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ON HOMEOMORPHIC TOPOLOGIES
AND EQUIVALENT SET-SYSTEMS

JAN CHVALINA, Brno
(Received December 16, 1975)

1. Introduction. Let P be a non-void set. Set-systems &, &, < exp P are said to be
equivalent if there exists a permutation f of the set P (i.e. a one-to-one mapping of P
onto itself) such that &, = {f(X): X €%}, (cf. [6] p. 323). To every topology u
(in the sense of [2] or [5]) it can be assigned such a set-system &% (u) so that topologies
u, v are homeomorphic if and only if set-systems &(u), £(v) are equivalent in the
above sense and u 3 v implies #(u) # £ (v). The aim of this note is to give a con-
structive proof of the possibility of a non-trivial extension of the set-system valued
mapping & onto a system of more general topologies which do not satisfy the so
called U-axiom (the idempotency of closures).

2. Preliminaries. By a topological space we mean the so called Cech’s topological
space (see [1]), that is a pair (P, u), where P is a set and « a mapping of exp P into
itself satisfying the following axioms:

19 u9 = 4, 20 XcuX for Xc P, 30 X< Y < P implies uX < uY.

If
4 y(XuY)=uXvuy, XcP, YcP

" holds then the topology u is called an A-topology and (P, u) an A-space (closure
operations, closure spaces in the ter minology of [2]). Topologies fulfiling axioms 1°
through 3° and

5uuX =uX  for each XcP (U-axiom)

are called U-topologies and corresponding spaces U-spaces. If axioms 1, through 5,
are satisfied, we speak about AU-spaces, AU-topologies (topologies in the sense
of [2] or [5]).

Denote by €(P) the lattice of all topologies on the set P (with respect to the order-
ing: u,ve 4(P), u < vif uX < vY for each X < P, cf. [7] 1.2,, 2.1.). For u, v € €(P)
there holds (uvv) X = uX v vX, (uAv) X = uXnvX, X < P. Subsystems of
%(P) of all A-topologies and U-topologies are denoted by «/(P) and %(P) respectively

.
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Let *(P) means the set of al totally irreducible elements in the lattice (6(P), A, V),
‘g,fm(P) the set of all maximal elements in €*(P) and let ¥3(P) be the system of all
atoms in (¢(P), v, A). For u, v€ %(P), v ~ v means that u, v are homeomorphic
for S, cexpP, S, c exp P, S; ~ S, means that S, S, are equivalent in the above
sensc, i.e. there exists a permutation f of the set P such that S, = {f(X): Xe S,}.
In this case we shall write S, = f(S;). Similarly, if S, = {f~'(X) : X€ S,}, then we
write S, = f~1(S,). The permutation group of the set P will be denoted by ®(P).
If X is a set, ¢ the equivalence relation on X then X/g denotes a decomposition of X
induced by g. A system of topologies = €(P) is called topological if u € X, v € €(P),
v u ir’nplies ve X.
In [7], 2.3. is given a characterization of totally irreducible elements of €(P):

Proposition 1. u € €*(P) iff there exists a non-void set X, c P and a point ae P
such that uX = X v {a} for X = P, X, = X and uX = X otherwise.
From here it follows immediately

Lemma 1. The topology ue €(P) belongs to €x,.(P) iff there exist points a€ P,

beP so that uX = X U {b} if ae X and uX = X otherwise.
Evidently, €5, (P) is a topological system.

3. Auxiliary assertions. Let P be a set of the cardinality at least 5, u € €*(P).
By T, will be denoted the set X, = P and by a, the point a both considered in pro-
position 1. §2. Put ¥T(P) = {ue ¢*(P):card T, = 2,card (P — T,) = 3}. Evidently,
Guax(P) = {uc €*(P) :card T, = 1}. Put T (P) = {uvv:ue @XP), ve €k (P),
T,=1{a,},a,¢ T,}.Itis easy to see that a topology w belongs to 7 o(P) iff there exist
a set X; < P with card X; = 2, card (P — X;) = 3 and points x,, x,e P — X,
X; # X, such that X < P, X; < X implies wX = X U {x,}, X = P, x; € X implies
wX = X U {x,} and wX = X otherwise. If we denote by u, v topologies from €} (P),
@rr.ax(P) respectively such that w = uvo, then X, = T, {x,} = {a,} = T, x, = a,.
If weJ (P), then by T(w) will be denoted the set X, (considered above), by 4,,
and b,, the above considered point x, and x, respectively. Hence, there is defined
a one-to-one mapping T of the system Z o(P) into the set 2¥ x P x P by the rule:
T(w) = <{T(w), a,, b,), for ue I (P).

Further, denote by «/(P) a system of all A-topologies on P satisfying the following
condition:

There exists a pair X;, X, of non-void disjoint subsets of the set P with X; U X, =
P such that ‘

(i) uX, = X,V X,,

() uX =X X,ifXcP, Xn X, #9,

(i) uX =Xif XcP, Xn X, =0or X;uX,cX
Clearly, o ,(P) # 0. To every A-topology u from the system &/ (P) is assigned a pair
of sets X,;, X, with above described properties. We shall denote these sets by L,(u),
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Ly(u). 1t is easy to see that €%, (P) & #,(P). PutJ ,(P) = {ue o/ (P): card L;(u) 2
=2, P # L,() U L,y(w)} and finally T(P) = 7 (P) U T (P) U %(P).

Let f be a permutation of the set P. By / will be denoted a mapping of #(P) into
itself induced by the permutation f in the way: f(u) X = f~'uf(X) for ue é(P),
X < P, (i.e. f(u) is a topology projectively generated by the mapping f: P — (P, u)).
Notice that in [7] 1.4. is f(u) denoted by f - u, where is also examined that for f'e ®(P)
is £ an automorphism of the lattice (6(P), v, A). It is clear that a system &(P)
< %(P)is topological iff it is f-stable for every permutation of the set P, i.e. f(£(P)) =
< P(P) for each fe @(P). A union of an arbitrary collection of topological systems is
evidently a topological system.

Lemma 2. Let P be a set. Systems T ,(P), 7 (P), 7 (P) are topological.

Proof. Let ueJ ,(P), fe ®(P). It holds f ' (Ly(u)) N f~'(L,u)) = 0. Let X = P
be such a set that X n f~'(Ly()) # 8. Since 6 # f(X A f~1(L())) = f(X) Ly(u)
and ueol (P) we have f(u) X =f"luf(X) =f'(f(X) U Ly(w)) = f'uL,(u) =
=f"YLiw) v L) = £~ (Li(w)) U f~(L,(w)). From X 0 f~}(L,(u)) = 0 there
follows f(X) N Ly(x) = 0, ie. f~'uf(X) = X. We get that L(f(u)) =/ *(L{w))
(i = 1, 2) thus it holds f(#) € 7 4(P), i.e. the system J ,(P) is topological. It can be
proved in a similar way that the system 7 o(P) is topological hence the system 7 (P),
which is a union of J 4(P), 7 ¢(P) and #(P), is a topological system, too.

Lemma 3. Let P be an infinite set. It holds card [(7 (P) n #(P)) — %(P)] = 277,
card [((F(P) n o#(P)) — U(P))|=] = card P.

Proof. Let ueJ ((P), xeL,(u). Then u{x} = L,(u) # {x}, u*{x} = uL,(u) =
= L,(u) U L,(u) # L,(u), thus u? # 4 and we have that 7 «(P) N %(P) = 9. Further,
for arbitrary u € 7 ¢(P) and arbitrary x e T(u) there holds u[{x} v (T(u) — {x})] =
=ulT(u) = Tw) v {a,} # T(w) = {x} U (T) — {x}) = u{x} v u(T(u) — {x}),thus
T AP)NT (P) = 0. 1t holds (T (P) ~ A(P)) — U(P) =T 4(P). If we put & =
={(X,Y)eexp'P xexp'’P:card X >2 and XN Y =0}, where exp'P =
=exp P — {0}, then we have card & = 24P 2ardP _ 2ardP for card P 2 W,.
The mapping L : 7 ,(P) — & defined by the rule L(x) = {L,(1), L,(u)),forueJ ,(P),
is bijective, hence card 7 4(P) = 2°*"*F Assign to every A-topology u €7 4(P) a triad
of cardinal numbers {(m,, m,, m;),, where m; = card L,(u) for i = 1,2 and my =
= card(P — (L,(u)) U Ly(u)). Evidently, if u, v € 7 ,(P) are nonhomeomorphic topo-
logies then {my, m,, my), # {(m,, m,, m,>,, hence card [F ((P)/=] < card x
x{{my, my, m3) :m; < card P, i = 1,2, 3} = card P. On the other hand, if a, b
are arbitrary points in P, & < 2° is a set-system of the cardinality card P such that
XeZ implies a¢ X and Xe ¥, Ye &, X # Y implies card X # card Y then
card P = card & = card {ueJ (P):L,(u)e &L, Ly(u) = {a}} < card [7 ,(P)x].
Therefore it holds card [((7(P) N #(P)) — %(P))/=] = card P.

Lemma 4. Let P be an infinite set. It holds card [7(P) — (M(P) V] %(P))] =
= 2P card [(T(P) — (#(P) U %(P)))/=] = card P.
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Proof. If ue7 (P) then u¢ o(P) U %(P). Hence T (P) =7 (P) — (#4(P) U
U %(P)). Now, similarly as in the proof of lemma 3, we put¥ = KX, x,y>: X< P,
XeP, yeP, card X =2 2, card(P — X) = 3, x¢ X, y¢ X. x # y}. The mapping
T .7 (P) - &, defined by T(u) = {(T(u), 2,, b,> for ue.7 P) is ev.dently bijective
hence card .7 (P) = card ¥ = 2°"*F _card P.card P = 27*"*F, Denote by . the set
of pairs of cardinal numbers {{m,, m,) : m; < card P for i = 1, 2}. We have (simil-
arly as in the proof of lemma 3) that card (J (P)/=) < card .# = card P. On the
other hand, let ae P, be P, a # b be arbitrary but fixed points, & be a system of
subsets X = P such that card & =card P, Xe ¥ implies card X = 2, a¢ X, b¢ X
and such that X, Ye %, X # Y implies card X # card Y. Then we have card P =
= card & < card {u€.7 ((P) : unon = v} = card [T (P)/=].

Lemma 5. Let P be an infinite set, & € {7 (P) — WU(P)]/=. Then it holds card & =
> card P.

Proof. 7 (P) — %(P) =T 4(P) u.7 «(P) with disjoint summands. Let u €.7 4(P).
Since card P = N, there exists a set X € {L(u), Ly(u), P — (Ly(u) U Ly(u))} such
that card X = card P. Suppose that X = L,(u). Letae L,(u). Put T, = {v, €T (P):
1Ly(vy) = (Ly(u) — {x}) v {a}, Ly(v,) = (Ly(u) — {a}) U {x}, x € L,(u). Then card
T, =card L,(u) = card P and every A-topology belonging to the system T, is
homeomorphic to the A-topology u. (If v, € T, then the permutation f € $(P) defined
by f(x) = x for x e P, xo # x # a and f(x,) = a, f(a) = x, is a homeomorphism of
the space (P, ) onto the space (P, v, ). Thus & € 7 4(P)/=~ implies card & = card P.
In the same way we get that 2 €. (P)/~ implies card & = card P, as well.

Let u € T(u). Denote by D(u) the system of all subsets of P closures of which are
proper subsets of P dense in the space (P, u),i.e. D(u) = {X < P:uX # P, u*X =P},
Further, for u €7 (P) we put F(u) = D(u) u C(u), where C(u) is the system of all
closed sets in the space (P, u). It is clear that u € u € %(P) iff D(u) = 0, hence F(u) =
= C(u) for each u € %(P). In futher development we shall deal with properties of the
mapping F :.7 (P) - exp exp P. Cardinality of the set P is supposed at least 5.

Lemma 6. Let u€ T (P), ve T (P). Then F(u) non ~ F(v).

Proof. Admit that there exists such a permutation f of the set P that f(F(u)) =
= F(v). Let xo € L,(u), x; € Ly(u) be arbitrary points, x, # x,. Such points exist
because of card L,(#) = 2. Since {x,} ¢ F(u), {x,} ¢ F(#) and f'is a permutation of P,
we have {f(x,)} ¢ F(v), {f(x,)} ¢ F(v). However, the only singleton which does not
belong to the system F(v) is {a,}. This is a contradiction, hence systems F(u), F(v) are
not equivalent.

Corollary. Let ue€ T (P), veT (P). Then F(u) # F(v).
Lemma 7. Let ue %(P), ve T ,(P). Then F(u) non ~ F(v).
Proof. Admit that there exists a permutation fe &(P) such that f(F(u)) = F(v).

110



Let xo € L,(v). Since [P — (Ly(v) U L,(v))] U {Xo} € D(v) = F(v), there exists a set
XeFu) = Cu) such that f(X) =[P — (L;i(v) U Ly(v))] U {xo}. Since L,(v) v
U L,(v) € C(v) = F(v) there exists a set Y e C(u) with the property f(Y) = L,(v) U
U L,(v). There is X n Y € C(u) (an intersection of an arbitrary system of closed sets
in a U-space is a closed set), thus f(X N Y)e F(v). From {xo} = f(X)nAY)=f(XN Y)
and {x,} ¢ C(v), {xo} ¢ D(v) (because of L,(v) U L,(v) # P) we get a contradiction.
Hence F(u) non ~ F(v).

Corollary. Let ue %(P), veJ 4 P). Then F(u) # F(v).

Lemma 8. Let u € %(P), ve T (P). Then F(u) non ~ F(v).

Proof. Suppose similarly as above that f(F(v)) = F(u) for some fe ¢(P). Since
[P — {awbv}] =P - {bv}"vz[P - {av’ bv}] =[P - {bv}] = P,thus P — {av’bv} €
€ F(v), we have that P — {f(a,), f(b,)} =fIP - {a,, b,}] € F(u) = C(u). Further,
v(T(v) v {a,, b,}) = T(v) U {a,, b,} hence the set f(T(v)) U {f(a,), f(b,)} is closed
in the space (P, u). Then f(T(2)) = [P — {f(@), fb)}] O LA(T@)) U {f(@,), fb))]
is a closed set in (P, u). From here T(v) = f ~*f(T(v)) € F(v). Since card (P — T(v)) =
= 3, thus T(v) ¢ D(v) we have T(v) € C(v),i.e. v(T (v)) = T(v), which is a contradiction.
Hence F(u) non ~ F(v).

Corollary. Let ue U(P), ve T (P). Then F(u) + F(v).

Lemma 9. Let ueJ ,(P), veT ,(P), u # v. Then F(u) # F(v).

Proof. Let ueJ 4(P), veJ ,(P) be different A-topologies. Then either L,(u) #
# L,(v) or Ly(u) = L,(v) and L,(u) # L,(v). Suppose that L;(u) — L;(v) # 9. Let
aeL,(u) — Li(v). Then v{a} = {a}, thus {a} e C(v) € F(v). On the other hand,
u{a} = L,(u) # {a}, w?*{a} = L(u) v Ly(u) # P, thus {a}¢ C(u) U D(u) = F(u).
Hence F(u) # F(v) in this case. The same result we get under the assumption L,(v) —
— L,(u) # 9. Now, let L,(u) = L,(v), Ly(u) # L,(v). If L,(u) — L,(v) # 9 we choose
a point a € L,(u) — Ly(v) and a point be L,(u). Put X = P — {a, b}. Then uX =
=L, (u)u X =P — {a}andu®X = u(P — {a}) = P, thus X € D(u) = F(u). Similarly
vX = P — {a}. However v*X = v(P — {a}) = P — {a}, thus X¢ C(v) U D(v) =
= F(v). Hence F(u) # F(v) again. If L,(v) — L,(u) # @ then we get F(u) # F(v)
in a similar way as above.

Lemma 10. Let u€.7 (P), ve T (P), u # v. Then F(u) # F(v).
Proof. Topologies u € 7 o(P), v e (P) are different iff exactly one of the follow-
‘ ing cases occurs:

(L1 Tw) = T(), a,+#a, b,=b,
(1,2) T(w) = T(v), a,+#a, b,#b,
13 T(u) =T(v), a,=a, b, +#b,
@n - T(w) # T(v), a,=a,, b,=b,
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2,2) T(u) # T(v), a, # a,, b, =b,,
(2,3 T(w) # T(v), a,# a,, b, # b,
(2’4) T(u) # T(U), au = aua bu 7& bv‘

In cases (1,1), (1,2) there holds u{a,} = {a,,b,}, v*{a,} = {a,,b,} # P, thus {a,} ¢
¢ F(u), {a,}eF(@). If (1,3) occurs we have u{a,,b,} = {a, b}, v{ia, b} =
= {a,, b,, b,}. Since v*{a,, b,} = {a,, b,, b,} # P, it holds {a,, b,} € F(u), {a,,b,} ¢
¢ F(v). Now, consider these possibilities: T(u) & T(v), T(v) & T(w), T(u) || T(v). If
T(u) & T(v) then in cases (2,1)—(2,4) there is uT(u) = T(u) v {a,} # T(u) = vT(u)
and ¥*T(u) = T(u) U {a,,b,} # P for card(P — T(w) 2 3. Thus T(u)¢ F(u),
T(u)e F(v). If T(v) & T(u) then similarly as above uI(v) = T(v), vT(v) = T(v) U
u{d} # T()., v’T() = Tw) U {a,, b} # P, hence T(v)€ F(u), T(v)¢ F). Let
T(u) || T(v). In cases (2,1), (2,4) it holds vT(u) = T(u) for a, ¢ T(u). However, uT(u) #
# T(w), u*T(u) # P, thus T(u) ¢ F(u), T(u) e F(v). In cases (2,2), (2,3) are a,,a,
different. It can be shown, similarly as in cases (1,1), (1,2) that set-systems F(u), F(v)
are also different. Therefore we get that set-systems F(u), F(v) are distinguished
in all possible cases (1,1)—(2,4) by a suitable subset of P, g.e.d.

"For the sake of completeness we formulate here the following well-known theorem:

Lemma 11. Let u, v be U-topologies. Then u # v implies F(u) # F(v) and u, v are
homeomorphic iff F(u) ~ F(v).

Lemma 12. Let u € 7 (P), v € 7 (P) be homeomorphic topologies. Then F(u) ~ F(v).

Proof. Let fbe a homeomorphic mapping of the space (P, u) onto the space (P, v).
Then C(u) = f~*(C(v)), (it follows e.g. from [2] 16 C.2. and 16 C.4.). Let ue T (P) —.
— 4(P). Then D(u) # 0. Let X € D(u) be an arbitrary set, ¥ = f(X). Then Y € D(v)
for vY = vf(X) = f(uX) # f(P) = P.and v*Y = v*f(X) = f(u*X) = f(P) = P, thus
veJ (P) — U(P). Since Xef'(Y) we have D(u) = f~*(D(v)). Let X ef ™~ 'D(v)).
There exists Y e D(v) such that X = f~!(Y). Since uX = P implies P = f(uX) =
= vf(X) = vY, uX is a proper subset in P. Further, u2X = f~f(u*X) =f " 1(v?*Y) =
=f"'(P) = P, thus Xe D(u). Therefore D(u) =f~'(D(v)) and we get F(u) =
= fY(F(v)), i.e. F(u) ~ F(v).

Lemma 13. Let ue 7 (P), veTJ (P) be A-topologies with the property F(u) ~
~ F(v). Then u, v are homeomorphic.

Proof. Let ueJ 4(P), veJ ,(P) be such A-topologies that F(u) ~ F(v). Let
f€ ®(P) be a permutation with F(u) = f(F(v)), X € L (v). Since {x} ¢ C(v), {x} ¢ D(v),
ie. {x} ¢ F(v), it holds {f(x)} ¢ F(u). Since every point ae P with the property
u{a} # {a} belongs to L,(u), there is f(x) € Ly(u), hence L,(v) = £~ *(L,(4)). Let
yef '(Lyw)). If xeP is a point with x = f(»), then x € L,(u), thus {x} ¢ F(u).
Then {y} = f~'{f(»)} =f"'{x} ¢ F(v) hence y € L,(v). Therefore we get the equality
Ly(v) = f~*(Ly(u)). Now let xo € L,(v). Put M = [P — (Li() U AL 0N)] © {f(x0)}.
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Since [P — (Ly (v) U Ly(v))] U {xo} € D(v), we have that M =f[P — (Ly(v) L
U L,(0)] U f{xo} € F(u). Since f(x,) € Ly(u) it holds uM # M, u*M = P thus
f(L,(v)) = Ly(u). Admit that f(L,(v)) # L,(u). There is L,(u) U f(Ly(v)) = f(Li(v) U
U Ly(v)) € F(u). On the other hand, u(L,(u) v f(L,(v)) = L,(u) U Ly(u) # P,
u(Ly(u) U f(Ly(v))) = u(Ly(u) U Ly(w)) = Ly (1) U Ly(u) = u(L,(u) U f(L(v)), thus
L(u) U f(Ly(v)) ¢ C(u) U D(u) = F(u), which is a contradiction. Therefore L,(u) =
= f(Ly(v)), i.e. L,(v) =f~'(Ly(w)). From equalities L(v) =, ~"(Lw)), i = 1,2, it
follows immediately that A-topologies u, v are homeomorphic.

Lemma 14. Let ue 9 (P), veJ (P) be such topologzes that F(u) ~ F(v). Then
u, v are homeomorphic.

Proof. Let u €.7 (P), veJ (P) be topologies with the required property. There
exists a permutation fe ®(P) such that f(F(u)) = F(v). Since x € P, x # a, implies
{x} € F(v), it holds f(a,) = a,. From {a,, b,} € C(u) = F(u) it follows {a,, f(b,)} =
= f{a,, b,} = F(v). Since X e D(v) implies card X = 3 for card (P — T(v)) = 3,
there holds {a,,f(b,)} € C(u). From here, with respect to v{a,} = {a,, b,}, we get
{a,, b,} = v{a,, f(b,)} = {a,, f(b,)}, hence f(b,) = b,. We are going to show that
f(T(u)) = T(v). Put X = f(T(u)), let ae T(u). There is f(T(u) — {a}) = f(T(w)) —
— {f(@} = X — {f(a)}, where f(a)e X. Further, u(T(u) — {a}) = T(u) — {a}, i.e.
T(u) — {a} € F(u), hence X — {f(a)} € F(v). Since the system D(v) contains the only
set P — {a,, b} and a, # a # b,, ie. a, # f(a) # b,, it holds P — {a,, b,} #

— {f(a)}, hence X — {f(a)} € C(v). It means that v(X — {f(a)}) = X — {f(a)}.
Since T(u) ¢ F(u) it holds that X ¢ F(v) thus vX # X and we have T(v) = X = f(T(u))
for a, ¢ X. Futher, T(v) is not a subset of X — {f(a)}, hence f(a) € T(v). Since a was
an arbitrary point from T(u) we have f(T(u)) = T(v), thus f(T(«)) = T(v). Therefore
u, v are homeomorphic.

4. Main theorem. Now, we summarize results obtained in thé preceding paragraph.
Let A, B be sets, ¢ be a binary relation on 4, ¢ a binary relation on B. We say that the
mapping ¢ : A — Bis an embedding of a monorelational system (A4, ¢) into a mono-
relational system (B, o) if ¢ is injective and for every pair of elements ae 4, be A4,
there holds a ¢ b iff f(a) o /(b).

Theorem. Let P be an infinite set. There exists a topological system I (P) < €(P)
with the property U(P) <« J (P) and a mapping F : T (P) — exp exp P such that it holds :
1°card [(7(P) N A(P)) — %(P)] = card [T (P) — (L(P) U U(P))] =
= 2P card [((7(P) » (P)) — U(P))|=] =
= card [(7(P) — (Z(P) v %(P)))/=] =card P and ¥ € [9' (P) — U(P)]|~
implies card & = card P.
2° F : T (P) — exp exp P is an embedding of the monorelational system (ﬁ' P), =~ ),
into the monorelational system (exp exp P, ~).
3°If u is a U-topology on P, then F(u) is the system of all closed subsets of the space
(P, u).
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Proof. Let P be an infinite set. Let symbols J(P) and F : (P) — exp exp P have
the same meaning as in the beginning of the preceding paragraph. By lemma 2, the
system J (P) is topological. Assertion 3° is cointained in lemmas 3, 4, 5. Assertion
2° follows from lemmas 6 to 14 and corollaries of lemmas 6, 7, 8. Assertion 3° is
an immediate consequence of the definition of the mapping F, q.e.d.

Let (P, u) be a topological space which is not a U-space, v a U-modification of the
topology u (see [1], 6.1). Then the system C(u) of all closed sets of the space (P, u)
coincides with the system C(v) of all closed sets of the U-space (P, v) hence using
subsets of P, closures of which are proper dense subsets of (P, u), we get different set-
systems for u and v with above described properties.

Let us mention in this connection a problem formulated in [6] p. 328: Is it possible
to assign to any Cech’s space (P, u) the system ¥(u) < exp P so that u # v implies
F(u) # £(v) and u, v are homeomorphic iff #(u) ~ L (v)?

From results of pzper [3] there follows the negative answer for card ¥(P) > card
exp exp Pifcard P = 4 or 5. However, if card P > 6 the problem seems to be unsolved
up to row. Note that it is not difficult to get a negative answer in the case when
a homeomorphims of topological spaces and the equivalence of corresponding set-
systems are given by the same permutation '€ @(P). Such a modification of the men-
tioned problem can be expressed in the language of category theory. Related problems
are treated in [4]. Denotesby UA(P) a category, objects of which are A-spaces (P, u),
where P is a fixed set of the cardinality at least 4, « € o/(P) and morphisms are homeo-
morphisms. Let S(P) denote a category with objects (P, S), S = exp P, where P is
a fixed set. Morphisms between (P, S) and (P, T') are permutations f'€ ¢(P) such that
X € S implies f(X) € T. By Uy, (Ug) there will be denoted the forgetful functor from
A(P), (S(P)) into the category of sets.

Proposition 2. Let P be a set, card P = 3, F:W(P) — S(P) such a functor that
Ug ° F(f) = Uy(f) for each fe mor W(P). Then there exists a pair (P, u) € ob A(P),
(P, v) € ob A(P) so that (P, u) # (P, v) and F(P,u) = F(P, v).

Proof. Let P be a set of the cardinality at least 3. Let a,, a5, a; be different points.
Put Q = P — {ay, a,, a;}. Consider A-topologies u, v on the set P such that u{a,} =
= {ay, a;} = v{az}, ufa,} = {ay, a3} = v{as}, u{as} = {a;, a3} = v{a,} and uX =
= vX = X for each X c Q. Denote by S(u), S(v) such set-systems that (P, S(u)) =
= F(P, u), (P, S(v)) = F(P,v). Consider an arbitrary set Xe S(u). If X = Q or
card (X — Q) = 3 'we consider a morphism f€ [(P, u), (P, v)ly which satisfies the
conditions Uy(f) lg = idg, Uy(f)(a1) = a;, Uy(f)(a;) = a3, Uy(f) (a3) = a,. Then
X = F(f)(X)e S(v). If card (X — Q) = 1, e.8. X — Q = {a,} then using the homeo-
morphism g : (P, #) - (P, v) such that Uy(g) (a;) = a;, Uy(8) (@3) = a,, Uy(g)(a,) =
= ay and Uy(g) lg = idy, we get X = g(X) = F(g)(X). Let card (X — Q) = 2. Let
ae{a,,a,,as} be a point which does not belong to X. Considering a morphism
he[(P,u),(P, V] such that Uy(h)lg =idy and Uy(h)(@) = a, Uyt (d) = ¢
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Uy(h) (¢) = b, where {a, b, ¢} = {a,, a,, a;}, we have X = F(h) (X)e S(v). Therefore
S(u) = S(v), hence S(u) = S(v), whereas u # v, q.e.d.

Note that the above proposition and its proof can be modified for the case of
connected compact A-topologies (for definitions see [2] 20 B.1. and 41 A.3.).
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