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(^-regularity results for quasilinear parabolic systems* 

A. BENSOUSSAN, J. FREHSE 

Abstract. Ca-regularity is proved for a class of quasilinear parabolic system with critical 
growth in the lower order term. 

Keywords: Nonlinear diagonal parabolic systems, Holder-continuity, stochastic Bellman-
equation 

Classification: 35K55 

0. INTRODUCTION 

In this paper we consider diagonal parabolic systems Lu = H(x,u,Vu) where 
the nonlinear coupling of the components of u is governed by the term H which 
may have quadratic growth in Vu. By Struwe's counterexample [9] it is known that 
in this case irreguiar solutions may occur after some time to- On the other hand 
several regularity results for diagonal parabolic systems have been obtained under 
a smaiiness assumption for the quadratic growth of H in Vu, cf. Ladyzenskaya-
Ural'seva-Solonnikov [8], Struwe [10], Giaquinta-Struwe [6] and others. This smaii­
ness assumption is not acceptable for the parabolic systems which arise as the 
Beiiman-equation of stochastic differential games. These equations have a special 
structure which allows to prove C^-regularity (and hence H2,|)-regularity) without 
a smaiiness condition. The situation is similar to the elliptic case treated by the au­
thors in [2], Since parabolic systems are even more applicable than elliptic systems, 
to the theory of stochastic control and stochastic differential games, it is natural to 
look for an extension of the results previously obtained by the authors. 

This means that we can naturally consider the specific structure, introduced by 
the authors in the elliptic case, in the context of parabolic systems. Obtaining regu­
larity results for such parabolic systems will imply solving a large class of stochastic 
differential games, with finite horizon (whereas elliptic systems cover only infinite 
horizon stationary problems). 

Our specific structure is the following 

dul 

-7rr + A(t)u1=H1(x,t,u,Du) 
( 1 ) d% 

?^ + A(t)u2~H2(x,t,u,Du) 

* This work has been carried over during a stay of the 1st author at Bonn University, under 
support of SFB 256 from the Deutsche Forschungsgemeinschaft; August 1988. 
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where A(t) is a second order elliptic operator (possibly depending on time), with 
Dirichlet boundary conditions, and H1 ,H2 satisfy (u = (ul,u2)) 

\Hl(x,t,u,Du)\<K\Du\2+f 

\H2(x,t,u,Du)\ <K\Du\\Du2\ +f 

where K is a constant and / € Lp. 
We can also add to H2 an operator of the form H%(x,t,u, Du) satisfying 

\H2(x,t,u,Du)\<e\Dul\2+K20 

where e is small. To simplify the presentation we shall not consider such a term in 
the sequel. 

Our techniques combine the use of special test functions introduced in the elliptic 
case, with techniques of Struwe [10] to deal with the parabolic Green function. 

1. SETTING OF THE PROBLEM 

1.1. Notation. 
Let Q, be a smooth bounded domain of Rn and Q = fix[0,T]. Let z0 = (x0,t0) € 

Q,we shall consider the ball 

and 

and the cylinder 

BR(x0) = {x\\x-x0\<R} 

BR(x0) = BR(x0)n$l 

QR(Z0) =BR(X0) n [(to - -R2)4" ,*0] 

QR(Z0) =-§R(*O) n [(t0 - R2)+ ,t0] . 

In general, there will be no ambiguity in the point z0 and we shall omit it, writing 
BR,QR,... . 

The gradient with respect to x is denoted D and the derivative in time by dt-

1.2. Assumptions. 
Let aij(x, t), i, j = 1, . . . , n be given functions satisfying 

(l.i) aij e I°°(Q) 

(1.2) « . ,« , •> «Kf\ V£€Rn,a>0. 

We define 
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Let next HX,H2 be non linear functions satisfying 

(1.3) |# 1 (* , t ,A,p) |<J t - |p | 2 +/ 

(1.4) \H\x,t,A,p)| < K\p\ h i + / with / e L"(Q), 

n 
2 

q > - + 1,K > 0, and A € R2,p € Ä2n,p = (PUP2)• 

We shall be interested in the system of partial differential equations 

du1 

^ + A(t)u1=H1(x,t,u,Du) 
fhi2 

(1.5) ~ + A(t)u2=H2(x,t,u,Du) 

« 1=u 2 |E = 0 , £ = 0Ox(O,T) 

u1(x,0)=u2(a:,0) = 0. 

We have taken 0 as initial and boundary conditions, but of course the result can be 
extended to data which are sufficiently smooth and compatible. 

We shall be considering functions ul,u2 satisfying (1.5), and 

(1.6) . u\u2 e L°°(Q) fl L2 (0,T,Hl(Q)) . 

Note that we can without loss of generality write 

(1.7) H2(x, t, u, Du) = Q(x, t, u, Du).Du2 + f2 

where 

\Q(x,t,u,Du)\<K\Du\ 
(1.8) and 

l/2|</. 
Indeed, since from (1.4) 

\H2(x,t,u,Du)\<K\Du\\Du
2\+f 

there exists a measurable bounded function a(xyt) (depending on u) such that 

H2(x,t,u,Du) = aK \Du\ \Du2\ + fa. 

If we set 

Du2 

Q(x,t,u,Du) = a(x,t)K\Du\ 

h=°f 

then we recover the form (1.7). 

|Я«2I 
Í2=<rf 
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1.3. Statement of the main result. 
Our objective is to prove the following: 

Theorem 1.1. Let the Caratheodory conditions and the growth and ellipticity con­
ditions (1.1), (1.2), (1.3), (1.4) for the data be satisfied. Then every solution u of 
the parabolic system (1.5) satisfying (1.6) belongs to Ca,a/2(Q)j for some a > 0. 

We recall that 

Ca^(Q)={V>\\v(x1,t1)-V(x2,t2)\<c(\x1-x2\
a + \t1-t2\

a'2)}. 

We shall use the characterization of Ca,^(Q) as a Campanato space (see Campanato 
[3],Da Prato [4]), namely <p € L2(Q) belongs to Ca*(Q) if and only if 

(1.9) s u p i r ( n + 2 + 2 a ) / \u-uR)Z\2<oo 
R,z J 

QR(Z) 

where 

/ « 
(1A0) URl, = 

MeasQR(z) 

Note that we assume implicitly that 0 satisfies the condition of type A (cf. Kufner-
John-.Fucfk [7]),1 namely 

n ) MeasBR(x0) > ARn , Var0 € 0 ,V#, 

with A > 0, independent of x0 and R. 

Note that since u € L2, it is sufficient to take R < R\ in the set (1.9). 

2. BASIC INEQUALITIES 

2.1. Test functions. 
There will be as in the elliptic case, a basic trick to handle the quadratic growth of 

Hi,H2- We describe it first. The presentation is slightly simpler than our previous 
one. 

Let 

$(x) = ex - x - 1 

9'(x) = ex - 1. 

We shall consider the following functions 

J ^ e x p ^ A ^ - c 1 ) ) ] 

J ' i = e x p [ f l ( - A ( u 1 - c 1 ) ) ] 

* ? = e x p [ 7 t f ( A ( y - c 2 ) ) ] 

F l = e X p [ 7 t f ( - A ( « 2 - c 2 ) ) ] 

1 if !T2 is smooth, it is satisfied. 
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where 7, A are constants to be chosen later, independently of u1,!/2, whereas c1 ,c2 

are constants related to w1, , u2. It will be convenient to use the notation 

F^exp^Ai/^-c1))], 

F2
2 = exp [70 (Ai/2 (u

2 - c2))] , where i/x, v2 = ±. 

The asymmetry between F1 and F2, due to the presence of 7, stems from the fact 
that the two operators HJ,H2 do not play a symmetric role. 

Uv = (vuv2)SetFv=Fl1F
2
i. 

Let also ifr(x,t) a function satisfying 

V1 > 0; ij> is sufficiently smooth to perform some differentiation, as be-

(2.1) low. Moreover ~b\-) = 0, DX/)\D = 0 if c1 ,c2 are not 0. If they are 
both 0, this condition is hot requested. 

We test the first equation (1.5) with vx \0' (\vx (u1 — c1)) Fv\j> and the second4equa­
tion (1.5) with v2y\0f (\v2 (u2 — c2)) F„t/>. These functions are 0 on E, by our 
choice (2.1). 

We perform an integration by parts in x, as usual, and add up. It is easy to check 
the following relation 

[ ,dFv [ dxl> dFv f au d ^ d _ , 

(2.2) +X-J*F^ [§£ |V M (u1 - c1)) + 7 £ g g U * (*A (u2 - c2)) 

\-4>Fv [Hx
Vlff (Vl\ (u1 - c1)) + H2v2l6' (v2\ (u2 - c2))} . 1-

Using (1.7), and noticing that 

DFV = AF„ \vxB' (\vx (u1 - c1)) Du1 + yv2ff (\v2 (u2 ~ c2)) Du2] 

the right hand side of (2.2) writes 

= I X-bFyH-viff ( i / iA(u1-c1))+ I \xl>Fvif2v2# (v2\(u
2 ~c2)) 

+ UQ.DFV 

where we have set 

(2.3) H1 -=H~ -Q.Du1. 

Writing 

%£?--%*' ~QDFv=a {K1/2DF- ~ ^a'1Q) fr1"™--
ғľг 

a~1Q) -Ï^Q-QЪ 
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where a is aij 
we deduce from (2.2) our first basic inequality 

дu1 дu1 

дxj ЭXІ 
^(щX^-ć)) J1"-W + Ja^id^ + X J^a-

(2-4) + ^ ^ 0 " (i*A (u* - c2))] < JX+F.H1*!* (nA (u1 - c1)) 

+ jXi>Fvlf2u20' (u2X (u2 - c2)) + J ^La-'Q.Q. 

2.2. Basic estimate. 
We apply now (2.4) with the four possible values of u and add up. Define 

(2.5) 

we obtain 

X0 = (Fl+Fl)(Fl+Fl) 

[ ,дx0 t дф д „ , ч 2 / . 
Jф- + Ja-дx-iдx-Xo + X Jфai 

дu^дu1 

дxj дxi 
(ғl + ғí) 

(2.6) 

(Fle» (X (u1 - c1)) + Fi0» (-X (u1 - c1))) + 7 g £ | £ (F\ + Fi) 

(Fie" (X (u2 - c2)) + Fie" (-X (u2 - c2)))] < 

/ X^H1 (Fl + Fl) (Fie1 (X (u1 - c1)) - Fie' (-A (u1 - c1))) + 

. / AV-7/2 (Fi + Fi) (Fl0 (X (u2 - c2)) - Fief (-A («2 - c2))) + 

± J jXoa-iQ.Q. 

We note that 
| F 1 | < 2 K | £ > U | 2 + / , \f2\<f. 

Set also 

(2.7) Xi = (eA(«'-c,)F{ + e-A( t t ,- c ,)Fi) (F2 + F l ) 

(2.8) X2 = (eA(«2-c2)F2 + e-A(«2-c2)Fi) (Fj + F i ) . 

We check easily (see our previous paper) 

4 < X 0 < X I , X0<X2 

( 2 ' 9 ) \F\ (eM-*--1) - l ) - F i (eH- 1 - 1 ) - l ) | < eA(« ,- ,)F{ + e ^ - 1 - ' 1 ) . ? ! 

and the same inequality with the index 1 replaced by 2. 
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We obtain from (2.6) 

(2.10) <2KX f V \Du\2 Xi + I X^f [Xt + yX2) 

+ h R 2 1 * (l-°ul I2 Xi +11*"212 x 0 • 
Now use the fact that 

B% + Ft < c*(-"-«s*)l-J + e-A(«2-c2)Fl 

e A ( u i - c l ) F | + e -A(„«-c 1 ) F l < ..All.'-e'll (j-1 + F 1 ) 

where ||ux — c11| is the L°° norm, to conclude that 

X, < eAll"1-clHx2. 

We can then carry all terms in \Dul\ , |L>w2| to the left hand side of (2.10), to 
obtain 

l^+!^^+h\x^2{^-^-i 
+X2 \Du>\2 (7A2a - 2^AeAIK-cl|l - g Y 

< J Hf IX1+7X2]. 

We then fix A and 7 as follows 

2 Ì 
4 a / 

K2 

Л2a - 2KЛ - — > c0 > 0 
4a 

.41 K2 
7 Л 2 а - 2КЛеА 

4a 
> c0. 

In the sequel cl ^c2 will always be average of ir ,u2 if not 0, and thus majorized by 
the L°° norm of u1,^2, hence we can assert 

Proposition 2.1. For any tp satisfying (2.1) the following basic inequality holds 

(2.11, hj^f<-j{^ + .,^)+^jH 

Q Q Q 

where k0 > 0, k\ > 0 depend only on the L°° norm of \\u\\ and the constants K and 
a. 
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3. P R O O F OF THEOREM 1.1 

3.1 . Green function. 
Let ZQ = (xo,to) € Q and 0 > 0, we shall consider the Green function 

Gxo,to+e(xi t), abbreviated as G$ defined for t < to + 0, x G -Rn, and which satisfies 
formally the equation 

dG0 d d „ n _ _ + . _ < , . . — ( J r $ — o 
(3.1) 6? ax,: 'ftr,-

C^(x0 ,t0 -j- 0) = 8(x - x0). 

The properties of G$ have been given by Aronson [1], and namely one can describe 
the behaviour of G$ near the singularity by the estimates 

*i(*o + * - t)~n/2 exp ( - y ^ ! ° f ) < <?•(*,*) 

where A?i,k2? <̂ i>̂ 2 are positive and depend only on a and the L°° norm of the a^. 

3.2. Basic inequality. 
We can replace in (2.10) Ko by Ko + constant. Take in particular Ko — 4. It is 

positive and 0 on the boundary if c1, c2 are 0. 
Consider two cut off functions as follows 

T[X) = \ 
V ' \ 0 if \x\ > 2 

„, x f 1 if * > —1 

^ ) = {o if t i - 4 

(X -xo\ 
rK , I O =r R = r ( v - r - J 

/?«,*» =/?K = / ? ( ^ ) 

*?.R,*oOM) = VR = TR,xoPR,t0 

r^C^(Rn)^<r<\ 

ß Є C°°(R),0 < ß < \. 
We set 

and 

hence 

o<r/R<s , ^enf í " + 1 ) , 
1 if (*,<)€<?* 
0 if i ^ S 2 f i o r ť < ť 0 - 4 ň 2 . 

»;«= I 
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We are going to use (2.11) with i/> = rj2
RG$. We have 

Q 

= - / [G<s (*x- - 4>»+°»kG'£r^x> ~ 4"»>] 

Q 

+ J(Ko»4)aii — — . 
Q 

The constants c1 ,c2 entering into the definition of K0, (cf. (2.5)), will be chosen so 
that (hence depending on R) 

(3.4) c \ c 2 = 0 if B2R(xo)n(Hn-ft)7-0. 

The choice implies that (Ko — tyrfk = 0 on S. 
We can then perform an integration by parts in the first term at the right hand 

side of (3.3). Using (3.1), we deduce that this term is equal to 

- J Ger)R(Xo - 4)(x, T)dx + j G,i&(X0 - 4)(x, 0) dx. 

Therefore we have proven the following basic inequality 

Lemma 3.1. One has the inequality 

ko / \Du\2 Ger)l < j G ^ ( X 0 - 4)(x, 0) dx 

Q ft 

(3.5) + / G. [(Ko - 4)^,2R - a - i f ^ ^ t ] 
Q 

+ / (X 0 -4)a,gA^ + fcl//«. 
Q Q 

We emphasize that (3.5) holds for any pair cl ,c2 subject to (3.3) and majorized 
by the L°° norm of u1, u2. 

To proceed we have to estimate further Xo — 4, and DKo • Note that 

K0 - 4 = (F1 + Fi - 2) (Fl +F1-2) 

+ 2 (F% + Fi - 2) + 2 (F | + FI - 2) . 
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Using the properties 

\0(x)\ <e^x2 

\ex-l\<\x\eW 

we easily see that 

l - ^ - l l - e l - 1 - 6 1 ! 2 

where c depends only on the L°° norm of tx1. Therefore we can assert that 

(3.6) | x 0 _ 4 | < ^ [ | „ 1 - c ] . | a + | « 2 - 4 | 2 ] 

where we have written cR,c2

R instead of cl,c2 to emphasize that these constants 
are to be chosen, possibly dependent of R (in fact they will depend of H, see (3.3), 
although again majorized by the L°° norm of ux,u2). Similarly 

DX0 =\ (F\e'(\(ul - c1)) - FlO'i-Xiu1 - c1))) (F% + F2_) Du1 

+7 (K20'(A(ix2 - c2)) - FlB'(-\(u2 - c2))) (Fl + Fl) Du2 

and thus as easily checked 

(3.7) \DX0\ < c WDu'l y - 4 | + |_>u2| |«2 - 4 | ] . 

Using (3.6), (3.7) in (3.5) yields, taking account of the properties of the cut off 
functions 

Lemma 3.2. One has the inequality 

ko = / \Du\2 G$ < c f G$(x, 0) dx \cR\2 

QR(Z0) BiR(x0) 

j ( ^ + I D « Ґ ) G . + c 
( 3 ' 8 ) Q2R(Z0{~QR(Z0) 

to 

+ c J J r)2

R\u-cR\2\DG$\
2G^+cR^ 

(<o~4R2)+ B2R-BR 

if tQ <4R2. 

PROOF : One just notice that in the one before the last integrals at the right hand 
side of (3.5) the integrand can be majorized by 

ћ^!!_#+^|U-CJli-iz)G#i
a_71V 
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Moreover from (3.2) 

j}GtT,\< J fG9<Aj GA 

/ to y"' 
< f - < cR2^n+2)/p 

\to-4R')+ J 

and thus the value of fi in (3.7) is 

(3.9) ß = 2 - ------ > 0. 
P 

3.3. Auxiliary result. 
Following Struwe [10], we need to estimate the quantity 

10 

(3.10) Z = j J r,2R\u-cR\2\DGe\
2G-* -3/2 

VÄ І U " UЯI | - -^Jø| ^ ť 

(ť 0 -4Я*)+ B2R-BR 

(notice G9 ' and not G9

1; we recover this later). 
Let /> be a new cut off function such that 

pECS°(Rn) , p = 0for |x| < 1/2 

0 < p < T , p = r for |*| > 1. 

Set pR(x) = p (*^p) and 

(3.12) ? R ( M ) = P*(*)fa(0-

Note in particular that <pR = TJR on (I?2R — BR)) X [(to — 4i£2)+, to] • 
We test (3.1) with G9 ' \u — c#| y^, and obtain 

«o 

/
/ ðćжøðGø 3/2, .2 2 

У ^җw^ |u"Cйl ^ 

-4Я*)+ B 2 Я - B я / 2 

(ť 0 -4Я*)+ B2R-BR,2 
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On the other hand, testing the equations (1.5) by (ul — c^ip^Gj , £ = 1,2 and 
adding up, we have, noting again that from the choice (3.3) this function vanishes 
on _, 

(3.14) 

•J / [ i l"-^**" 
(t„-4H')+ B2R-BR/, 

fdu'du1 du'du2\ 2 1 / 2 
+aijV^7^r ^7^rr f l * 
-(#V - c1) + ff V - c'MGf] = 0. 

Combining (3.13), (3.14) yields 
«0 

/
/ dGgdGg ~ - 3 / 2 i ,2 2 

7 a"^7&7G< I—-HI vn = (ť0-4Я2) + B7R-BR/7 

ЧÍ^-"f^җлl<^SÍG'n дЧ>R | |2 

- ^ - l u - c я l 

(3.15) 
Ә I |2 9 2 

- a 0 — | « - c д | ^ Я 

-8//^;«(.,|Jg-«v-c<,) 
- 4 y |« - cR\2 <p2

RGlJ2{x, to) + 4 M 2 y p^Gj7 2^, 0), 

if t 0 <4i* 2 . 

Using Young's inequality to majorize 

|i>G}'2JV*f < * i ^ i 2 orv*+1 IJVRI2 Gy2 

and eating the first term by the left hand side of (3.15), we obtain, after noticing 
that Z is smaller than the left hand size of (3.15) 

I Í {\v-cif x i n . , 1 - • / = ' / -

(3.16) 

г < c / / | i z _ ^ + | ű u | Gy 
O o - 4 Я * ) + в J Л - B л / a 

+c ł Gj / 2(ï,0)Љ|cяГ + cЛł + ", 

B2H-BЯ/2 

i f í 0 <4 Я 2 . 
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3.4. Use of the es t ima te (3.15). 
One of the difficulties in applying (3.7) stems from the fact for 0 small and t close 

to t0 the behaviour of the Green function is not comparable to a negative power of 
R, R~n like in the elliptic case. 

To handle this difficulty, one introduces as in Struwe [10] a splitting of the time 
integral in the last integral at the right hand side of (3.7). 

We write 
to t o A ( < o + 0 ~ e 2 R 2 ) + t 0 

/ - / + / 
( t 0 - 4 H 2 ) + ( t 0 - 4 K 2 ) + t o A ( « o + 0 - e 2 R 2 ) + 

where e is small (and to begin e < 2). 
We consider the two terms 

ť 0 Л ( ť 0 + 0 - e 2 Я 2 ) 
2 ř ? 2 * + 

I.= j j r&W-cяľìDCľG? 
Bгн-Bn ( t o - 4 R ' ) + 

to 

•-".= / / i Ã | « - c я | 2 | D G , | 2 G ^ . 

We begin with IIe. 
Now let us check that 

R<\x~x0\< 2R and (t0 + 9 - e2R2)+ <t<t0 

(3.17) t implies G9(x, t) < 6(e)R~n 

where 6(e) does not depend on I2, nor 0 and tends to 0 as e —> 0. 

Indeed from (3.2) 

G9(x,t) < k2(t0 + ~ t)~n/2 exp 
-62R

2 

to+ -ť 

Now the function s n/2 exp—0/s attains its maximum for s > 0, at s = 2,/5/ri, 
hence in our case with ft = 62R

2, at 28 2 ~- S'mce *o + 0 - * < e2R2, for e2 < —*, 
the function is on its increasing side and thus is majorized by the value taken at 
s = e2R2, therefore 

Ge(x,t) < k2e~nR-nexp~^ -= R~n6(e). 

Therefore we can estimate 

<o 

ii. ^ooir? / / T,1\U-CR\2\DG6\
2G-3'2 

S . B - B R « 0 A ( t o + « - « J R 2 ) + 

IIC <R-*6l'2{e)Z 
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and from (3.15) we deduce 

II. <c J J ( \ ^ + {DUAG, 
(t0-4K>)+ B*R-BR/7 ^ 

+<R-m "j / ( * # + !».(•) 
( f 0 -4R> )+ S2R-SRf2

 V 

+c / G${x,0)dx + 6{e) J |cn|2 +cH^, 

i f t 0 <4H 2 . 

Consider now Ie. 
Then we use the following property 

R 
-<\x-x0\< 2R and (t0 - 4il2)+ < t < t0 + $ - e2R2 

(3.19) implies 

ik1(4il2 + $)-* exp - % < G*(x, t) < c.R~n. 

Therefore using the right hand side estimate we have 

t0A(«o+*-e2R2) + 

I€<cR-* J J r,R\u-cR\2\DGe\2G;3 
TIR\U — KR\ \ASKX0l n 

Ě7R-ĚR (*o-4R*)+ 

This integral is similar to Z except for the upper level of integration in t. Checking 
the steps leading to the estimate (3.15), one can see that one can state analogously 

ioA(to+0-e2#2)+ 
2,.-3/2 / / ri2

R\u-cR\2\DG9\
2G-9 

R - B R (<o-4fl a)+ 

t 0 A(*o+*-« 2 H 2 )+ / 2 v 

- / / C^+w)* 
ĚiR-ĚR <ío-4Jt»)+ V ' 

+c J Gy\x, 0) dx \cRf + <**+", 

Bгн-Bя„ 

i f í 0 <4 Д 2 . 
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Therefore 

l 0 Л (ťo+«-e 2 R 2 )+ 

1e <cЯ " 

-Bя/ 

* / / v^+\*?W 
B , » - B H / J («o-4it»)+ 

+cfí—l2 / Gj/2(x, 0) di |CR|2 + CJR ,̂ 

B2Jl —BR/2 

if t0 <4i22. 

In order to use the left estimate in (3.19), we shall from now on consider only 0 
such that 

(3.21) 9 < m2R2 , m > 1 arbitrary fixed. 

Then from (3.18) we have 

G$(x,t) > ki(4 + m2rn/2H-"nexp-~ 

and thus we can estimate Ie as follows 

toA( t 0 +*~e 2 R 2 )+ 

(3.22) 

;<m J j (ls^-L+,^,-)0# 
B2R-ĚR/7 (fo~4R»)+ ^ ' 

+Jf(e) j GxJ\x,Q)dx\cR\2 + cR\ 

Baя 

łfťo < 4 Ä 2 . 

where K(e) is a constant, independent of R, and 0 such that (3.21) holds, and which 
tends to +oo as e —• 0. 

Collecting these results in (3.8) we can state the following 
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Lemma 3.3. For all 0 such that (3.20) holds, one has the estimate 

to J \Du\2 Ge < j K(e) J G\'\x, 

QR('O) V S2R 

+ / \Du\2(K(e)G9+S(e)R-n) 

Q2R~QR/2 

+ c J \^L(Ge + 6(e)R-n) 

0)Љ + í ( £ ) | | c й | 2 

Q2R~QR/2 

(3.23) , / |u - cR\2 

Q2R~QR/2 

ť0Л(ť0 + 0-Є 2 Я 2 ) + 

+ K(e) J J h^L0t + eSři 

B2R-BR/2 (ť 0 -4R2)+ 

ift0 <4R2. 
3.5. Choice of the constant cR. 

We begin with the simplest case 

(a) B2R(x0) n (Rn - (l) # 0. 

In this case cR = 0. Hence we deduce from (3.22) 

fco / \Du\2G»< J \Du\2(K(e)Ge + 8(e)R-n) 
QRІZo) Q2R-QR/2 

|2 

( 3 - 2 4 ) л л 
Q2R-QR/2 

+ c J l±(Gв+6(є)R~n) 

Q2R-QR/2 

ť 0 Л(ť 0 +0-e 2 Я 2 )+ 

+ вд / / ^G. + cRЃ. 

We have from (3.19) 

t O A(. o +0-e 2 R 2 ) + 

/ / s* 
B2R-BR/2 (ť0-4Я-")+ (3.25) 

ť 0 Л(ť 0 +0-e 2 Я 2 ) + 

< c л - / / ћL 
- / / 

B2R-BR/2 (ť 0 -4Я»)+ 
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and by Poincare's inequality 

i 0 A(«o+*-e 2 .R 2 )+ 

<cR"n [ í \Du\2 

B2R-BR/2 (*o-4R*)+ 

and by (3.19) and (3.21) 

<0 

<cK(e) í í \Du\2G$ 

B 2 R - B R / 2 ( < O - 4 H 2 ) + 

< cK(e) í \Du\2 G$. 

Q 2 Ä - Q Ä / 2 

Next one has 

(3.26) 

/ WGe= J I lěG° 
QÍR-QR/3 B J K - B K / Í ( « O - 4 H I ) + 

Co-^)+
 2 

+ / / £*. 
BR/2{to-*R7)+ 

In the second integral we have 

R2 

\x - x0\ < R/2 and t0 - 4R2 <t <t0 r 

4 
hence 

cR"n < G$(x,t) < cR"n 

therefore using Poincare we majorize it by 

í o - 1 

/ / l л u l 2 G V 

B4 l l(<o-4Jt2)+ 

In the first integral we split the interval of time into [(to— 4.R2)+, 
<oA(to + 0-e 2 .R 2)+] and [t0 A(t 0 +0-e 2 -R 2 ) + , t o ] . 

In the first interval we recover (3.25). In the second interval we majorize G$ by 
6(e)R~~n according to (3.17), and use Poincare again. 
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Collecting results, we have proven the estimate 

Jfco / \Du\2 G« < Kt(e) J \Du\2Ge 

(3.27) QHM , QA*-Q*» 
+ S1(e)R~n J \Du\2+cR», 

QAR—QRI* 

with K\(e) -+ oo as e —> 0, 6i(e) -> 0 as e -+ 0. 

(b) £2*0*0) C 12 

Note that B2H = 2?2K> Q2K = Q2K- We omit the tilde. 
We use the notation 

/ u(x,t)pR(x)dx Ju(x,t)pR(x)dx 
p B<2R n 

uR,xo,|- J PR(x)dx ~ J pR(x)dx 
B*R B2R 

where pR has been already defined in (3.11), and 
p p 

uR,z0 ~~ uR,x0,t0' 

We choose 
. o A ( t o + 0 - e 2 H 2 ) + 

/ uk'o,tdt 
„ _ (ťp-4Я*)+  

-R - uR,z0 t o Л ( ť o + ^ в a Я 2 ) + 

= t i « -

/ 
dt 

( t 0 - 4 R 2 ) + 

This quantity is well defined when t 0 + B — e2.R2 > 0. If it is not the case ,then we 
take cR = 0. 

We use the following result 

Lemma 3.4. One has the estimate 
*V« 

(3-28) |«iU,,«-«.U,.f <«-.""/ / \Dn\2+cR2^. 
-Aa B2H-BH/2 

PROOF : We test (1.5) with pR and integrate over x and the interval s, t (assuming 
to fix the ideas that s < t). We deduce easily 

I P P I 
u U , x 0 , t U H,* 0 ,» 

t 

< «*-» |t,J,,.,." «R,X.,.| / / ( l ^ l l^"! + l^ l 2 + f) 
• BIR-BR/2 
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and using conveniently Young's inequality the result (3.28) follows. 
• 

If ta + 0 - e2R2 < 0, then applying (3.28) with 3 = 0, yields 
to 

(3.29) |t4 ) Io> t |
2 < cR-n J J \Du\2 + cR2*. 

0 B2R-BR/2 

Now in (3.22) the last integral vanishes. Next 

2 *° 2 

(3.30) j ^-(Ge + 6(e)R-n)<2S(£)R-nJ j M-
Q2R-QR/2 ° B 2 R - B R / 2 

and 

/ / %**1 j t ^ — / K . . . , r 
0 B2R-BRf2 0 B2R-BRf2 0 

and by (3.29) and Poincare 
to 

< c / i \Du\2 + cRn+2<> 

0 B2R—BR/2 

and the right hand side of (3.29) is majorized by 
to 

R~nS(e) i f \Du\2+cR2l> 
0 B2R — BR/2 

and thus (3.27) holds again. 
We may therefore assume now tht-t t0 + 0 — e2R2 > 0. We first estimate 

ť o Л ( í o - H - г 2 Я 2 ) + . 

/ / 
\u — u R,zo\ 

•G9 

R2 

B2R-BR/2 ( ť 0 - 4 R 2 ) + 

ť o A ( ť o + * - e 2 R 2 ) + . | 2 

/ \U — UR , 
< cR~n ' ' j RiZo[ 

R2 

B,R-BB/2 ( t 0 - 4 R » ) + 
- / / 

ß 2 Я - ß я / 2 ( ť 0 - 4 Я 2 

t0A(to+ -

- / / <cR- I I ' g ' 
B2R-BR/2 ( ť 0 - 4 K * ) + \ 

i 2 > 

K,zo,t K,ZQ I 
+ ií2 
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Using Poincare and (3.28) yields 

-oA(to+0-e2tf2)+ 

<cRTn f I \Du\e + cR2fi. 

B2R-BR/2 (t0-4R*)+ 

Using again (3.19), (3.21) we get 

t0A(<o+*-e*R2)+ 

/ / •—^°. 
u~uR,z0\ 

R? 

B2R-BR/2 (t0_4H»)+ 

t 0 A ( < 0 + * - e 2 R 2 ) + 

<cK{e) f f \Du\2Ge + cR2P. 

B2R-BR/2 ( | 0 - 4 H 2 ) + 

We proceed then as in the case a) to treat the integral 

|2 

/ -=^-ІGф + S(e)R-') 
QIR-QR/2 

using Lemma 3.4 adequately. 
It remains to evaluate the first term at the right hand side of (3.23). This amounts 

first to evaluate \uR\ itself. Note that we have to perform this computation only 
when to < 4H 2 . We can use (3.28) with s = 0, to check easily that * 

( toA(t0+tf-e-H-)+ \ 

R"n J J \Du\2 + R2A. 
B2R-BR/2 (*o-4R*)+ / 

Since we may assume 0 + to > e2R2, we can use again (3.19) to assert that the 
first term at the right hand side of (3.23) brings contributions of the same type as 
before. 

Therefore we have proven 
Lemma 3.5. For all R< Ri and 6 < m2R2 (m fixed), the inequality (3.27) holds. 
3.6. End of the proof. 

We derive from (3.27) 

/ \Du\2G9<K{e) ( \Du\2G$ 

(3.31) **" ««*-«*/. 

+6{e) f \Du\2GR2+cRp. 

Q<R-QR/2 
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By the hole filling trick, we deduce 

sup / |Du| 2 Ge < v(e) sup / |Du| 2 G0 + cR** 
$<m*R* _ J 9<Mm*R2 J 

Q.K/2 Q4R 

with v(e) < 1, for e conveniently chosen. 
Multiply by R"2a, a < ft and S2av(e) < 1, we deduce 

R-2a sup / |Du| 2 G9 < n(SRy2a sup / |Du| 2 G0 + c 
0<m*R* J 0<64m*K* J 

QR/2 $ 4 

with fi < 1. 
One deduces from this estimate that 

sup R~2a sup [\Du\2G0<< 
0<R<Ri 0<4m 2 H- J 

$R 

44R 

and in particular 

hence also 

R~2a I \Du\2 GR2 < c 

(3.32) л-<-+-в> / |űu| 2 < c. 

QR 

But using the following estimate which can be proved from (3.27) (cf. Struwe [10]) 

QR(ZO) $4R(*O) 

one obtains 

J |«-« R , I O | 2 <cií 2 J \Du\2 + cRn* 
^41l(lo) 

/ W-uR,t0\
2<cR" ? n + 2 + 2 7 11* — «*/t,Zol -»- *"-

QR(*O) 

for a convenient 7 > 0. 
Therefore (1.9) is proved. The proof of theorem 1.1 has been completed. 

4. JET2>P-REGULARITY 
For the step from C^-regularity to H^-regularity one can use the following 

theorem concerning solutions of systems of parabolic inequalities 

(41) |u2 + Au'|<K |Vu|2 + K , ; = 1,...,N 

with the initial regularity 

u^Croc(Q)^LU0,T,H}oc(n)). 
For simplicity we assume that A is a second order uniformly elliptic linear operator 
in the space variables with C1-coefficients. 
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Theorem 4.1. Under the above assumptions any local distributional solution of 
(4.1) is contained in H}*(Q) f) Lfoc(0, T, H?fc (ft)), for all p < oo. 

This theorem is considered to be "known" by several authors although we have 
problems to give an explicit reference. An elegant way to prove is analogue to the 
elliptic case [5]. 
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