
Archivum Mathematicum

Jan Chvalina
On homeomorphic topologies and equivalent set-systems

Archivum Mathematicum, Vol. 12 (1976), No. 2, 107--115

Persistent URL: http://dml.cz/dmlcz/106935

Terms of use:
© Masaryk University, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/106935
http://project.dml.cz


ARCH. MATH. 2, SCRIPTA FAC SCI. NAT, UJEP BRUNENSIS 
XII: 107—116, 1976 

ON HOMEOMORPHIC TOPOLOGIES 
AND EQUIVALENT SET-SYSTEMS 

JAN CHVALINA, Brno 
(Received December 16, 1975) 

1. Introduction. Let P be a non-void set. Set-systems Sf x, Sf2 c exp P are said to be 
equivalent if there exists a permutation/of the set P (i.e. a one-to-one mapping of P 
onto itself) such that Sf2 = {f(X): Xe^J, (cf. [6] p. 323). To every topology u 
(in the sense of [2] or [5]) it can be assigned such a set-system Sf(u) so that topologies 
u, v are homeomorphic if and only if set-systems Sf(u), Sf(v) are equivalent in the 
above sense and u ^ v implies Sf(u) ^ Sf(v). The aim of this note is to give a con­
structive proof of the possibility of a non-trivial extension of the set-system valued 
mapping Sf onto a system of more general topologies which do not satisfy the so 
called U-axiom (the idempotency of closures). 

2. Preliminaries. By a topological space we mean the so called tech's topological 
space (see [1]), that is a pair (P, u), where P is a set and u a mapping of exp P into 
itself satisfying the following axioms: 

1° u0 = 0, 2° X c uX for X c P, 3° X c Y c P implies uX c uY. 

If 
4° U(XKJ Y) = uXuuY, XcP, YcP 

holds then the topology u is called an A-topology and (P, u) an A-space (closure 
operations, closure spaces in the terminology of [2]). Topologies fulfiling axioms 1° 
through 3° and 

5° uuX = uX for each XcP (U-axiom) 

are called U-topologies and corresponding spaces U-spaces. If axioms 10 through 50 

are satisfied, we speak about AU-spaces, AU-topologies (topologies in the sense 
of [2] or [5]). 

Denote by %(P) the lattice of all topologies on the set P (with respect to the order­
ing: u,ve <$(P), uSvifuXavYfor each XcP, cf. [7] 1.2., 2.1.). For u,ve <$(P) 
there holds (u v v) X = uX u vX, (u A V) X = uXn vX, X c P. Subsystems of 
^(P) of all A-topologies and U-topologies are denoted by s/(P) and <%(P) respectively 
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Let #*(P) means the set of al totally irreducible elements in the lattice C^(P), A , v ) , 
^max(^) the set of all maximal elements in #*(P) and let ^o(P) be the system of all 
atoms in (^(P), v , A ). For u, v e ^(P), u ^ v means that u, v are homeomorphic 
for Sj cz exp P, S2 cz exp P, St ~ S2 means that Sx, S2 are equivalent in the above 
sense, i.e. there exists a permutation / of the set P such that S2 = {f(X) : Xe SJ. 
In this case we shall write S2 = f(S i ) . Similarly, if S2 = {/_1(X) : Xe SJ, then we 
write S2 =f~1(Si). The permutation group of the set P will be denoted by #(P). 
If X is a set, Q the equivalence relation on X then X/Q denotes a decomposition of X 
induced by Q. A system of topologies 9£ c < (̂P) is called topological if u e X, v e ^(P), 
v £ u implies v e X 

In [7], 2.3. is given a characterization of totally irreducible elements of ^(P): 

Proposition hue ^*(P) iff there exists a non-void set X0 a P and a point aeP 
such that uX = X u {a} for X cz P, X0 cz X and uX = X otherwise. 

From here it follows immediately 

Lemma 1. The topology ue^(P) belongs to <ax(P) iff there exist points aeP, 
beP so that uX = Xu {b} if aeX and uX = X otherwise. 

Evidently, ^^(P) is a topological system. 

3. Auxiliary assertions. Let P be a set of the cardinality at least 5, ue%>*(P). 
By Tu will be denoted the set X0 cz P and by au the point a both considered in pro­
position 1. §2. Put <<g*(P) = {u e <$*(P): card Tu = 2, card (P - Tn) = 3}. Evidently, 
<*AP) = {u e ^*(P) : card Ptt = 1}. Put 3TC(P) = {uvv : u e < ( P ) , v e < a x (P ) , 
r u = {aM}, ay <£ Tu}. It is easy to see that a topology w belongs to «^C(P) iff there exist 
a set X! cz P with card Xx = 2, card (P - Xx) = 3 and points xl9 x2eP - Xl9 

xt # x2 such that X cz P, Xt cz X implies wX = X u {jq}, X cz P, ^ G X implies 
wX = X u {x2} and wX = X otherwise. If we denote by u, v topologies from ^f(P), 
^maxW respectively such that w = uvv, then Xx = Tu, { x j = {a j = Tv9 x2 = av. 
If we3TC(P\ then by T(w) will be denoted the set Xt (considered above), by Xw 

and bw the above considered point xt and x2 respectively. Hence, there is defined 
a one-to-one mapping T of the system ^ C (P ) into the set 2 p x P x P by the rule: 
T(u) = <T(u), au, &„>, for u e 3TC(P). 

Further, denote by s^x(P) a system of all A-topologies on P satisfying the following 
condition: 

There exists a pair Xv, X2 of non-void disjoint subsets of the set P with Xx u X2 = 
P such that 

(i) u^ = X t u X 2 , 
(ii) uX = Xu Xx i f Xcz P, Xn Xx ^ 0, 
(iii) uX = X if X cz P, X n X! = 0 or Xx u X2 cz X. 

Clearly, siX(P) # 0. To every A-topology u from the system s4\(P) is assigned a pair 
of sets Xj, X2 with above described properties. We shall denote these sets by Lx(u)9 
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L2(u). It is easy to see that <ax(P) £ sfx(P). Put rA(P) = {u e s/x(P) : card Lt(u) = 

£ 2, P 9* L,(u) u L2(u)} and finally r(P) = ^A(P) u rc(P) u 4f(P). 
Let f be a permutation of the set P. By f will be denoted a mapping of ^(P) into 

itself induced by the permutation f in the way: f(u)X =f_1uf(X) for ue^(P), 
X c P, (i.e.f(u) is a topology projectively generated by the mappingf: P -»(P, u)). 
Notice that in [7] 1.4. isf(u) denoted byf° u, where is also examined that forfe#(P) 
is f an automorphism of the lattice (^(P), v, A ). It is clear that a system 9*(P) c 
c <€(P) is topological iff* it isf-stable for every permutation of the set P, i.e.f(^(P)) c 
c «Ŝ (P) for eachfe<£(P). A union of an arbitrary collection of topological systems is 
evidently a topological system. 

Lemma 2. Le* P be a set. Systems r A(P\ rc(P\ r(P) are topological 
Proof. Let uerA(P),fe<P(P). It holds f'^L^u)) nf~l(L2u)) = 0. Let Xc P 

be such a set that Xnf^L^u)) # 0. Since 0 #f(Xn/""1(L1(w))) =f(X)nLx(u) 
and uesft(P) we have f(u) X =f~ VCX) =f_1(f(X) uL,(u)) =f"1uL1(u) = 
= f~1(L1(u)uL2(u)) ^ f ' ^ A C ^ u f - ^ L ^ u ) ) . From Xnf-^u)) = 0 there 
follows f(X)nL,(u) = 0, i.e. f~luf(X) = X. We get that L,(f(u)) =f~1(Li(u)) 
(i = 1, 2) thus it holds f(u)<srA(P)y i.e. the system ^A(P) is topological. It can be 
proved in a similar way that the system rc(P) is topological hence the system r(P\ 
which is a union of rA(P), rc(P) and %(P), is a topological system, too. 

Lemma 3. Let P be an infinite set. It holds card [(r(P) n s4(P)) - ^(P)] = 2cardp, 
card [((,T(P) n j/(P)) - *(P))/s] = card P. 

Proof. Let uerA(P), xeLt(u). Then u{x} = L,(u) # {*}, u2{x} = uLt(u) = 
= Li(u) u L2(u) 7- Li(w), thus u2 ^ u and we have that rA(P) n €(P) = 0. Further, 
for arbitrary u e rc(P) and arbitrary x e T(u) there holds u[{x} u (TTu) - {x})] = 
= uF(u) = F(u) u {aM} ± T(u) = {*} u (T(u) - {*}) = u{x} u u(T(u) - {x}),thus 
.TA(P) n ^ C(P) = 0. It holds (T(P) n j/(P)) - %(P) = ^ ( P ) . If we put ST = 
= {<X, F> e exp 'P x exp P : card X = 2 and X n 7 = 0}, where exp 'P = 
= expP - {0}, then we have card^ = 2ca rdp . 2cardp = 2cardP for cardP = X0. 
The mapping L : r A(P) -+ ST defined by the rule L(u) = (L^LiM), for uerA(P), 
is bijective, hence c a r d ^ ( P ) = 2cardp. Assign to every A-topology u *=rA(P) & triad 
of cardinal numbers <m1? m2, rn3>tt, where mf = cardL^u) for i = 1, 2 and m3 = 
= card(P - (Lx(u)) u L2(u)). Evidently, if u, v erA(P) are nonhomeomorphic topo­
logies then <m1, m2, m3>M ^ <ml5 m2, m3>l;, hence card [rA(P)\^] <S cardx 
x {<m1, m2, m3> : mt S card P, / = 1, 2, 3} = card P. On the other hand, if a, b 
are arbitrary points in P, Se <z 2P is a set-system of the cardinality card P such that 
XeSe implies a^X and Xe«£f, Ye«£\ X# F implies cardX # card F then 
cardP = card if = card {uerA(P):Ll(u)e^9 L2(u) = {a}} = card [rA(P)l*]. 
Therefore it holds card [((r(P) n d(P)) - ^(P))/^] = card P. 

Lemma 4. Let P be an infinite set. It holds card [T(P) - (s#(P) u ^(P))] = 
= 2cardp, card [(r(P) - (j/(P) u *(P)))/s] = card P. 
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Proof. If uerc(P) then u£s/(P)v %(P). Hence rc(P) =r(P) - (sf(P) u 
u ^(P)). Now, similarly as in the proof of lemma 3, we put Sf = {<X, x, j> : X c P, 
x e P, y e P, card X = 2, card (P - X) = 3, x <£ X, j> <£ X, x ?- >>}. The mapping 
T '^rc(p) -* ̂  defined by T(u) = <F(u), a„, btt> for uerc(P) is evidently bijective 
hence card^c(P) = card^ = 2cardF . card P . card P = 2 , rJp. Denote by M the set 
of pairs of cardinal numbers {(titj, m2> : m(- g card P for i = 1, 2}. We have (simil­
arly as in the proof of lemma 3) that card (TC(P)\^) ^ card ,// = card P. On the 
other hand, let aeP, beP, a ?- b be arbitrary but fixed points, if be a system of 
subsets X c P such that card $£ = card P, X e <£ implies card X = 2, a £ X, b$X 
and such that X, Y e 5£9 X ?- Y implies card X ^ card Y. Then we have card P = 
= card 5e = card {u erc(P) : u non s v} = card [rc(P)\^]. 

Lemma 5. Lel P be an infinite set, % e [T(P) - ^(P)]/^. Then it holds card X = 

§ card P. 
Proof. ^"(P) - %(P) = ^"X(P) u , r c (P ) with disjoint summands. Let u erA(P). 

Since cardP = K0 there exists a set Xe {Lx(u)9 L2(u), P - (Lx(u) uL2(u))} such 
that card X = card P. Suppose that X = Lt(u). Let a e L2(u). Put Ftt = {vx erA(P) : 
:Lx(vx) = (Lx(u) - {x}) u {a}, L2(vx) = (£2(u) - {a}) u {x}, xeL^u). Then card 
Tu = cardL1(u) =cardP and every A-topology belonging to the system Tu is 
homeomorphic to the A-topology u. (If vxo e Tu then the permutationfe#(P) defined 
by f(x) = x for x e P, x0 7-= x ^ a andf(x0) = a, f(a) = x0 is a homeomorphism of 
the space (P, u) onto the space (P, vXo). Thus X erA(P)\^ implies card 9E = card P. 
In the same way we get that ?X e rC(P)\ ^ implies card 3C = card P, as well. 

Let u e T(u). Denote by D(u) the system of all subsets of P closures of which are 
proper subsets of P dense in the space (P, u), i.e. D(u) = {X c: P : uX ^ P, u2X = P}. 
Further, for u er(P) we put F(u) = D(u) u C(u), where C(u) is the system of all 
closed sets in the space (P, u). It is clear that ueue W(P) iff D(u) = 0, hence F(u) = 
= C(u) for each u e °U(P). In futher development we shall deal with properties of the 
mapping F: r(P) -» exp exp P. Cardinality of the set P is supposed at least 5. 

Lemma 6. Let u erA(P)9 v erc(P). Then F(u) non ~ F(v). 
Proof. Admit that there exists such a permutation/ of the set P thatf(F(u)) = 

= F(v). Let x0 £Lx(u)9 xA eLt(u) be arbitrary points, x0 ^ xt. Such points exist 
because of card Lx(u) = 2. Since {x0} £ F(u), {x j £ F(u) andfis a permutation of P, 
we have {f(x0)} $ F(v)9 {f(xt)} 4 F(v). However, the only singleton which does not 
belong to the system F(v) is {av}. This is a contradiction, hence systems F(u)9 F(v) are 
not equivalent. 

Corollary. Let u erA(P)9 v erc(P). Then F(u) # F(v). 

Lemma 7. Let u e %(P)9 v e=r A(P). Then F(u) non * F(v). 
Proof. Admit that there exists a permutation fe $(P) such thatf(F(u)) = F(v). 
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Let x0 e Lx(v). Since [P - (Lx(v) u L2(v))] u {x0} e D(v) cz F(v), there exists a set 
XeF(w) = C(w) such that f(X) = [P - (Lx(v) u L2(v))] u {x0}. Since Lx(v) u 
ui2(u) e C(v) c F(i?) there exists a set Ye C(u) with the property/(F) = Lx(v) u 
u i2(t;). There is X n Ye C(u) (an intersection of an arbitrary system of closed sets 
inaU-spaceisaclosedset),thus/(Xn Y)eF(v).From{x0} =/(X)n/(F)=/(Xn Y) 
and {x0} £ C(v), {x0} $ D(v) (because of Lx(v) u L2(v) # P) we get a contradiction. 
Hence F(w) non ~ F(u). 

Corollary. Let u e *(P), t; eFA(P). Then F(u) * F(v). 

Lemma 8. Lef w e %(P), v e^c(P). Then F(u) non ^ F(t;). 
Proof. Suppose similarly as above that/(F(v)) = F(w) for some/e #(P). Since 

v[P - K , *„}] = P - {60}^2[P - {av, bv}] = t>[/> - {bv}] = P, thusP - {a„ bv} £ 
eF(v), we have that P - {/(a,),/(&„)} = / [ F - {av, bv}]eF(u) = C(w). Further, 
v(T(v) u {*,, ftj) = T(v) u K , ft,} hence the set f(T(v)) u {f(av),f(bv)} is closed 
in the space (P, w). Then f(T(v)) = [P - {f(av),f(bv)}] n [/(F(v))) u {/(ay), /(ft,)}] 
is a closed set in (P, w). From here T(v) =f~lf(T(v)) e F(v). Since card (P - T(v)) = 

;> 3, thus T(v) $ D(v) we have T(v) e C(v), i.e. v(T(v)) = T(v), which is a contradiction. 
Hence F(w) non ^ F(v). 

Corollary. Let u e <%(P), v e$"c(P). Then F(u) 4= F(v). 

Lemma 9. Le<< w e^A(P), v e^A(P), u # v. Then F(u) * F(v). 
Proof. Let ue^A(P), ve$~A(P) be different A-topologies. Then either Lx(u) # 

T£ LX(V) or Li(w) = Lx(v) and L2(w) ^ L2(v). Suppose that Li(w) - Lx(v) ^ 0. Let 
aeLx(u) - Lx(v). Then v{a} = {a}, thus {a} e C(v) <z F(v). On the other hand, 
u{a} = Lx(u) * {a}, u2{a} = L^w) u L2(w) *- P, thus {a} £ C(w) u D(w) = F(w). 
Hence F(w) # F(v) in this case. The same result we get under the assumption Lx(v) — 
- Lx(u) # 0. Now, let Lx(u) = Lx(v), L2(u) # L2(i?). If L2(w) - L2(v) # 0 we choose 
a point aeL2(u) — L2(tO

 a n (l a P°1nt beLx(u). Put X = P - {a, b}. Then wX = 
= Lx(u) u X = P - {a} and w2X = w(P - {a}) = P, thus Xe D(u) c F(u). Similarly 
vX = P - {a}. However t;2X = v(P - {a}) = P - M , thus X£ C(v) u D(») = 
= F(v). Hence F(w) ^ F(v) again. If L2(t;) - L2(w) ̂  0 then we get F(w) ?- F(t?) 
in a similar way as above. 

Lemma 10. Let ue$~c(P), ve$~c(P\ u # v. Then F(w) # F(v). 
Proof. Topologies w eS~c(P), v eS~c(P) are different iff exactly one of the follow­

ing cases occurs: 

(1.1) F(w) = T(v), au * av, bu = bv, 
(1.2) T(u) = T(v), au # av, bu # bv, 
(1.3) T(w) « r(t?), ay = a„ fttt # bv, 
(2,1) T(w)^T(t;), « „ = « „ bu~bv, 
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T(u) Ф T(v), au Ф av, b„ = bv, 

T(u) Ф T(v), au Ф av, bu ф bv, 

T(u) Ф T(v), au = av, bu ф bv. 

(2,2) 

(2,3) 

(2,4) 

In cases (1,1), (1,2) there holds u{au} = {au,bu}, u2{au} = {au, bu} ^ P, thus {au}$ 
$F(u), {au}eF(v). If (1,3) occurs we have u{au, bu} = {au, bu}, v{au, bu} = 
= {au9 bu, bv}. Since v2{au, bu} = {au, bu, bv} * P, it holds {au, bu} e F(u), {au,bv} $ 
$F(v). Now, consider these possibilities: F(u) £ T(v), T(v) g T(u), T(u)\\ T(v). If 
T(u) g F(v) then in cases (2,1)-(2,4) there is uF(u) = F(u) u {au} ± T(u) = vF(u) 
and u2F(u) = T(u) u {au, bu} # P for card (P - F(u)) = 3. Thus F(u) $ F(u), 
T(u) e F(v). If F(v) s F(u) then similarly as above uF(v) = F(v), vT(v) = T(v) u 
u K } 7- F(v), v2T(v) = T(v)u{av,bv} *P, hence T(v)eF(u), T(v)$F(v). Let 
F(u) || T(v). In cases (2,1), (2,4) it holds vF(u) = F(u) for av$T(u). However, uF(u> ^ 
# F(u), u2F(u) # P , thus T(u)$F(u), T(u)eF(v). In cases (2,2), (2,3) are au,av 

different. It can be shown, similarly as in cases (1,1), (1,2) that set-systems F(u), F(v) 
are also different. Therefore we get that set-systems F(u), F(v) are distinguished 
in all possible cases (1,1) —(2,4) by a suitable subset of P, q.e.d. 

For the sake of completeness we formulate here the following well-known theorem: 

Lemma 11. Let u, v be U-topologies. Then u # v implies F(u) ^ F(v) and u, v are 
homeomorphic iff F(u) ~ F(v). 

Lemma 12. Let u e 3~(P), v e ̂ (P) be homeomorphic topologies. Then F(u) ~ F(v). 
Proof. Letfbe a homeomorphic mapping of the space (P, u) onto the space (P, v). 

Then C(u) =f-x(C(v)), (it follows e.g. from [2] 16 C.2. and 16 C.4.). Let u e2T(P) - , 
- %(P). Then D(u) # 0. Let Xe D(u) be an arbitrary set, Y =f(X). Then Ye D(v) 
for vY = vf(X) =f(uX) ?-f(P) = P and v2Y = v2f(X) =f(u2X) =f(P) = P, thus 
veJ^P) - W(P). Since Xef~l(Y) we have D(u) af-l(D(vj). Let Xef_1D(v)). 
There exists YeD(v) such that X = f " 1 (Y ) . Since uX = P implies P =f(uX) = 
= tf(X) = vY, uXis a proper subset in P. Further, u2X =f_1f(u2X) =f"1(v2Y) = 
= / " 1 ( - p ) =-P, thus XeD(u). Therefore D(u) ^f-\D{v)) and we get F(u) = 
= f"1(F(v)),i.e. F(u)^F(v). 

Lemma 13. Let ue3~A(P), ve^~A(P) be A-topologies with the property F(u) *, 
^ F(v). Then u, v are homeomorphic. 

Proof. Let ue^~A(P), ve^~A(P) be such A-topologies that F(u) * F(v). Let 
fe 4>(P) be a permutation with F(u) = f(F(v)), x e Lx(v). Since {x} $ C(v), {x} $ D(v), 
i.e. {x} $F(v), it holds {f(x)} $F(u). Since every point aeP with the property 
u{a} T£ {a} belongs to Lt(u), there is f(x)eLl(u), hence Lt(v) c f'^L^u)). Let 
yef'^L^u)). If xeP is a point with x -f(y), then xeLx(u), thus {x}$F(u). 
Then {y} = f~l{f(y)} = f_1{x} £ F(v) hencey *Lx(v). Therefore we get the equality 
Lt(v) = f-H£i(")).Nowletx0e^^ 
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Since [P - (Lt (v) u L2(v))] u {x0} e D(v), we have that M = f[P - (Lt(v) u 
u L2(v)] u f{x0} € F(u). Since f(x0) eLt(u) it holds uM # M, u2M = P thus 

f(L2(v)) cz L2(u). Admit thatf(L2(v)) ^ L2(u). There is Lt(u) uf(L2(v)) = f(Lx(v) u 
u L2(v)) e F(u). On the other hand, u(Lt(u) uf(L2(v)) =-= Lt(u) u L2(u) ^ P, 
u2(Lj(u) uf(L2(v))) = u(L,(u) u L2(u)) = Lt(u) u L2(u) = u(Lt(u) uf(L2(v)), thus 
Lx(u) uf(L2(v)) £ C(u) u D(u) = F(u), which is a contradiction. Therefore L2(u) = 
= f(L2(v)), i.e. L2(v) =f~1(L2(u)) . From equalities Lt(v) = , " ' ( L ^ ) ) , i = 1, 2, it 
follows immediately that A-topologies u, v are homeomorphic 

Lemma 14. Let ue^c(P), VG^C(P) be such topologies that F(u) * F(v). Then 
u, v are homeomorphic. 

Proof. Let ue-Tc(P), v e^c(P) be topologies with the required property. There 
exists a permutation fe <P(P) such thatf(F(u)) = F(v). Since xeP, x ^ av implies 
{x} e F(v), it holds f(au) = av. From {au, bu} e C(u) cz F(u) it follows {av,f(bu)} = 
= f{aM, bu} = F(v). Since Xe D(v) implies card X = 3 for card (P - F(v)) = 3, 
there holds {av,f(bu)} e C(u). From here, with respect to v{av} = {av,bv}, we get 
{av,bv} cz v{av,f(bv)} = {av,f(bu)}, hence f(bu) = by. We are going to show that 

f(T(u)) = T(v). Put X =f(F(u)), let ae T(u). There is f(r(u) - {a}) =f(T(u)) -
- {f(a)} = X - {f(a)}, where f(a)eX Further, u(T(u) - {a}) = T(u) - {a}, i.e. 
F(u) — {a}eF(u), hence X— {f(a)}eF(v). Since the system D(v) contains the only 
set P - {av, bv} and au ^ a ^ bu, i.e. aV ^ f(a) ^ by, it holds P - {av, bv} ?-
* X - {f(a)}, hence X - {f(a)} e C(v). It means that v(X - {f(a)}) = X - {f(a)}. 
Since F(u) $ F(u) it holds that X£ F(v) thus vX ?- Xand we have F(v) c X = f ( r (u ) ) 
for av $ X. Futher, T(v) is not a subset of X — {f(a)}, hence f(a) e T(v). Since a was 
an arbitrary point from T(u) we havef(T(u)) cz T(v), thusf(T(u)) = F(v). Therefore 
u, v are homeomorphic. 

4. Main theorem. Now, we summarize results obtained in the preceding paragraph. 
Let A, B be sets, Q be a binary relation on A, a a binary relation on B. We say that the 
mapping cp : A -> B is an embedding of a monorelational system (A, Q) into a mono-
relational system (B, o) if <p is injective and for every pair of elements ae A, be A, 
there holds a Q b ifff(a) o /(b). 

Theorem. Let P be an infinite set. There exists a topological system &~(P) cz ^(P) 
with the property %(P) cz 3~(P) and a mapping F: ZT(P) -* exp exp P such that it holds: 

1° card [(F(P) n s/(P)) - %(P)] = card [JT(P) - (st(P) u *U(P))] = 
= 2card p, card [((T(P) n s/(P)) - W(P))\ £ ] = 
= card [(«T(P) - (j/(P) u ^ (P ) ) ) /^ ] = card P and & e [3T(P) - ^ ( P ) ] / ^ 
implies card :#* g; card P. 

2° F: « "̂(P) -* exp exp P /s an embedding of the monorelational system (&~(P), = ), 
into the monorelational system (exp exp P, ^ ) . 

3° If u is a U-topology on P, then F(u) ii the system of all closed subsets of the space 
(P, u). 
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Proof. Let P be an infinite set. Let symbols 2T(P) and F: ^(P) -+ exp expP have 
the same meaning as in the beginning of the preceding paragraph. By lemma 2, the 
system !F(P) is topological. Assertion 3° is cointained in lemmas 3, 4, 5. Assertion 
2° follows from lemmas 6 to 14 and corollaries of lemmas 6, 7, 8. Assertion 3° is 
an immediate consequence of the definition of the mapping F, q.e.d. 

Let (P, u) be a topological space which is not a U-space, v a (/-modification of the 
topology u (see [1], 6.1). Then the system C(u) of all closed sets of the space (P, u) 
coincides with the system C(v) of all closed sets of the (/-space (P, v) hence using 
subsets of P, closures of which are proper dense subsets of (P, u), we get different set-
systems for u and v with above described properties. 

Let us mention in this connection a problem formulated in [6] p. 328: Is it possible 
to assign to any tech's space (P, u) the system ¥(u) c expP so that u ^ v implies 
^(u) # £f(v) and u, v are homeomorphic iff «9*(w) ~ ,9*(v)7 

From results of pzper [3] there follows the negative answer for card %>(P) > card 
exp exp P if card P = 4 or 5. However, if card P ^ 6 the problem seems to be unsolved 
up to now. Note that it is not difficult to get a negative answer in the case when 
a homeomorphims of topological spaces and the equivalence of corresponding set-
systems are given by the same permutation fe $(P). Such a modification of the men­
tioned problem can be expressed in the language of category theory. Related problems 
are treated in [4]. Denote ̂ by $l(P) a category, objects of which are A-spaces (P, u), 
where P is a fixed set of the cardinality at least 4,ue s#(P) and morphisms are homeo-
morphisms. Let S(P) denote a category with objects (P, S), S c expP, where P is 
a fixed set. Morphisms between (P, S) and (P, T) are permutations fe #(P) such that 
XeS impliesf(X) e T. By Um, ((/<--) there will be denoted the forgetful functor from 
S&(P), (®(P)) into the category of sets. 

Proposition 2. Let P be a set, card P = 3, F: 2l(P) -* S(P) such a functor that 
U® • F(f) = Um(f) for each fe mor 2I(P). Then there exists a pair (P, u) e ob A(P), 
(P, v) e ob A(P) so that (P, u) ^ (P, v) and F(P, u) = P(P, v). 

Proof. Let P be a set of the cardinality at least 3. Let ax,a2, a3 be different points. 
Put Q = P - {ax, a2, a3}. Consider A-topologies u, v on the set P such that u{at} = 
= {«i> #2} - v{ai}> u{a2} = {a2, a3} = v{a3}, u{a3} = {al9 a3} = v{at} and wX = 
= vX = X for each X c Q. Denote by S(u), S(v) such set-systems that (P, S(u)) = 
= P(P,u), (P,S(v)) ^F(P,v). Consider an arbitrary set XeS(u). If l e g or 
card (X — Q) = 3 we consider a morphism fe [(P, u), (P, v)]m which satisfies the 
conditions U$(f)\Q = idQ, Um(f)(ax) = ax, U%(f)(a2) = a3, U%(f)(a3) = a2.Then 
X = F(f)(X)eS(v). If card (X - Q) = 1, e.g. X - Q = {a2} then using the homeo-
morphism g : (i\ u) --> (P, v) such that UM(g) (a2) = a2, Um(g) (a3) = at, U^(g)(at) = 
= a3 and U$(g) \Q = id?, we get X = g(X) = F(g)(X). Let card (X - Q) = 2. Let 
ae {ai, a2, a3} be a point which does not belong to X. Considering a morphism 
he[{P9u),(P,v))m such that U^h) \Q = idQ and £ (̂A) (a) = a, U%(h)(b) ~ c, 
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U^(h) (c) — by where {a, A, c} = {at, a2, a3}, we have X = F(A) (X)eS'(i?). Therefore 
S(u) cz 5(v), hence S(w) = S(v), whereas u # v, q.e.d. 

Note that the above proposition and its proof can be modified for the case of 
connected compact A-topologies (for definitions see [2] 20 B.l. and 41 A.3.). 
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