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On normal forms of Laplacian and
its iterations in harmonic spaces

MASANORI KOzZAKI AND HIDEKICHI SUMI

Abstract. We give the normal forms of the successive iterations of the Laplacian for har-
monic spaces and characterize the particular classes of 2-stein spaces.
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1. Introduction.

The successive iterations A of the Laplacian A on a Riemannian manifold can be
calculatedat the center of any normal coordinate system by means of the curvature
tensor and its covariant derivatives. In [4], O.Kowalski proved that the correspond-
ing normal forms for a symmetric space of rank one are certain partial differential
operators with constaht coefficients.

Our results are stated as follows. We first generalize Kowalski’s theorem above
to a harmonic space, i.e., the infinite sequence of the conditions (P), k£ =2,3,...,
holds (See Section 2 for the definitions) if and only if the manifold is harmonic
(Theorem 1 below). In [4], O.Kowalski also characterized the Einstein and super-
Einstein spaces by means of (P); and (P); — (P);3 respectively. By the conditions
(P)2 — (P)4, we characterize the particular classes of 2-stein spaces which should
be located between the harmonic and the super-Einstein spaces (Theorem 2). We
further prove: (1) a 4-dimensional Riemannian manifold satisfying (P)2 — (P)4 is
locally flat or locally isometric to a symmetric space of rank one (Corollary 1); (2)
an n-dimensional 3*-stein space with 3 < n < 5 satisfies (P)z — (P)4 (Corollary 2).

In Section 2, we state our results precisely; Theorems 1 and 2. In Section 3, we
give the proof of Theorem 1. Section 4 is for preparation of the proof of Theorem
2 and its Corollaries 1-2. In Section 5, we give the proof of Theorem 2 and its
corollaries. In the final Section 6, we give the normal forms of A¥ for harmonic
spaces by the recurrence formulae.

2. Statement of results.

Let (M, g) be an n-dimensional connected C* Riemannian manifold with n > 2
and B,,.(r) be the geodesic ball in M at center m € M with small radius r > 0 and
let (U;z!,2?%,...,2") be a normal coordinate system around m. For a function f
of class C°° near m, we denote by A the local differential operator given by

n 82f
mf Z (azl)Z
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A is independent of the choice of normal coordinate system around m. Due to
[2], for each k = 1,2,..., there is a globally defined differential operator on (M, g)
which concides with Z\fn fatm.
In this note we are concerned with the following condition introduced in [4]: .
(P)i There exist constants A1, Akz2,...,A4r k-1 depending only on (M, g) such
that, for each m € M,

k-1
(2.1) (A*f)(m) = (AEF)(m) + ) Aei(BLf)(m)
=1

holds for all analytic functions f at m, where k is a natural number.
_In (2.1), the condition (P); is understood to hold; (Af)(m) = (alnf)(m) =

(Bm f)(m).

We call the space (M, g) harmonic if, for each m € M, there exist an r > 0 and
a function F': (0,r) — R such that the function f(n) = F(d(m,n)) is harmonic in
Bp(r) \ {m}, where d is the distance function defined by the Riemannian metric.
It is well known that examples of harmonic spaces are those locally isometric to a
Euclidean space and a symmetric space of rank one (cf. [1], [7]).

Our first theorem is the following

Theorem 1. Let (M,g) be an n-dimensional connected C* Riemannian manifold
with n > 3. Then the infinite sequence of the conditions (P)i, k = 2,3,..., holds
if and only if (M, g) is a harmonic space.

We denote by (gi;) and (Rj,k¢) the metric tensor and the curvature tensor with
respect to the normal frame (8/0z!,8/02%,...,8/8z™). Throughout we exploit
Einstein convention as well as the extended one, i.e., the summation convention for
repeated indices. The Ricci tensor and the scalar curvature are denoted by (p;;) and
7 respectively; p;; = R}, ;, 7 = p;. We also denote the length of a tensor T = (T},)
by |T), i.e., |T|* = T;;T%. Finally, we denote by V; the covariant derivative.

Let T,n M denote the tangent space to M at m. We define the tensor field pl*l(z)
by

PW(I) = Z RepizpsRepyzps -+ Ropyzprs
ProPr=1
forz e T\, M.

We call an Einstein space k-stein if there are real valued functions p¢ on M such
that pld(z) = py|z|? for all z € T,, M and m € M for 2 < £ < k. We further call a
k-stein space k*-stein if |R|? is constant.

We use the following nqtation:

v v v
R"j = Ri"PQRPq'aRrajua R = Ry
Yy - = y X
Rij = RiupgRpgrsRryjuy, R = Rix

Our second theorem is the following
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Theorem 2. Let (M, g) be an n-dimensional connected C™ Riemannian manifold
with n > 3. Then the conditions (P)2 — (P)s are necessary and sufficient in order
that (M, g) be a 2*-stein space and satisfy

v \4
v Y. 3|VR|*-20R+16R
(2.2) 3ViRacaVjRabed — 20Rij + 16R;; = VR n + 9ij
v AL
(2.3) 3|VR|® — 20R + 16R = constant
v v 1 v ~
(24) Vi(Rij - 2Rij) = V(R - 2R)g;;

Corollary 1. Let (M,g) be an n-dimensional connected C* Riemannian manifold
with 3 < n < 6. The conditions (P); — (P)4 are necessary and sufficient in order
that the following assertions hold:

(1) if n = 3,4, then (M,g) s locally flat or locally isometric to a symmetric
space of rank one.

(2) ifn =35, then (M,g) is a 2*-stein space and, satisfies |VR|? = constant and

VR|?

(2:5) ViRupcaViRabea = I nl 9ij

(3) if n =6, then (M, g) is a 2*-stein space and, satisfies (2.3) and (2.5).

Corollary 2. Let (M,g) be an n-dimensional connected C>® 3*-stein space with
3 <n <5. Then (M,g) satisfies the conditions (P)2 — (P)4.

- 3. Proof of Theorem 1.

For the proof we use the expansions of two geometric mean values.

Let (M, g) be an n-dimensional connected C* Riemannian manifold with n > 2.
The first mean value M,,,(r, f) for a real valued continuous function f is defined by

Mo (r, ) = (vOl(0Byn(r))) " / @),

where do stands for the volume element on the geodesic sphere 8By, (r). Similarly,
the second mean value L,,(r, f) for an f is defined by

L(r, )= (oSN [ (Foerpp(ru)de,

where exp,, is the exponential map at m € M and du is the usual volume element
on the (n — 1)-dimensional unit sphere S"~1(1).
In (2], A.Gray and T.J.Willmore obtained the expansion

- 3 (A f)(m)
@1 Lnnf)=fm)+ kz___; T +2) iy 70
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for an analytic function f at m, and computed A2, f and A3, f explicitly.
PROOF of Theorem 1: Suppose first that (M, g) is a harmonic space. Set r(n) =
d(m,n),n € M and Q = r2/2. Then it is known that AQ = x(f) is a function of
2 only and does not depend on the reference point m (cf. [1], [7]). We call x the
characteristic function of M. We further have
oo
Ar = n-1 + Zau_lrzk_l,

T
k-1

where ag;-; = x¥(0)/2%k!. .
Now due to [6], there exists a sequence of polynomials px, k = 1,2,..., without
constant terms such that, for each m € M, the expansion

32 Mu(r,f) = f(m)+Y_pu(B)f(m)r™*  (r —0)

k=1
holds for all analytic functions f at m. Further px,k = 1,2,..., are defined by:

o0
Sar)=1+ Zpk(/\)r”‘ (A = constant)
k=1

is the solution of 6{(r) + (Ar)84(r) — A6x(r) = 0. Hence, setting pr(A) = 25k! n(n +
2)...(n + 2k — 2)pi()), Px(X) satisfies the recurrence formula

(A=A
(3.3) N N L

Pert() = MV + D cfaiPrjn(N) =0, k21,

j=1

where ¢} = =TI, (k — s + 1)(n + 2k — 2s + 2). From (3.3), pk()) is written as

(3.4) () = AF 4 BETIA 4 4 Bl
for some constants Bf~!,..., B}. Thus we have

Ak-{-B —1pAk-1 +,,_+BIA
(35) - PH(B) = STk :

2kkn(n +2)...(n +2k - 2)
On the other hand, it follows from [3] that, for each m € M,

(3'6) Mm(T, f) = Lm(rv f) (1‘ nd 0)
Hence by (3.6), comparing the coefficients in the expansions (3.1) and (3.2), we have
(3.7) Ab = AR BE1AMT 4. 4 BlA,

for k =1,2,.... Thus we obtain (2.1) by induction.

Conversely, suppose that the infinite sequence of the conditions (P, k = 1,2,.. .,
holds. Then from (2.1) we have (3.7) by induction.Hence, due to [3, Theorem 2] or
[8, Theorem 2 (1)}, (M, g) is a harmonic space.
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4. Preliminaries for proof of Theorem 2. -

In this section, we prepare the explicit formula of A%, f for the super-Einstein
space and the curvature properties of the super-Einstein, the 2*-stein and the 3*-
stein spaces which we use for the proof of Theorem 2 and its corollaries.

We first introduce the following notation:

Rijke = Ritje,  Rijpee = Rijee + Rjie,
Aijktllpg = -R-ijprﬁ(kl)qr + Rikprﬁ( jt)er + Ezprﬁ(jk)qn
Aijke = Aijre)ipps
Eijke = gijgke + 9ikgje + giegik-
Now, if pl?)(z) = p,|z|* holds for all z € T,, M and m € M, then
(4.1) Aijke = p2Eijxe,

where g2 = (3n|R|? +272)/n?(n+2). Also if p®l(z) = u3|z|® holds forall z € Tn M
and m € M, then

(42) Z Aijke)japRipgysa = 413 Z Eijktgpqs
o o

where o runs over all permutations.

_ We call an Einstein space super-Einstein if |R|? is constant and

Rij = RipgrRjper = |R|%gij/n. Note that 2*-stein spaces are super-Einsteinian.
Indeed this is obtained by transvecting (4.1) with g*¢.

1° ([5]) Let (M,g) be an n-dimensional super-Einstein space. Then it holds

that
(4.3) ALf=0%4 = -rA3 f + e (——r2 + 4|R)A%f
8 1 272
AuuV.,uf AT 3 -—TIRI’)AI

- 53(3ViRabc¢VjRabca - 20Rij + 16—1\%-‘,')‘7?11'
1 5 2 on Y L ies
+ m{Sthi - EV.‘(3|VR| —20R + 16R)} V., f,
v v
where i =V;{(R;; - 2R;) - (R 2R)9u}

2° ( [5]) Let (M,g) be an n- dxmensxonal super-Einstein space. Then it holds
that

v A 1v ¥
(44) Ri;-2R;= ~(R~2R)gij, forn <6,

45) Ek-2R= ~qla- 2 S 430-2yirn),  frass.

799
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3° ([5]) Let (M, g) be an n-dimensional 2*-stein space. Then it holds that
(4.6)
2 2 v ~
ViRa4cdViRabed = VpRiasc VpRjabe = ’;{iTlRl gij + Rij + 4Ry;,

v >
4.7) |VR? = _%rm]? +R+4R.

4° Let (M, g) be an n-dimensional 3*-stein space. Then it holds that
v Ad 1 Vv Y
(4.8) TR;; — 2R;j = ;(7R - 2R)g;;,

v ¥
where TR — 2R+ %% + £7|R|® = 2usn(n 4 2)(n + 4).
(4.8) is obtained by transvecting (4.2) with g*‘g??.
5. Proof of Theorem 2.
PROOF of Theorem 2. Sufficiency.: Suppose that the conditions {P)z — (P), hold.

Then for each k = 1,2,3,4, A% is represented as a linear combination (with constant
coefficients) of A¥, A*=1, ... A. By (3.1) we obtain, for each m € M, the expansion

(5.1) Ln(r,f) = f(m) + Y _pe(B)f(m)r** + O(r')  (r = 0),

k=1
where pi, k = 1,2,3,4, denote the polynomials without constant terms and with
constant coefficients. Due to (5, Theorem 1 (2)], (M,g) is a 2*-stein space and,
satisfies (2.2) and

v y 1V v 5 v v
(5.2) V;i{(Rij — 2Ri;) — E(R - 2R)g.-,-} = §2-—18Vi(3|VR’2 — 20R + 16R),

whence we have the following

53) AL =ar4 24,

3n
~ 2 4 4
X3 _ A3 2. A2 4 2 2
(5.4) A, =407+ nrA + T +|R|*)4,
~ 4 4 21n 446
. 4 Aty S Aa 2
(55) O + n + 15n(n + 2){ "

siag . 1 16(51n+116) ,

+22n + DR 5o Smm )

8(21n + 56)
n(n +2)

" Indeed, (5.3)~(5.4) are shown in [4] and (5.5) is obtained from (4.3). Since the

coeflicients in (5.3) - (5.5) are constants, (2.3) follows. This with (5.2) implies (2.4).

Hence the sufficiency of (P); — (P), follows.

v
7|RJ? - §(3IVRI2 —20R+ 16R)}A.
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Necessity. Suppose that (M, g) is a 2*-stein space and satisfies (2.2)-(2.4). Then,
as in the above, the formulae (5.3)-(5.5) hold and the coefficients are constants.
Hence (P); — (P), follow.

Theorem 2 is proved. ]

Next we prove Corollaries 1-2.

Lemma 5.1.. Let (M,g) be as in Corollary 1. Then the following assertions are
mutually equivalent, ezcept for the case n =6 in (3):

(1) the conditions (P); — (P)4 hold;

(2) (M,g) is a 2*-stein space and satisfies (2.2), (2.3);

(3) (n <5) (M,g) is a 2*-stein space and satisfies (2.5), |[VR|? = constant.

PROOF : Notice that (2.4) holds by (4.4) - (4.5), provided (M, g) is a super-Einstein

space with n < 6. Then combining Theorem 2 and [5, Proposition 6.3], we vbtain
the assertions of Lemma 5.1. |

PROOF of Corollary 1: This is immediate from Lemma 5.1 and [6]. ]

PROOF of Corollary 2: Suppose first that 3 < n < 6. Then by (4.4), (4.6) - (4.8),
we have (2.5) and

v ¥y

v ~ R
(5.6) Rij =94,  Riy=—gi.
Substituting (5.6) into (4.6) and applying V;, we obtain

v Yy
(5.7) (n+12)R + 8(2n - 3)R — 3|VRJ* = constant.
This with (4.5) and (4.7) implies |VR|? = constant. Hence the conditions (P); —
(P)4 follow from Lemma 5.1. [

6. Examples.

Let (M, g) be a harmonic space with dim M = n. Then from (3.3), we obtain the
recurrence formulae for A ; in (2.1) and Bf ™™ in (3.7) (4, =Bl = 1,p=1,2,...
by convention):

k—i
(6.1) Api==Y B ™ Atmi(i=1,2,...,k—1),
m=1
k-m m
(62) Bf™=-) > 2" oy B2, (m=12,...,k-1)
s=1 ¢=1
For example, from (6.2) we have
(6.3) B{ ™' =~ k(k - 1)ay,
2 _1 .
(6.4) B~ =gk(k = 1)(k = 2){(3k — 1)a] — 4(2n + 3k — 5)as},
- 1
(6.5) BF 3= 30 F(k = 1)(k = 2)(k — 3)(5k(k — 1)a}

= 4{10(k — 1)n + 15k? — 43k + 22}a, 3
+4{15n% + 6(8k — 17)n + 8(5k2 — 21k + 19)}as).
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On the other hand, a3, a3, a5 are obtained by [1], [7], [8]:

T 1 272 2
a=-3n =gyl PR
1 2
(6.6) =38 3lon(n + ) + 4) 2V 1
™ 9 o, TY X
- 325 + 5 IR+ SR - B)).

Substituting (6.6) into (6.3) - (6.5), we have the formulae for BE"™(m = 1,2,3),
whence by (6.1) we can write down the formulae for A x—¢(£ = 1,2, 3).In particular
(5.3) - (5.5) are obtained and the normal forms of A2, A%, A* are also computed.

REFERENCES

[1] Besse, A.L., Manifolds all of whose Geodesics are Closed, Springer-Verlag, Berlin Heidelberg
New York, 1978.

[2] Gray,A. and Willmore, T.J., Mean-value theorems for Riemannian manifolds, Proc. Roy.
Soc. Edinburgh 92 A (1982), 343-364.

[3] Kowalski,O., The second mean-value operator on Riemannian manifolds, in Proceedings
of the CSSR-GDR-Polish Conference on Differential Geometry and its Applications, Nové
Mésto 1980, pp.33-45, Universita Karlova Praha, 1982.

[4] Kowalski, O., Normal forms of the Laplacian and its iterations in the symmetric spaces of
rank one, Simon Stevin, Quart. J. Pure. Applied Math. 57 (1983), 215-223.

[5] Kozaki, M., On mean value theorems for small geodesic spheres in Riemannian manifolds,
preprint.

[6) Kézaki, M. and Ogura, Y., On geometric and stochastic mean values for small geodesic
spheres in Riemannian momfolds, Tsukuba J. Math. 11 (1987), 131 145

[7] Ruse, H.S., Walker, A.G. and Willmore, T.J., Harmonic Sp y i Cr , Roma,
1961.

[8] Watanabe, Y., On the chamctemhc function of harmonic Kdhlerian spaces, Téhoku Math.
J. 27 (1975), 12-24.

Department of Mathematics, Saga University, Saga 840, Japan
Kurume College of Technology, Kurume 830, Japan

(Received September 9,1989)



		webmaster@dml.cz
	2012-04-28T18:32:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




