let us define the numbers Ci, ..., Cn+X as in Theorem 8.ThenK{'i> •••>ti,+i}) = 
_ S|C f cl-|q(x f c,. f c)j-lP(r f c)-f(r f c)| 

2|Cfc|-|g(xfc,.fc)| 
(3) If |P(.fc) -/(t f c) | = | |P - / | | for k = 1, ...,« + 1, then | | P - / | | = ^ 

Proof. Let us denote w = q(tl9Xi) •• •• q(tn+l9 xn+l). Let/ce {1, . . . , »+ 1}. Then 
we have Qt(tk) = q(ffc, xfc) • Qt(xk) for i = 1, ..., n9 hence Dfc = q(tl9 *_)••... q(tk„l9 

xfc__)-q(.fc+1, xk+1)-...-q(tn+l9 xn+i)-Ck=—77—T.Ck = w.q(xkf tfc)-Cfc. By 
gVffc5 Xk) 

Theorem 8, there exists ae {-1, +1} such that sign Cfc = a-(-l) f c for k *=. 1, ..., 
/i + 1, hence signDfc = sign wsignq(xfc, tfc)-a-(-l)fc. Let us denote b = 
= a-h-signw. Then fork = 1, . . . ,«+ 1 we have b • Dk • [P(tk) - f(tk)] =b-|_9 f c | x 
x sign w • sign q(xfc, tfc).• a • ( - l)fc• h• sign q(tk, xk) • ( - l)fc-*dfc = | Dfc | • dfc ^ 0. There­

fore (1) follows from Theorem 28(6) of [1] (we take tfc, Dfc instead of xk, Ck). 
(2) follows from (1), if we substitute | Dfc | = | w \ • | q(xk, tk) \ • \ Ck \, (3) follows 

from (1). 

Theorem 10. Let Pe W have the property: there exist points xt -< ... •< x„+ 1 in 
I n B such that xt _< x ____ xn+l and x ~ xk implies x = xk(x e I, k = 1, n + 1) and 
a number he {-I, +1} such that for k = 1, ..., n + 1 we have 

-Pfok) - /(*fc) = h • ( - l)fc .dfc, where dfc = 0. 

(1) Let us define C_, ..., Cn+1 as in Theorem 8. Then fi = li({xl9 ..., *n+i}) = 
__ £|Cfcl.lP(xfc)-/(xfc)l ^ 

— _ _ T C f c l fc=i ' *fc^ " ^ fc^ I" 
(2) If | P(xfc) -/(x fc) | = || P ^ / i f fo r k = 1, ..., n + 1, then || P - / | | = n. 

Proof. Theorem 10 follows from Theorem 9. We take tfc = xk9 hence q(tk9 xh) = 1, 
Cfc=Dfc. 

Theorem 11. Let M = {f_, ..., _w+1} be a minimal set (see Theorem 6(1)). Suppose 
that there exist such points xt < ... < Xn+1 in / that tfc - xk for k = 1, ..., n + 1. 
Let Pe Wand | | P - / | | = ju. 

(1) Let us define Cl9 ..., C_ + 1 as in Theorem 8. Then there exists be {-1, +1} 
such that for k = 1, ..., n + 1 

W - /('fc) = 6 • sign q(.fc, xk) • sign Cfc • || P - / | | . 
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(2) Let x1 ^ x ^ xn+ j and x ~ xfe imply x = xk(x e I,k = 1, ..., n + 1). 
a) Then there exists a number he {-I, +1} such that for k = 1, ...,n + 1 

we have 
^ ) - f f e ) = A - s i g n q ( ^ , x f c ) . ( - l ) f c . | | P - f | | . 

b) Let ul9 ..., wrt+1 ei? be such points that uk ~ tk for k = 1, ..., n + 1. Then 
for Jfc = 1, ...,#! + 1 we have 

A"*) - f(uk) =h-\q(uk, tk) | • sign q(uk, xk)• (- If • || P - f | | . 

c) If Xj, .., xn+1 e B, then for k = 1, ...,« + 1 we have 

^(**) ~f(**) = h-\q(xk, tk) | - ( - l ) f c . | |P - f | | . 

Proof. Let us define Dl9 ...,Dn+1 as in Theorem 9, let us denote w = 
= q(^,x1).....qOn+1,xM+1). ThenD* = w-q(xk, tk)-Ckfork = 1, ...,«+ 1 (see 
proof of Theorem 9). By Theorem 31(2) of [1] (where we take tk, Dk instead of xk, Ck), 
there exists ae{-l, +1} such that P(r*) - f(tk) = a-sign Dfe-|| P - / || = 
= a-sign H>-signq(xj,, tk) .sign Q*| |P —f\\ for k = 1, ..., n + 1. Let us put b = 
= a- sign w; since sign q(xk, tk) = sign q(tk, xk)9 our assertion is valid. 

(2a) By Theorem 8, there exists ce {-1, +1} such that sign Ch = c • (-l)fc for 
k = 1, ..., n + 1. Let us denote h = b • c; the assertion follows now from (1). 

(2b) P(w,) - f(u&) = q(u*, tk) • [P(tk) - f(tk)] = J q(uk ,tk)\- sign q(uk, tk) • h • 
signq(tk, xk) • (-l)fc • || P - f | | = h • | q(uk, tk) | - singq(u„ xk) • (-l)fc - || P - f | | . 

(2c) follows from (2b) for uk = xk. 

Theorem 12. (1) Suppose that a n B # 0 implies a n 7 # 0 for each a e«yV — {#}. 
Let M T£ 0 be a minimal set. Then there exist (significant) points t1} ...,tn + 1eB 
(in distinct classes of ,yV — {x}) and points xx <̂ ... < xn+1 in J such that M = 
= {?l5 ...,rlt+1} and tk ~ x& for k = 1, . . . , «+ 1. 

(2) Suppose that a n i? =# 0 implies card (a n /) ^ 1 for each a eJf — {x}. If 
xx -< ... <xn+1 are arbitrary points in I and if there exist points tl9 ...,tn+1eB 
such that tk ~ xk for A: = 1, . . . ,« + 1, then x t ^x^ xn+1 and x ~ xk implies 
x = x&. 

Proof. (1) By Theorem 6(1), M has exactly w + 1 points which are significant and 
are in distinct classes of Jt — {co}; let us denote them by tl9 ...,tn+1. For k = 
= 1, ..., n + 1 let u.keJf be the class containing fk. Then ak # x, afe n 2? # 0, 
hence otknl^0. Let us choose xkv>ooknl arbitrarily. The points xj,..., 
x„+1 are distinct; we may assume that the points tl9 ...,tn+1 are denoted so that 
*i -< ••• -< xn+1. 

(2) Let ke {1, ...,» + 1}. Let vikeJf be the class containing xk. Then otk ^ x 
and oikn B ¥" 0> hence akn I = {xk} and the validity of the assertion is proved. 
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Theorem 13. Suppose that a n B ?- 0 implies card (a n I) = 1 for each a eJr — 
— {x}. Suppose that there exists a minimal set, let P eW. 

Then || P - f | | = \i iff there exist points tl9 ..., tn+1 eB (in distinct classes of 
^ - {*})> points x! -< ... -< xrt+1 in I and a number Ae { —1, +1} such that for 
k = 1, ..., n + 1 we have 4 ~ x* and 

IU) ~ /(**) = A • sign q(t„ xfc) • ( - 1)* • || P - fI]. 

Proof. Let the latter condition be fulfilled. Then we have ||P - f | | = ft by 
Theorems 12(2) and 9(3). 

Let | |P - f | | = fi = 0. Since card {Jt - {co}) = n + 1, there exist distinct 
classes a t , ..., an + 1 eJf - {x} such that ak n B # 0 for k = 1, . . . , «+ 1. Let 
{xk} = ak n 7, tkecck n B. By a renumeration we can attain that xt -< ... -< xn+i 

and the assertion holds. 
Let ||P — f | | = \i > 0. Then the assertion follows from Theorems 12(1), 12(2) 

and ll(2a). 

Theorem 14. Suppose that there exists a minimal set. Then there exists one and 
only one Pe W such that || P — f || = \i. 

Proof. By Theorem 6(3) there exists exactly one QeVsuch that || Q — f\\ = ft. 
Since card (M — {co} = n + 1, two distinct polynomials of W cannot coincide in B 
(see Theorem 2). If P e W is the only polynomial for which PB = Q, then P is the 
only polynomial of W such that || P — f | | = /L 

Theorem 15. Let a subset A c 5 be compact with respect to some topology, let the 
function | Q — f \ be continuous in A for any QeW. Suppose that if a eJf — {x} 
and 01 n B ¥" 0, then there exists a significant point xea n A. Then A is a represen­
tative subset (and there exists a minimal set). 

Proof. Let x e B — co, let a eJr be the class containing x. Then ot ^ x,a n B ^ 0, 
hence there exists a significant point j e a n J?. As \q(x, j ) | = 1, we have 
I Q(x) -f(x) I = I Q(y) -f(y) \ for all QeW. 

Let x e co. As A 7-= 0, we can choose arbitrary ye A and then | Q(x) — f(x) | = 
= 0 = | e ( y ) - f ( y ) | f o r a l l Q e W . 

Lemma. Let x, y e D be such points that | g(jc) - f(x) <; | Q(j) - f(j) | for all 
QeW. Then there exists a number deR such that | d| = 1, f(x) = d-f(y) and 
Q(x) = d • Q(j) for all QeW. (The proof is not difficult and we do not give it here.) 

Theorem 16. Let i c ^ b e a representative subset. 
(1) If x e B — co, then there exists ye A such that x ~ y and | q(x, y) | g 1. 
(2) Let the class a e.yV — {x} contain at least one significant point (of course 

with respect to p). Then there is a significant point in a n A, too. 
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Proof. (1) Let xeB - c0; let y e A be such a point that | Q(x) - f(x) | = 

^ | ^(3;) _ f(y) I for all Q e W. By Lemma, there exists deR such taht | d \ ^ 1 
and Q(x) = d • Q(y) for all QeW. Then dim{x>y} W ^ 1 and hence x ~ y by Theo­
rem 2. Then q(x, y) = d and | #(x, 7) | <Sj 1. 

(2) Let x e a be a significant point, let j> be the point mentioned in (1). Then 
I q(x, y) J = 1. If zeoc n B, then \p(z,y) \ = \p(z, x) | • |p(x,y) | = \p(z, x)\^l, 
hence y is a significant point, too. 

4. APPLICATIONS 

A. The (Classical) Haar Condition 

Assumption. Let S = R,neN,a,be K*, a < b. Let W be an ^-dimensional sub-
space of C<a, b>, let every non-trivial polynomial QeW have at most n — 1 zeros 
in <a, b} (the Haar condition). Let B <= <a, b> be compact, card B = n + 1, let 
fe C(B). Let us denote \i = min || Q - / 1 | . 

QeW 

Remark. We take D = <a, b}, Jf = {{*}/* e <a, b>}, x = 0. We have, 
card ( ^ — {o>}) = card B = n + 1. PV is an ^-dimensional subspace of 
Y(D,Jf, x, q, R) = R<a>b> satisfying the Haar decomposition condition with respect 
to D,Jf, x. We take I = / = <a, b>, £(s) = s; then card (a n /) = 1 for all (xeJf. 
Since B is a representative subset, there exists a minimal set. 

Remark. As x ~ y implies x = y, it is not necessary to define q explicitely; we 
always have q(x, y) = 1. The situation will be similar in the other applications; 
moreover, if x ~ y and x # y, it is sufficient to define q(x, y); we have q(y, x) = 

1 
~ q(*,y) ' 

Theorem 17. (1) Let Pe Whave the property: there exist points xt < ... < xn+i 

in B such that the numbers P(x^) - f(xk) (k = 1, ...,« + 1) alternate their signs. 
Then .u = ^ ( { ^ , ..., xn+J) ^ min | P(x*) - /(**) |. 

fc-=l, . . . , n + l 

(2) Let PeW. Then ||P - / | | = li iff there exist points xl < ... < xn+i in 5 
and A 6 {-1, +1} suchthatPfe)-/(x fc) = A-(-l) f c- | | P - / | | for k = 1, . . . , n + l . 

(3) There exists one and only one PeW such that || -P — / 1 | = ,". 

Proof. (1) follows from Theorems 12(2) and 10(1); (2) follows from Theorem 13 
(where tk ~ xk implies tk = xk); (3) follows from Theorem 14. 

Remark. If we introduce a basis Qi, ..., Qn of W, we can get a better estimation 
in (1) from Theorems 9 and 10. The same will be true of the other applications. 
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B. Functions with Zero Values at the End Points 

Assumption. Let S = R9 neN, a, beR*9 a < b. Let W be an w-dimensional 
subspace of C<a, b}9 let Q(a) = 0 for all Q e W and let every non-trivial polynomial 
Q e rVhave at most n — 1 zeros in (a9 b}. Let B c <<z, b} be compact, card (B — {# }) §£ 
_ w + 1. Let /e C(5) and f(a) = 0 in case aeB. Let us denote ft = min || Q — / 1 | . 

QeW 

Remark. We take D = <a, b}9 J
r = {{x}/x e (a, b}}9 x = {a}; q is defined impli-

citely. We have card (Ji — {co}) = card (B — {a}) _• w + 1. HP is an fi-dimensional 
subspace of Y(D9Jf9 x9 q9 R) = {ge R<a,byjg(a) = 0} satisfying the Haar decompo­
sition condition with respect to D, Jf9 x. If x e co, then x = a and x e j , hence f(x) = 
= 0. We take I = / = (a9 b}9 £(s) = s. Then x n 7 = 0, card (a n 7) = 1 for all 
a e / - {x}. As I? is a representative subset, there exists a minimal set. 

Theorem 18. (1) Let Pe Whave this property: there exist points xt < ... < xn+t 

in B — {a} such that the numbers P(xk) — f(xk) (.fc = l,...,w + l) alternate their 
signs. Then fi = /i({x,, ..., xn+1}) = min | P^) - /(xfc) |. 

fc=l, . . . , n + l 

(2) Let Pe W. Then ||P - / | | = JX iff there exist points xt < ... < xn+i in 
jB-{a} and he{-l,+l} such that P(xk) - f(xk) = h • (-l)fc • || P - / | | for 
k = 1, ...,« + 1. 

(3) There exists one and only one Pe W such that || P — / 1 | = JA. 

Proof. (1) follows from Theorems 12(2) and 10(1); (2) follows from Theorems 10(2) 
and 13 (we have tk = xk); (3) follows from Theorem 14. 

Remark. (1) If we examine the functions being of zero value at b9 we get similar 
results. 

(2) We can also examine the functions having zero values at both a and b. We 
assume that Q(a) = Q(b) = 0 for all QeW9 every non-trivial polynomial QeW 
has at most n — 1 zeros in (a, b)9 card (B — {a, b}) = n + 1, f(a) = 0 in the case 
aeB and f(b) = 0 in the case b eB. We take x = {a, b}9 I = / = (a, 6) etc. 
Theorem 17 will hold also in this case, only the points xt < ... < xn+x will be in 
B - {a, b} = B n (a, b). 

C. Functions with Proportional Values at the End Points 

Assumption. Let S = R, neN9 p9beR*9 a <b9 deR9 d # 0. Let W be an 
w-dimensional subspace of C<a, b}9 let Q(a) = d • Q(&) for all Qe W and let each 
non-trivial polynomial QeW have at most n — 1 zeros in <a, 6). Let B c <a, £> be 
compact, let card B = n + 2 in the case a9beB and card 5 ^ « + 1 in the other 
cases. Let feC(B) and /(a) = d- f(b) in the case a9beB. Let us denote /i = 
= m i n | | Q - / | | . 
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Remark. We take D = <a, b}, JT = {{Alx e (a, b)} u {a, b), x = 0, a(a, b) -= d. 
We have card (M - {co}) = n + 1. W is an ^-dimensional subspace of 
Y(D,Jf, x,q,R) = {g e Ka' b>lg(a) = d • g(b)} satisfying the Haar decomposition 
condition with respect to D,Jf, x (as Q(b) = 0 iff Q(a) = 0). The function /satisfies 
the requirements. Let us put / = J = <a, by, £(s) = s. If xx < ... < xrt+1 are such 
points in <a, b} that xt > a or xn+i < b, then xj = x = xfl+1 and x ~ xk implies 
x = xk. If a eJf, then <x n I ^ 0. Since B is a representative subset, there exists 
a minimal set. 

Theorem 19. (1) Let PeW have the following property: there exist points 
xx < ... < x„+1 in B such that either xx > a or xn+1 < b and the numbers P(xfc) — 
-f(*k) (k = I, ...,n + 1) alternate their signs. Then \i = \i({xx, ~-,xn + 1}) = 

= min |P (x*)- / (* k ) | . 
* = i , . . . , « + i 

(2) Let PeW. Then ||P - / || = ft iff there exist points xx < ... < xn + 1 in # 
and a number h e { — 1, +1} such that either xx > aor xn+l < b and P(x&) — f(xk) = 
= h-(-l)fc-||P-/|| fork = 1, ...,« + V 

(3) There exists one and only one PeW such that || P — / || = /i. 

Proof. (1) follows from Theorem 10(1); (3) follows from Theorem 14. As for (2): 
Let | | P — / 1 | =/* > 0. Letxi < ... < x„ + 1 be the points in B which form a minimal 
set. Then either xa > a or x,I+1 < b (else xx ~ xrt+1) and the assertion follows from 
Theorem 11 (2c) (we take tk = xk). 

Remark. Let a, b e B. Let P e W, || P - / 1 | = /* > 0; then the points xx < ... < 
< xn+1 of Theorem 19(2) are significant by Theorem 5(5). Hence, if | d| < 1, then 
x! > a; if | d| > 1, then xrt+1 < b. 

Theorem 20. We have sign d = (-1)""1. 

Proof (we give only the principle ideas). Let QX, ..., Qn form a basis of W, let us 
choose points xx, ..., xn-t such that at < xx < ... < xn^1 < b. For all xe<a, b> 
let us put 

"fiiW Qi(*i) - fii(*„-i); 
ew 

<2„(*) G ^ i ) - &,(*,,-1) 

Then Qe W, Q(x) ^ 0 for xe<a, b> - {xj? . . . ,x n + 1 } . We can prove that Q 
changes the sign at each point xfc: Let e.g. Q(x) > 0 for 0 < | x — xk | = u. Let 
TeWbe such that r(xfc) = 1 and T(xj) = 0 for J ?- k. Then there exists c > 0 such 
that Q — cF has two zeros in (xk — u, xk) n (xk, xk + u): of course xl5 ..., x^-i* 
xk+l, ..., x„_ j are zeros of Q — cF, too, which is a contradiction. Hence sign Q(b) = 
= (-1)""1 • signQ(a) = (-1)""1 -signd- sign Q(b), i.e. signd = (- l )"" 1 . 
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D. Functions with Proportional values at m Points 

Assumption. Let S = R,neN,a,be R*, a < b, me N Let B c <a, b} be com­
pact, card B = n + 1. Let us consider distinct points zx, ..., zm e <a, #> — B and non­
zero numbers d2, ...,dmeR. Let W be an w-dimensional subspace of C<a, b>, let 
Q(zk) = dfc. Q(zx) for k = 2, ..., m and for all QeW, let each non-trivial polynomial 
QeWhave at most ra — 1 zeros in <a, b> — {z2, ..., zm}. Letfe C(B); let us denote 
/ i = m i n | | Q - f||. 

QeW 

Remark. We take D = <a, bX^/V = {{x}/x e <a, b> — {zx, ..., zm}} u {zt, ..., zm}, 
x = 0. Let us denote dx = 1 and q(xfc, x,) = dfc/d,- for k,f = l , . . . ,w. Wis an w-di-
mensional subspace of Y(D,Jf, x, q, R) = {ge R(a,b>lg(zk) = dfc • g(zj) for k = 
= 2, ...,ra} satisfying the Haar decomposition condition with respect to D,Jf, x 
(as Q(zfc) = 0 implies Q(zx) = 0). We have cardMf - {co}) = cardjB = n + 1. If 
x,yeB and x ~ j , then x = j , hence there is no condition forf Let us put I = / = 
= <a, b>, £(s) = s. If a e^V and a n 5 # 0, then a # {zX, ..., zm} and card (a n I) = 
= 1. AS B is a representative subset, there exists a minimal set. 

Theorem 21. All the three assertions hold also in this case, they are the same as 
in Theorem 17. 

E. Generalized Even and Odd Functions 

Assumption. Let S = JR, n e N, 0 < a <£ + co, de R, d ?- 0. Let W be an n-dimen-
sional subspace of C< -a, a>, let Q(-x) = d • Q(x) for all x e (0, a> and Q(0) = 0 
for all QeW. Let every non-trivial polynomial QeW have at most n - 1 zeros in 
(0, a>. Let J? c < - f l , a> be compact, let card ({| x |/x e B, x =£ 0}) = n + 1. Let 
fe C(B) be such that f(0) = 0 in case 0 e B and f(-x) = d-f(x) in case x > 0, 
x e By —x e B. Let us denote /x = min || Q — f | | . 

QeW 

Remark. We take D = <-a , a>,^V = {{-x , x}/x e <0, a>}, x = {0}, q(-x, x) = 
= dfor 0 < x <; a. We have card (Jt - {co}) = card ({| x |/x e B, x # 0}) = « + 1. 
PV is an ^-dimensional subspace of Y(D, Jf, x, q, R) = {ge R<~a,a>/g(0) = 0, 
^(—x) =d-g(x) for all xe(0, d>} satisfying the Haar decomposition condition 
with respect to D,JV, x. The function f satisfies the requirements. We can take either 
I =- / = (0, a> or I = J = <-a , 0), £(s) = s. Then a n I = 0 and card (a n I) = 1 
for all a eJr — {%}. As B is a representative subset, there exists a minimal set. 

Theorem 22. (1) Let P eW have this property: there exist points xx < ... < xn+1 

in 7, points r1? ...9t„+1eB and he{-l, +1} such that for k = 1, ...,« + 1 we 
have either lfc = xfc andP(tfc) -f(tfc) = h • (-l) fe • dfc,oi tk = -xfcandP^fc) -f(tk) = 
= A • (sign d) • ( - l)fc • dfc, where dfc = 0. Then j* = ,i({*i, ..., xn+1}) = m i n 4 . 
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(2) Let Pe W. Then || p - / | | = pi iff there exist points xx < ... < xn+1 in I, 
points tl9 ...9tn+ieB and Ae{ —1, +1} such that for k = 1, ...,« + 1 we have 
either tfc = x* and P(tk) - f(tk) = A . ( - l)fc • || P - / 1 | , or tk = -xk and Pft) -
^ / ( 4 ) = A - ( s i g n d ) . ( ~ l ) f c . | | P - / | | . 

(3) There exists one and only one P e W such that || P — / 1 | = /L 

Proof. (1) follows from Theorems 12(2) and 9(1); (2) follows from Theorem 13; 
(3) follows from Theorem 14. 

Remark. Let PeW9 let x£<—a, a> be such a point that xeB9 —xeB and 
| P(x) - f(x) | = || P - f || > 0. If | d | < 1, then x > 0; if | d \ > 1, then x < 0. 

Remark. (1) If d = — 1, then the functions are odd. 
(2) Let d = 1. We may change the assumptions in this way: we omit the assump­

tions Q(0) = 0 and/(0) = 0 and assume that every non-trivial polynomial Qe W 
has at most n — 1 zeros in <0, a>. Then we take x = 0, I = <0, a> or I = <—a, 0> 
etc. Then the functions are even and all the three assertions of Theorem 22 hold 
also in this case. We can substitute sign d = 1 and simplify the assertions (1) and (2). 

F. The Approximation on a Generalized Arc 

Assumption. Let S = R9ne N9a9be P*, a < b. Let £(s) be a one-one mapping of 
<a, by onto some set I. Let FVbe an ^-dimensional subspace of R1, let every non-trivial 
polynomial Q e Whave at most n — 1 zeros in I and for every Qe Wlet the function 
Q[£Cs)] be continuous in <a, b>. Let B <= I be such a subset that <i~1(B) is a compact 
subset of <a, by, let card B = n + 1. Let feRB be such a function that f[£(s)] is 
continuous in £)"

1(B). Let us denote \i = min || Q — f ||. 
QeW 

Remark. We take D = I, Jf = {{x\\xel)9 x = 0; q is defined implicitely. We 
have card ( ^ — {co}) = card J? _ n -f 1. W is an ^-dimensional subspace of 
Y(D9J

r
9x9q9R) = R1 satisfying the Haar decomposition condition with respect 

to D9Jf, x. We take / = <a, b>, we have card (a n I) = 1 for all a eJf. 
We transfer the topology from <a, b> onto I by means of the mapping £. Then 

each Qe Wis continuous in I, B is compact and/is continuous in B. B is a represen­
tative subset and consequently there exists a minimal set. 

Theorem 23. (1) Let P e W have this property: there exist points x1, ..., xn+1 e B 
such that C1(xi) < ... < C1(xn+1) and the numbers P(xk) - f(xk)(k = 1, . . . ,n+ 1) 
alternate their signs. Then \i = \i({x\, ..., xn+J) = min | P(x*) - /(xfe) |. 

fc=l,...,n+l 

(2) Let Pe W. Then || P ~ / | | = ^ iff there exist points xl9 ..., xn+1 eB and 
A e { - 1 , +1} such that r*(*i) < ... < C\xn+1) andP(x*) -/(**) ^ A- ( - l ) k x 
x | | P - / | | f o r f c = l , . . . , n + L 
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(3) There exists one and only one Pe W such that || P — f l | — A*-

Proof is the same as that of Theorem 17. 

Remark. Any theory formulated for an interval can be transferred in this way onto 
a generalized arc. 

G. Trigonometric Polynomials 

Theorem 24. (1) Let a0, ..., am, bl9 ..., bm e R be not all zero. Then the trigono-
m 

metric polynomial Q(x) = a0 + Z (ak • cos kx + bk • sin kx) has at most 2m zeros 
fc=i 

in <0,2TT). 
(2) Let a0, ...,ameR be not all zero. Then the even trigonometric polynomial 

m 

Q(x) =Ysak' c o s kx has at most m zeros in <0, 7r>. 
k = 0 

(3) Let bl9 ...,bmeR be not all zero. Then the odd trigonometric polynomial 
m 

Q(x) = Z bk • sin kx has at most m — 1 zeros in (0,7i). 
fc=l 

Proof. Theorem 24 is well-known and can be proved e.g. by expressing Q(x) by 
2m 

means of algebraic polynomials; we have Q(x) = e~imx • Z ck • (e
ix)k for (1), Q(x) = 

m m—1 fc = 0 

= Z c* ' (c°s *)k f° r (2)» 2(*) = (s1n *) * Z ck * (cos x)k f° r (3). 
fc=0 k = 0 

Definition 3. Let the symbol C2n denote the system of all the continuous functions 
in R which are periodic with the period 2n. 

Remark. Let W mean the system of all the trigonometric polynomials of at most 
the m-th degree, letfe C2n. We shall aproximatefby the polynomials Qe Win R. 
As max | Q(x) — f(x) | = max | Q(x) — f(x) | for all Q e W, we may investigate 

xeR x e < 0 , 2 . r > 

the problem only in <0, 27r>. This problem can be solved according to 0§4.C, if we 
take a = 0, b = 2K, d = 1, B = <0, 27t>, n = 2m + 1 = dim W. 

Theorem 25. ( l)LetPe Whave this property: there exist points xt < ... < x2m+2 

in <0, 2K) such that the numbers P(xk) —f(xk) (k = 1, ..., 2m + 2) alternate their 
signs. Then /* = M{^i, ••• > *2m+2}) = ™n | P(xk) - f(xfc) |. 

fc=l,...,2m + 2 

(2) Let Pe W. Then || P - f | | == fi iff there exist points Xj < ... < x2m+2 in 
<0,2TI) and A e { - 1 , +1} such that P(xk) - f(xk) = h • ( - l ) k * | |P - f | | for A: = 
= 1, ...,2m + 2. 

(3) There exists one and only one Pe W such that || P — f | | = ^. 
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Proof. See Theorem 19. To the assertion (2): Theorem 19 admits also the case 
xx > 0, x2m+2 = 27t. Then we can put x0 = 0; wehaveP(x0) - / ( x 0 ) = P(x2m+2) -
-Axim+i) = h-(-l)2w+2 - H P - / I I = A-( - l ) ° - | | - ? - / | | . We can take 
*o> •••- ̂ 2m+i and renumerate them. 

Remark. Let now W represent the system of all the even trigonometric polynomials 
of at most the m-th degree, le t /e C2n be even. We shall approximate / b y the poly­
nomials Q e W in R. As max | Q(x) - /(x) | = max | Q(x) - f(x) \ for all Q e W, 

.T€R JC6<0,5T> 

we may investigate the problem only on <0,7r>. This problem can be solved according 
to § 4.A, if we take a = 0, b = 7r, B = <0,7r>, n = m + 1 = dim W. We shall not 
formulate the theorem since it would be the same as Theorem 17, if we substitute 
B = <0, TT>, n = m + 1. 

Remark. Let now W mean the system of all the odd trigonometric polynomials of 
at most the m-th degree, let/e C2n be odd. We shall aproximate/by the polynomials 
Q € W in R. Since max | Q(x) - f(x) \ = max | Q(x) - f(x) \ for all Q e W, we 

xeR -xe<0,jr> 

can investigate the problem only in <0,7r>. This problem was mentioned in Remark 
(2) of 0§4.B.We take a = 0, b = TT, B = <0,7r>, n = m = dim W.We can formulate 

Theorem 26. (1) Let Pe Whave this property: there exist points xx < ... < xm + 1 

in (0,7r) such that the numbers P(xk) — f(xk) (k = 1, ..., m + 1) alternate their signs. 
Then n = n({xx, ..., xm+x}) = min | P(xk) - f(xk) \. 

fc=l, . . . , m + l 

(2) LetPe W. Then || P - / | | = \i iff there exist points xx < ... < xm+1 in(0, n) 
and he {-I, +1} such that P(x&) - /(xfc) = h • (-1)* • || P - / || for k = 1, ..., 
,..,m + 1. 

(3) There exists one and only one P e W such that || P — / 1 | = fi. 

H. Another Approach to the Trigonometric Polynomials 

Remark. Let W be the system of all the trigonometric polynomials of at most the 
m-th degree, le t /e C2n. We shall approximate / b y the polynomials Q e Win R, let 
A* = m i n | | Q - / | | . 

QeW 

Let us denote n = 2m + 1, S = K, D = B = K. Let us give a decomposition^ 
x — v 

of R by means of the equivalence on R: x ~ y iff ——— is integer. Let x ~ 0, 
2n 

q(x, y) = 1 for x - j . 
W is an n-dimensional subspace of Y(D,Jf, x, q, R) = {g e RR/g(x) is 27r-periodic 

in -R} satisfying the Haar decomposition condition with respect to D, .yV, x. The 
function / satisfies the requirements of the Assumption for § 3. 

Let I = / = <0, 2TT), ^(s) = s. We have card (a n I) = 1 for all a eJf. The set 
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A = <0, 27i> is a representative subset (e.g. by Theorem 15), hence there exists a mi­
nimal set. 

We can now derive Theorem 25 once again; (1) follows from Theorems 12(2) and 
10(1); (2) follows from (1) and from Theorem ll(2c) (since we may assume M c 
c <0, 27i) by Theorem 15 of [1]); (3) follows from Theorem 14. 

Remark. In the same way we can investigate also the even trigonometric polyno-
Y • y Y _L y 

mials (we take x ~ y iff either — ~ — or ——— is integer, x = 0, q(x, y) = 1 for 
27i 2n 

x ~ y, n = m + 1, I = <0,7i>, A = <0,7i» and the odd trigonometric polynomials 
(we take x = {k7r/k integer}, x ~ y iff either x, y e x or x, y e R — x and one of 
the numbers ——^—, ——— is integer; if x, y e R — x and - — is integer, we 

27C 2% 2n 
X + V 

take q(x, y) = 1; if x, y e R — x and — is integer, we take q(x, y) = — 1; 
27T 

n = m, I = (0, n), A = <0, n)). 

Remark. We can investigate also the approximation on a subset, i.e. Be R,fis 
defined only on B. We can solve the problem if B has a representative subset A. 
The compactness of A may be investigated with respect to the usual topology on R, 
but we may introduce also another topology on R and investigate the compactness 
of A with respect to it. 

Remark. Let U be the system of all the trigonometric polynomials of at most the 
m-th degree, ge Cln- Let h(x) be a continuous positive real funciton in R. We can 
approximate the function / = hg by the polynomials of {hQ/Q e U) if we are able to 
prove the existence of a representative subset (e.g. for h(x) = e~x). 

5. THE HAAR NODE CONDITION 

Remark. In what follows we shall consider functions having common zeros (or 
values) at several points. We distinguish two types of the zeros according to the 
behaviour of the function in a neighbourhood of the zero point. We consider only 
real functions. 

Definition 4. Let g be a real function defined in some set I a K*, let z e / be a point. 
(1) The point z will be called a cross zero of the function g iff there exists a number 

u > 0 such that <z — u, z + u> c /, g(z) = 0 and either g(x) < 0 for x e <z — u, z) 
and g(x) > 0 for xe(z,z + u>, or g(x) > 0 for xe^z — u, z) and g(x) < 0 for 
xe(z,z + u>. 

(2) The point z is called a touch zero of the function g iff there exists a number 
u > 0 such that <z — u, z + u> c I, g(z) = 0 and either g(x) > 0 f o r 0 < | x — z | ^ 
S u or g(x) < 0 for 0 < | x — z | ^ u. 
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Remark. If z is a cross zero or a touch zero of g9 then z is inside / and g has no 
other zeros in some neighbourhood of z. 

Theorem 27. (1) Let g be defined (at least) in <a, b}9 let a < z < b. Let g(z) = 0 
and g(x) # 0 for all xe<a, z) u (z, by. Suppose that if either a S c S d <z or 
z < c S d S b9 then g(c) * £(<0 > 0- Then z *s either a cross zero or a touch zero 
of g, moreover, g(x) has a constant sign in <a, z) and a constant sign in (z, 6>. 

(2) Let g be continuous in (a9 *>, let a < z < 6. Let g(z) = 0 and g(x) # 0 for all 
x e <a, z) u (z, 6>. Then the assertions of (1) hold. 

(3) Let g have derivatives up to the r-th order at a point z (reN). Let g(z) = 
= g'(z) = ... = ^(r"*1)(z) = 0, g(r)(z) 7- 0. If r is odd (even), then z is a cross (touch) 
zero of g. 

Proof. Assertions (1) and (2) are obvious, (3) follows immediately fxora a well-
known theorem. 

Assumption (for § 5.). Let n e N9 m e N09 let / c R* be an interval. Suppose that 
there are given points zx < ... > zm in /(called nodes) and numbers tl9 ..., fm e {1,2}. 
Let us denote / ' = / — {zt, ..., zm). 

Remark. Let us denote A(I) = {g e R'/if <c, d> c /and g(x) # 0 for all x e <c, dX 
then g(c) • s(d) > 0}, X(/) = {* e >4(/)/g(zx) = ... = g(zm) = 0}. 

(1) We have C(I) c A(I). 
(2) Let g e A(I). Then g(x) keeps the sign in each subinterval of/, in which g(x) ^ 

(3) Let g e A(I) and let z be an isolated zero of g (inside /). Then z is either a cross 
zero or a touch zero of g. 

Definition 5. Let geX(I). A point xel will be called an additional zero of g iff 
either 

(1) xel' and g(x) = 0; or 
(2) x = z*, r& = 1 and z& is a touch zero of g (inside / ) ; or 
(3) x = zk9 tk = 2 and z* is a cross zero of g (inside /). 

Remark. If c9deV and c ^ d9 then t(c, </) will denote the sum of all tk for such k 
that c < zk < d. 

Remark. If xx <; ... ^ xr are points in / ' (r ^ 2), then t(xl9 xr) = t(xj, x2) + 
+ ... + *(*,.-!, xr). 

Theorem 28. Let g e X(I)9 let c ^ </ be such points in / ' that the function g has no 
additional zero in <c, */>. Then signg(d) = (-l) , (c>d) • signg(c) 9-= 0. 

Proof. Suppose that there are exactly zp < ... < zq in <c, <i>. The function g 
keeps the sign in the intervals (c9zp)9 (zp9zp+i)9 ..., (zq.l9zq)9 (zq9d}. Let fee 
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€ {.P» • • • > tf}; if tk = 1, then zk is a cross zero of g; if tk = 2, then zt is a touch zero of g. 
If the number of such k e {p, ..., q) for which tk = 1 is odd (even), then g(e) - g(d) < 
< 0 (g(c) • g(d) > 0) and t(c9 d) =-= *p + ... + tq is odd (even), hence the assertion 
holds. 

Remark. The numbers tk are of the following meaning. Suppose that g e X(I) and 
zk is an isolated zero of g (inside 7). The number tk determines the behaviour of g in 
some neighbourhood of zk which is necessary for zk to be an „allowed" zero of g 
(i.e. which is not additional). For tk = 1 we allow a cross zero, for tk = 2 we allow 
a touch zero; if zfc is a zero of the other type, then zk is called an additional zero of g. 
If zk is an end point of the interval 7, then tk has no meaning. 

Definition 6. Let W be an w-dimensional subspace of X(7). We shal say that W 
satisfies the Haar node condition (with respect to 7, zk9 tk) iff every non-trivial 
polynomial Qe Whas at most n — 1 additional zeros in I. 

Remark. If m = 0, then we have the classical Haar condition. 

Theorem 29. Let Wbe an w-dimensional subspace of X(7) satisfying the Haar node 
condition. Let Ql9 ...9Qn form a basis of W. 

n 

(1) If al9 ...9aneR are not all zero, then £ akQk has at most w — 1 additional 
*=i 

zeros in 7. 
(2) If xx, ..., xn e T are distinct, then det Qk(Xj) ¥* 0 and dim{jcif., f ̂ JV = n. 
(3) If *!, ...9xneF are distinct and numbers yl9 ...9yne R are arbitrary, then 

there exists one and only one PeW such that P(xk) = >>k for /t = 1, ..., n. 

Proof. All the assertions are obvious. 

Theorem 30. Let JVbe an n-dimensional subspace of X(7) satisfying the Haar node 
condition, let Ql9 ..., Qn form a basis of W. Let xx < ... < xn+i be points in T. 
For k = 1, ..., n + 1 let us denote 

QM-iГ1 
oi(*i) ••• oi(**-i) &(**+i) ••• &(*„+.) 

&,(*.) ••• &,(**-1) &,(**+.) ••• e»(x„+1) 

The sign Ck = (_iyc-«.-*>+--». sign c . # 0 for A: = 1,... ,n + 1. 

Proof. Let k e {1, ..., n}. For all x e / let us put 

Si(*i) ••• Qi(xk-i) Qi(x) 0.(x t + 2) ... Qfa+d 

Qn(xt) ... &,(**_.) &,(*) o.B(xi+2) ...o.,,(x(,+1) 
ÖW = 
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We have Qe WandQ =}= 0. Since Q has additional zeros xt, ..., xk_1,xfc+2, ...,xn+1, 
consequently Q has no other additional zero, namely Q has no additional zero in 
<xfe, x*+1>. By Theorem 28, we have sign Q(xk+1) = (-A)'^***-) • sign Q(xfc) =£ 0. 
As Ck = (-If-1 Q(xk+1) and Ck+1 = (-If Q(xk), we have sign Ck+1 = 
= ( _ i y ( ^ ^ ^ ) + i . signCfe. Hence signC* = (-Ay(**-^>+1 . . . . .(-iy<«-«)+ 1 x 
x signQ =(-iy ( x l 'X k ) + k~1-signC1 for k = 1, ...,« + 1. 

6. THE APPROXIMATION 

Assumption (for § 6.). Let n e N, m e N0, let I c K* be an interval. Suppose that 
there are given points zt < ... < zm in I and numbers t1? ..., ?m e {1, 2}. Let F = 
= I-{zl5 ...,zm}. 

Let PV be an ^-dimensional subspace of X(I) satisfying the Haar node condition. 
Let Qt, ..., Qn form a basis of W. 

Let B # 0 be a subset of I, let us denote B' = B - {z1, ..., zm}. LetfeKB be 
such a function that if zk e B, then f(zk) = 0. 

Remark. Let us denote V = {Qu/Q e W}. Then V is a subspace of RB, dim V = 
= dimBW -*n. We shal approximate f by the polynomials Q e Von the set B; let us 
denote ^ = min || Q - f | | . If Q e W, we denote || Q - f | | = sup | Q(x) - f(x) | = 

QeW xeB 

= || QB - f | | ; we have n = min || Q - f\\. 
QeW 

Theorem 31. (1) If card B' = n, then \x = 0. 
(2) If card B' > n, then dim V = n and the restrictions of Q1, ..., Qn to the set i? 

form a basis of V. 

Proof. (1) follows from Theorem 29(3), (2) follows from Theorem 29(2). 

• Theorem 32. Let PeW have this property: there exist points xt < ... < x„ + 1 

in B' and a number h e { — 1, +1} such that for k = 1, . . . , «+ 1 we have 

-?(**) " /(**) = ^ • ( - l)t(x»Xk)+k • 4 , where dfc = 0. 

(1) Let us define Cl9 ..., Cn+1 as in Theorem 30. Then ft = n({x1, ..., xn + 1}) = 

(2) If | r(xt) - f(xk) | = || P - / j ' ffor fc = 1, ...,« + 1, then || P - / | | = ^. 

Proof. (1) We have dim{xi Xn+l)V = dim{lClXn+l}W= n by Theorem 29(2). 
For k = 1, ...,« + 1 we have (-h • sign Ct) • Ck • [P(xk) - f(xk)] = -h • sign Ct • 
• | Ck | • ( - lyc*'-**^*-1 • sign Q • h • (-1)'<-«.-*>+* • dk = | Ck | • d, = 0 by Theorem 
30. Now the assertion follows from Theorem 28(6) of [1]. 

(2) follows from (1). 

136 



Remark. If B is compact and if all the polynomials QsW and the function/are 
continuous on B, then B is a representative subset and there exists a minimal set M c 
c B. If M / 0, then /i > 0 and necessarily card J?' = w + 1 by Theorem 31(1). 

Theorem 33. (1) Let M ?- 0 be a minimal set. Then M c j?', card M = w + 1 
and dimMV = dimMW = n. 

(2) Suppose that there exists a minimal set M and card B' = «. Then there exists 
one and only one P eW such that || P —/| | = JX. 

Proof. (1) Let us admit that zkeM. Then || Q - / | |M_{ r f c } = || Q - f\\M for 
all Q e V, hence \i(M — {zk}) = /x(M), which is a contradiction; hence M c B'. Let 
us admit card M ^ «, then we have // = /x(^0 = 0 by Theorem 29(3), which is 
a contradiction; hence card M = n + 1. By Theorem 29(2), we have dimMV = 
= dimMW = n. 

(2) By Theorem 29(3), two distinct polynomials of W cannot coincide on B'. If 
M = 0, then ^ = 0 , / e V and the assertion is evident. If M # 0, then dimMV = 
by (1) and the assertion follows from Theorem 20(3) of [1]. 

Theorem 34. Let M = {xl9 ..., xn+1} be a minimal set, we can assume x! < ... 
... < xn+1. Let Pe W be such a polynomial that || P — / | | = \i. Then there exists 
a number A e { - 1 , +1} such that P(xk) - f(xk) = / * • ( - iy<*i,**)+*. || p _ / 1 | for 

k = 1,...,« + 1. 

Proof. By Theorem 31(2) of [1], there exists ae { — 1, +1} such that for k = 
= 1, ..., n + 1 we have P(xk) - f(xk) = a • sign Ck • ||P - / | | = a- ( - iy(*i.*fc)+*-i x 

x sign C! • || P — / | | ; we take h = —a • sign Cx. 

Theorem 35. Let card 2?' = « + 1. Suppose that there exists a minimal set, let 
Pe W. Then || P — / | | = \i iff there exist points xt < ... < xn+ x in B6 and a number 
he{-l, +1} such that P(xk) - /(xfc) = h • (_i)<(*^>+* . || P-/|| for k = 
= 1, ...,« + 1. 

Proof. If the latter condition is fulfilled, then we have || -P — / | | = M by Theorem 
32(2). 

Let || P — / | | = ii. If JU = 0, then the assertion is trivial. If /J > 0, then the asser­
tion follows from Theorem 34. 

Remark. The theory given in § 5 and § 6 corresponds to that of § 2 and § 3. The 
most important common fact is that we can find some relations between the signs 
of the numbers Cx,..., Cn+1. If we consider any other properties of the polyno­
mials QeW which enable us to find some similar relations, we can derive all the 
theory analogous to these two theories. E.g., it is possible to construct a theory 
which is a common generalization of these two theories (such a theory is given 
in [4]). 
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7. THE CONNECTION WITH THE CLASSICAL 
HAAR CONDITION 

Assumption (for §7.). Let neN, meN0, let / c R* be an interval. Let zt < 
< ... < zm be points in /, let / ' = / — {zx, ...,zm}. 

Let Z be an (n + m)-dimensional subspace of A(f) satisfying the classical Haar 
condition on /. Let j 5 # 0 b e a subset of I, let us denote B' = B — {zl5 ..., zm}. Let 
wx, ..., wm e R be fixed numbers. 

Let fe RB be such a function that if zk e B, then f(zk) = wk (for A: = 1, ..., m). 

Remark. We take ti = ... = tm = 1. A point JC e / is an additional zero of g e X(l) 
iff either x e / ' and g(jc) = 0 or x = zk and zk is a touch zero of g. 

If c, del' and c g </, then t(c, d) is equal to the number of zk in (c, d). 

Remark. Let us denote U = {Q e ZIQ(zt) = ... = Q(zm) = 0}, W = {(? e Z/g(zk) = 
= wfc for fc = 1, ...,m}. 

Theorem 36. U is an «-dimensici.al subspace ->f X(I) satisfying the Haar node 
condition. 

P r o o f. U is a subspace of X(I). Let us choose arbitrary distinct points xt,...,xne 
e I'. By the Haar condition (see Lemma (4) in § 2.4. of [1] where we take n + m 
instead of n), there exist Qi, ..., Qn e Z such that for k = 1, ...,nwe have Qk(xk) = 1, 
Qk(Xj) = 0 forf = 1, ..., k - 1, k + 1, ..., n and Qk(zj) = 0 forf = 1, ..., m. Then 
Gi, .., Qn are independent polynomials of U. 

n 

On the other hand, if Q e U, then the polynomials Q and £ g(xk) . 6* have the 
* = i it 

same values at m + n points xi9 ..., xn, zx, ..., zm, hence Q = £ G(**) • 2* (see 

*=i 
Lemma (4) in § 2.4. of [1]). Therefore g t , ..., Qn form a basis of C/, hence dim U = n. 

Let PeU, P $- 0. Let P have w additional zeros in /, let p of them (denoted by 
ut, ..., up) be in {zx, ..., zm} and n - p of them (denoted by t^, ..., vn-p) be in F. 
If p = 0, then P has n + m zeros t^, ..., vn, zi9 ..., zm, which is a contradiction. 
Hence P g: 1. Let A: 6 {1, ...jp}; then ŵ  is a touch zero of P (inside I). There exist 
points ak,bkel with these properties: 

(1) akuk bk fork = \...,p\ 
(2) P has a constant sign in (ak, bk} - {wj for k = 1, ...,p; 
(3) if J # fc, then ifc < aj or A»y < ak. 
There exists a polynomial FeZ such that F(wfc) = signP(afc) for k = 1, ...,p, 

F(vk) = 0 for k = 1, ..., w - p and F(zfc) = 0 for zk$ {ui9 ...,up}. We can choose 
such c > 0 that c- | F(ak) \ < \P(ak)\ and c-\F(bk)\ < \P(bk)\ for it = 1, ...,p. 
Let us put g = P - cF; we have Q e Z, Q =£ 0. We have sign Q(ak) = sign Q(6*) = 
= sign P(ak), sign g(wk) = -sign P(ak) for k = I, ...,p; hence Q has a zero in 
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(ak9 uk) and a zero in (uk9 bk). Moreover, Q(vk) = 0 for k = 1, ...;, n - p and Q(zk) = 
= 0 for Zki{U\, •> tfP}; all these zeros are distinct. Hence Q has 2p + (n — p) + 
+ (m — p) *= m + n zeros in /, which is a contradiction; U satisfies the Haar node 
condition. 

Remark. We shall approximate the function / by the polynomials Q e W in the 
set B. Let us denote \i = inf || Q - / | | . 

QeW 

Theorem 37. Let us choose arbitrary fixed TeW, let us denote g ~ f — TB. Then 
we have: 

(1) geKB; if zkeB9 theng(zk) = 0 (k = 1, ...,m). 
(2) W~{Q + T/QeU}. 
(3)LetPe W and Q e U be such that P = g + r.ThenP(x) - / ( * ) = Q(JC) - g(x) 

for all x e £ , hence | |P - / | | = || Q - g ||. 
(4) /i = min || Q - g | | ; hence there exists PeW such that || P - / | | = /i and 

QeU 

it may be written \i = min || fi — / | | . 

Corollary. All the assertions of § 6. hold if we write U and g instead of W and/. 
However, by Theorem 37(3), they hold also if we write W and / again (i.e. in the 
original formulation). 

Remark. The meaning of the theory given in § 7. is the following: We approximate 
the function/in the set B only by the polynomials of Z which have the fixed given 
values wi9 ..., wm at the points zi9 ...9zm. The numbers wi9 ..., wm must be given 
so that f(zk) = wk in case zkeB. 

§ 7. gives this theory only for the case when Z satisfies the Haar condition. It is 
possible to give such a theory also for the case when Z satisfies the Haar decomposi­
tion condition (see [4]). 

A special case of the theory of § 7. was solved e.g. in [5]. 

8. THE APPROXIMATION WITH GIVEN DERIVATIVES 

Assumption (for § 8.). Let n e N, m e NQ9 let / c R* be an interval. Suppose that 
zt < ... < zm are points in /, let / ' = / — {zi9 ..., zm}. 

Suppose that ri9 ..., rm e N0 are such numbers that rk = 0 if zk is at the end of /. 
m 

Let us denote tk = 1 if rk is even and tk = 2 if rk is odd. Let us denote r = £ (rk + 1). 
fc-=i 

Let Z be an (r + fi)-dimensional subspace of A(t) with the following properties: 
(1) If zk is inside /, then every QeZhas derivatives up to the order rk + 1 at zk. 
(2) If we give 
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(a) qGN0 and points u1, ...,uqeV; 
(b) numbers st, ..., sm e N0 such that 

(bl) if zk is inside /, then rk = sk g rk + 1; 
(b2) if zk is at the end of /, then sk = 0; 

m 

(b3) £(s* + l) + q = r + n; 

(c) numbers wl9 ...9wq9 vi°\ ..., v^\ ...,v(^, ...,v(^ e R9 

then there exists one and only one PeZ such that P(ufc) = wk for k = 1, ..., 
q and P(i\zk) = 4° for k = 1, ..., m and / = 0, ..., sk. 

Let us denote U = {Q e Z\Q^\zk) = 0 for k = 1, ..., m and i = 0, ..., r j . 
Let j ^ 0 (k = 1, ..., m and / = 0, ..., rk) be fixed real numbers; let us denote W = 

= {Q e Z/Q(i)(zfc) = y(i) for k = 1, ..., m and / = 0, ..., r j . 
Let 5 ?- 0 be a subset of /, let us denote B' = B - {zi, ..., zm}. Let / e KB be 

such a function that if zk e B9 then f(zk) = j£0). 

Theorem 38. U is an ^-dimensional supspace of X(I) satisfying the Haar node 
condition. 

Proof. Uis a subspace of X(I). Let us choose arbitrary distinct points xl9 ..., xn e 
eF. Let us take q = n, uk = xk for k = 1, ...,n and sk = rk for k = 1, ...,m; 
by (2), there exist Ql9 ..., QneZ such that for k = 1, ...,« we have Qk(xk) = 1, 
Q^.) = 0 forf = 1, ...,k - 1, k + 1, ...,n and Ql0(z,) = 0 fory = 1, ...,m and 
/ = 0, ...-r,-. Then Ql9 ..., Q„ are independent polynomials of U. 

n 

On the other hand, if Q e U, then the polynomials Q and £ Q(xk). Qk have the 

same values at the points xt, ...,xn and zero derivatives at each z} up to the order rj 
n 

(j = 1, ..., m). By (2), we have Q = £ Q(xk) • Qfc. Hence Q1? ..., Qn form a basis 
of £/ and dim U = n. 

Let P e U, P -£ 0. Let P have « additional zeros in / and let p of them be in 
{zl9 ...,zm}. Let us consider one of these zk; it is inside /. Let us admit that 
P(rk+1\zk) 7-= 0. Then for rk odd (even) zk is a touch (cross) zero of P (see 
Theorem 27(3)) and zk is not an additional zero of P. Hence P(rk + 1\zk) = 0. 

We shall apply (2). If zk is an additional zero of P, we put sk = rk + 1, otherwise 
sk = rk. Let ul9 ..., uw_p be the additional zeros of P in / ' ; we put q = n — p. We 

m 

have X (sfc + 1) + q = (r + p) + (n - p) = r + w. We have />(«*) = 0 for k = 
fc=i 

= 1, ..., q and P(i\zk) = 0 for k = 1, ..., m and / = 1, ..., s^. By (2), there exists 
one and only one polynomial of Z with these properties. Hence P == 0, which is 
a contradiction. U satisfies the Haar node condition. 

Remark. We shall approximate the function / by the polynomials Q e W in the 
set B. Let us denote p, = inf || Q - / | | . 

QeW 
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Theorem 39. Since W ^ 0 by (2), let us choose arbitrary fixed TeW and let us 
denote g =f— TB. Then we have: 

(1) g e RB; if zk e B, then g(zk) = 0 (k = 1, ..., m). 

(2) W={Q + F/QeU}. 
(3) Let P e W and Q e U be such that P = Q + T. Then P(x) - f(x) = Q(x) -f(x) 

for all xeB, hence | |P - f | | = || Q - g ||. 
(4) ^ = min || Q — g ||; hence there exists PeW such that || P — f | | = pt and 

it may be written [i = min || Q — f | | . 

Corollary. All the assertions of § 6. hold if we write U and g instead of W andf. 
However, by Theorem 39(3), they hold also if we write W andf again (i.e. in the 
original formulation). 

Theorem 40. Let I = R. Let Z be the system of all the algebraic polynomials of 
at most the order r + n — 1. Then Z satisfies the Assumption for § 8. 

Proof. (1) is evident, (2) follows from the well-known theorem of the interpola­
tion theory. 
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