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On normal forms of Laplacian and 
its iterations in harmonic spaces 

MASANORI KÓZAKI AND HlDEKICHI SUMI 

Abstract. We give the normal forms of the successive iterations of the Laplacian for har­
monic spaces and characterize the particular classes of 2-stein spaces. 
Keywords: Iterations of Laplacian, Harmonic spaces, 2-stein spaces. 
Classification: 53C20, 58G99 

1. Introduction. 
The successive iterations A* of the Laplacian A on a Riemannian manifold can be 

calculatecr*at the center of any normal coordinate system by means of the curvature 
tensor and its covariant derivatives. In [4], O.Kowalski proved that the correspond­
ing normal forms for a symmetric space of rank one are certain partial differential 
operators with constant coefficients. 

Our results are stated as follows. We first generalize Kowalski's theorem above 
to a harmonic space, i.e., the infinite sequence of the conditions (P)*, k = 2 , 3 , . . . , 
holds (See Section 2 for the definitions) if and only if the manifold is harmonic 
(Theorem 1 below). In [4], O.Kowalski also characterized the Einstein and super-
Einstein spaces by means of (P)2 and (P)2 — (P)3 respectively. By the conditions 
( p ) 2 _ (P ) 4 , we characterize the particular classes of 2-stein spaces which should 
be located between the harmonic and the super-Einstein spaces (Theorem 2). We 
further prove: (1) a 4-dimensional Riemannian manifold satisfying (P)2 — (P)4 is 
locally flat or locally isometric to a symmetric space of rank one (CoroUary 1); (2) 
an n-dimensional 3*-stein space with 3 < n < 5 satisfies (P)2 — (P).i (Corollary 2). 

In Section 2, we state our results precisely; Theorems 1 and 2. In Section 3, we 
give the proof of Theorem 1 . Section 4 is for preparation of the proof of Theorem 
2 and its Corollaries 1-2. In Section 5, we give the proof of Theorem 2 and its 
coroUaries. In the final Section 6, we give the normal forms of A* for harmonic 
spaces by the recurrence formulae. 

2. Statement of results. 
Let (M, g) be an n-dimensional connected C°° Riemannian manifold with n > 2 

and Bm(r) be the geodesic ball in M at center m € M with small radius r > 0 and 
let (17; a?1,a:2,... , x n ) be a normal coordinate system around m. For a function / 
of class C°° near m, we denote by A m the local differential operator given by 

ґl(дx'У 

We would like to express our hearty gratitude to Professors O.Kowalski and L.Vanhecke for their 
valuable comments. 
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A m is independent of the choice of normal coordinate system around m. Due to 
[2], for each k = 1 ,2, . . . , there is a globally defined differential operator on (M, g) 
which concides with A m / at m. 

In this note we are concerned with the following condition introduced in [4]: . 

(P)k There exist constants Aky\,Ak,2f •• >Ajfc,*-i depending only on (M, g) such 
that, for each m £ M, 

* - i 

(2.1) (A*/)(m) = ( A m / ) ( m ) + £ AM(Am/)(m) 
t = i 

holds for all analytic functions / at m, where k is a natural number. 

In (2.1), the condition (P)i is understood to hold; (A/ ) (m) = ( A m / ) ( m ) = 
(Am/)(m). 

We call the space (M,g) harmonic if, for each m £ M, there exist an r > 0 and 
a function F : (0,r) —> R such that the function f(n) = F(d(m,n)) is harmonic in 
Bm(r) \ {m}i where d is the distance function defined by the Riemannian metric. 
It is well known that examples of harmonic spaces are those locally isometric to a 
Euclidean space and a symmetric space of rank one (cf. [1], [7]). 

Our first theorem is the following 

Theorem 1. Let (M,g) be an n-dimensional connected C" Riemannian manifold 
with n > 3. Then the infinite sequence of the conditions (P)k> k = 2 , 3 , . . . . holds 
if and only if (M, g) is a harmonic space. 

We denote by (gij) and (Rijkt) the metric tensor and the curvature tensor with 
respect to the normal frame (d/dx1 ,d/dx2,... ,d/dxn). Throughout we exploit 
Einstein convention as well as the extended one, i.e., the summation convention for 
repeated indices. The Ricci tensor and the scalar curvature are denoted by (pij) and 
r respectively; pij = -RfttJ,r = p j . We also denote the length of a tensor T = (T,j) 
by |T|, i.e., |T|2 = TijT%K Finally, we denote by V; the covariant derivative. 

Let TmM denote the tangent space to M at m . We define the tensor field pW(x) 
by 

n 
P (x) — 2 l / Rxpixp2Rxp7xp3 • • -Rxpkxpn 

J > i , - , J » k = l 

for x £ TmM. 
We call an Einstein space k-stein if there are real valued functions fit on M such 

that pM(s) = fjtt\x\2t for all x £ TmM and m € M for 2 < £ < k. We further call a 
fc-stein space k*-stein if |i?|2 is constant. 

We use the following notation: 

v v v 
Rij = RiupqRpqraRrajut R — Rkk 

X __ « . _ X. X 
iljjj = RiupqRpqrsRrsju<> R = - M : * 

Our second theorem is the following 
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Theorem 2. Let (M, g) be an n-dimensional connected C°° Riemannian manifold 
with n > 3 . Then the conditions (P)2 — (P)4 are necessary and sufficient in order 
that (M,g) be a 2*-stein space and satisfy 

v v. 
v -£ 3|VR |2 - 20I* + 16.R 

(2 .2) WiRabcdVjRabcd - 20Rij + IGRij = J ! — : L - ^ ; 

v 2. 
(2.3) 3|VJe|2 - 20R + 16R = constant 

(2.4) V y ( R 0 - 2%) = ±Vj{R - 2%9ij 

Corollary 1. Let (M,<r/) be an n-dimensional connected C°° Riemannian manifold 
with 3 < n < 6. The conditions (P)2 — (P)4 o,re necessary and sufficient in order 
that the following assertions hold: 

(1) if n = 3,4, then (M,g) is locally flat or locally isometric to a symmetric 
space of rank one. 

(2) if n = 5, then (M,g) is a 2*-stein space and, satisfies |VP |2 = constant and 

IVRI2 

(2 .5) ViRabcdVjRabcd = L~n~
L9ij 

(3) if n = 6, then (M,#) is a 2*-stein space and, satisfies (2.3) and (2.5). 

Corollary 2. Let (M,g) be an n-dimensional connected C°° 3*-stein space with 
3 < n < 5. Then (M,g) satisfies the conditions (P)2 - (P ) 4 . 

3 . Proof of Theorem 1. 
For the proof we use the expansions of two geometric mean values. 
Let (M, g) be an n-dimensional connected C°° Riemannian manifold with n > 2. 

The Erst mean value Mm(r, f) for a real valued continuous function / is defined by 

Mm(r, f) = (vol(dBm(r))rl f /(«) <£*(*), 
JdBm{r) 

where da stands for the volume element on the geodesic sphere dBm(r). Similarly, 
the second mean value Lm(r,/) for an / is defined by 

Lm(rJ) = ( v o K S - H l ) ) ) " 1 / ( / o « p m ( r t i ) ) Ai, 
.IS»-*(1) 

where expm is the exponential map at m € M and du is the usual volume element 
on the (n — l)-dimensional unit sphere 5n""1(l). 

In [2], A.Gray and T.J.Wiilmore obtained the expansion 

(3.1) Mr , / ) = / M + g 2tfc,n(n ^ . f r l 2k - ^ < ' - °> 
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for an analytic function / at m, and computed A m / and A m / explicitly. 
PROOF of Theorem 1: Suppose first that (M,<?) is a harmonic space. Set r(n) = 
d(m,n),n € M and 0 = r 2 /2 . Then it is known that AQ, == «x(-̂ ) is a function of 
Q, only and does not depend on the reference point m (cf. [1], [7]). We call x the 
characteristic function of M . We further have 

— 1 °° 
Ar = -— + y;«2jfc_1r2*-1 , 

r f—' 
* - i 

where a^. .! = x(*>(0)/2*k!. 
Now due to [6], there exists a sequence of polynomials p*, k = 1 ,2, . . . , without 

constant terms such that, for each m € M, the expansion 

(3.2) M m ( r , / ) = / (m) + f > ( A ) / ( m ) r 2 * (r - 0) 
*=1 

holds for all analytic functions / at m. Further p*, k — 1 ,2 , . . . , are defined by: 

oo 

6x(r) = 1 + ]Tp*(A)r2* (A = constant) 
*=-i 

is the solution of 6'{(r) + (Ar)6'x(r) - \6\(r) = 0. Hence, setting pk(X) =. 2*k! n(n + 
2 ) . . . (n + 2k — 2)pjfc(A),pjk(A) satisfies the recurrence formula 

(3.3) 

ř?i(A) = A 
* 

p*+i(A) - Ap*(A) + 53cJa iplb_> + 1(A) = 0 , k > 1, 
; - i 

where c) = ^ ^ n ^ k - s + l)(n + 2k - 2s + 2). From (3.3), pk(X) is written as 

(3.4) pfc(A) = A* + B*" 1 A*"1 + • • • + BjA, 

for some constants B j " 1 , . . . ,£?£. Thus we have 

A* + B*T1A*-1 + --. + BjA 
(3.5) p*(A)= 2 * W n ( n + 2 ) . . . ( n + 2 ] b ^ 2 ) 

On the other hand, it follows from [3] that, for each m € M, 

(3.6) MTO(r,/) = Lm(r,/) (r - 0). 

Hence by (3.6), comparing the coefficients in the expansions (3.1) and (3.2), we have 

(3.7) A m = A* + B*- 1 A*"1 + • • • + B\ A, 

for k = 1,2, Thus we obtain (2.1) by induction. 
Conversely, suppose that the infinite sequence of the conditions (P)*, ib -= 1 ,2 , . . . , 

holds. Then from (2.1) we have (3.7) by induction.Hence, due to [3, Theorem 2] or 
[0, Theorem 2 (1)], (M,gr) is a harmonic space. 
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4. Preliminaries for proof of Theorem 2. 
In this section, we prepare the explicit formula of A m / for the super-Einstein 

space and the curvature properties of the super-Einstein, the 2*-stein and the 3*-
steifi spaces which we use for the proof of Theorem 2 and its corollaries. 

We first introduce the following notation: 

Rijkt = Rikjt, R(ij)kt = Rijkt + Rjikt, 

Aijkt\\pq = RijprR(kt)qr + RikprR(jt)qr + RitprR(jk)qr, 

Aijkt = Aijkt\\pp, 

Eijkt = 9ij9kt + 9ik9jt + 9it9jk-

Now, if pW(x) = fi2\x\4 holds for all x € TmM and m € M, then 

(4.1) A^kt = ^Eijkt, 

where ^ = (3n|H|2+2r2) /n 2(n + 2). Also if pW(x) =- / i 3 |af holds forall x € TmM 
and m € M, then 

(4'2) / J Aijkt\\a0R{pq)0a = 4^3 _>^ Eiikt9pq, 
or or 

where a runs over all permutations. 
We call an Einstein space super-Einstein if \R\2 is constant and 

Rij = RipqrRjpqr = l-^l2.9ij7n- N°te tha* 2*-stein spaces are super-Einsteinian. 
Indeed this is obtained by transvecting (4.1) with gki. 

1° ([5]) Let (M,g) be an n-dimensional super-Einstein space. Then it holds 
that 

(4.3) A m / « A 4 / + l r A 3 / + - i - ( - r 2 + 4 | i*|2)A2 / 
n Ion n 

0 * —..i - 1 ,272 •» 168 ,_,ov _ _ 
+ i5^»n«/ + HJ5^T + VT | J i | ) A / 

1 v v_ 
- -^(WiRabcdVjRabcd - 20.R.,- + l6Rij)Vy 

+ 155 {82v* " B V i ( 3 | V H | 2 " 2 ° * + 1 6 ^ > V i / ' 

wiiere y>< =V,{ (% - 2l t J) - }(Jl - 2R)9ij}. 
2° ( [5]) Let (M,g) be an n-dimensionai super-Einstein space. Then it holds 

that 

v _>L i v .__. 
(4.4) # t i - 2i20 == -(J? - 2i2)£/.i, for n < 6, 

(4.5) R - 2S = - i { ( i - 12 + H)r 3 + 3(1 - -)r|i?|2}, for n < 5. 
4 n n2 n 
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3* ([5]) Let (M,g) be an n-dimensional 2*-stein space. Then it holds that 

(4.6) 
2 2 v v. 

^iRmkcd^jRabcd = ^ pRiaic^ pRj abc = J T ^ l Si3 + ^*i + 4^*i' 

(4.7) |V.H|2 = - - r | H | 2 + R + 4R . > 
n 

4* Let (M,g) be an n-dimensional 3*-stein space. Then it holds that 

(4.8) ihi ~ 2 ! ; ; = ~-(7^ - 25)*;, 

where 71* - 2B + ^ r 3 + f r|H|2 = 2/i3n(n + 2)(n + 4). 

(4.8) is obtained by transvecting (4.2) with gkigpq. 

5. Proof of Theorem 2. 
PROOF of Theorem 2. Sufficiency.: Suppose that the conditions (P)2 — (P)4 hold. 
Then for each k = 1,2,3,4, A^ is represented as a linear combination (with constant 
coefficients) of A*, A*""1,..., A. By (3.1) we obtain, for each m € M, the expansion 

(5.1) Lm(rJ) = f(m) + ]Tpfc(A)/(m)r2* + 0(r10) (r - 0), 
fc=-i 

where p*,lb = 1,2,3,4, denote the polynomials without constant terms and with 
constant coefficients. Due to [5, Theorem 1 (2)], (Msg) is a 2*-stein space and, 
satisfies (2.2) and 

(5.2) VjUXt, - 2 l „ ) - i(fl - 2R)gii} = 82^8 Vf(3|ViJ|J - 20* + 161), 

whence we have the following 

(5.3) Am = A2 + | j A , 

(5.4) Am = A3 + JrA* + -±-( iT - + |*|-)A, 
n Ion n 

,* e\ X4 A4 , 4
 A3 , 4

 r21n + 46 2 

(5.5) A^ = A4 + ~rA 3 + — --{ r2 

v ' m n 15n(n + 2)1 n 

+ 2 ( 2 „ + 7 ) W ) i . + ^ { H 5 j ^ . 

+ ? ^f i ' l « l ! - j< W - »* + "*»*• 
Indeed, (5.3)~(5A) are shown in [4] and (5.5) is obtained from (4.3). Since the 
coefficients in (5.3) - (5.5) are constants, (2.3) follows. This with (5.2) imphes (2.4). 
Hence the sufficiency of (P)2 — (P)4 foUows. 
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Necessity. Suppose that (M,g) is a 2*-stein space and satisfies (2.2)-(2.4). Then, 
as in the above, the formulae (5.3)-(5.5) hold and the coefficients are constants. 
Hence (P)2 - (P)4 follow. 

Theorem 2 is proved. • 
Next we prove Corollaries 1-2. 

Lemma 5.1. . Let (M,g) be as in Corollary 1. Then the following assertions are 
mutually equivalent^ except for the case n =- 6 in (3); 

(1) the conditions (P)2 - (P)4 hold; 
(2) (jM,g) is a 2*-stein space and satisfies (2.2), (2.3); 
(3) (n < 5) (M,g) is a 2*-stein space and satisfies (2.5), |VH|2 = constant. 

PROOF : Notice that (2.4) holds by (4.4) - (4.5), provided (M, g) is a super-Einstein 
space with n < 6. Then combining Theorem 2 and [5, Proposition 6.3], we obtain 
the assertions of Lemma 5.1. • 
PROOF of Corollary 1: This is immediate from Lemma 5.1 and [6]. • 
PROOF of Corollary 2: Suppose first that 3 < n < 6. Then by (4.4), (4.6) - (4.8), 
we have (2.5) and 

v v. 
v R ~ R 

(5.6) Rij = -gtj, Rij = —_7i>. 
Substituting (5.6) into (4.6) and applying V,, we obtain 

v v. 
(5.7) (n + 12)R + 8(2n - 3)P - 3|VB |2 = constant. 

This with (4.5) and (4.7) implies |VR |2 = constant. Hence the conditions (P)2 — 
(P)4 follow from Lemma 5.1. • 

6. Examples. 
Let (M,g) be a harmonic space with dim M — n. Then from (3.3), we obtain the 

recurrence formulae for Akfi in (2.1) and B*~m in (3.7) (APtP = B£ = l ,p = 1 ,2 , . . . 
by convention): 

k-i 

(6.1) Akii = - £ 5*"m^*-m,i(« = 1 , 2 , . . . , * - 1), 
m-1 

ib—m m 

(6.2) BJTm = " E E 2'CJ+m-1«»-iB.+ra_, (m = 1,2,..., * - 1). 

For example, from (6.2) we have 

(6.3) BJ;-1 =-*(*- l )a_ , 

(6.4) £ * - 2 =i*(fc - 1)(* - 2){(3k - l )a 2 - 4(2n + 3* - 5)o 3 } , 

(6.5) I?*"3 = - ±k(k - l)(fc - 2)(k - Z){bk(k - ljttj 

- 4{10(k - l)n + 15k2 - 43k + 22}a_a3 

+ 4{15n2 + 6(8k - 17)n + 8(5k2 - 21k + 1 9 ) H ] . 
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On the other hand, a i , a 3 , a s are obtained by [1], [7], [8]: 

a^~h a3 = -m^T2){2-T + mi)' 
(6-6) a s=48^5^Wrij{2 7 | V i i i2 

T 3 9r « 7 V ---_ 3 2 ( - + | l | K f +!*-*)}. 

Substituting (6.6) into (6.3) - (6.5), we have the formulae for B%~m(m = 1,2,3), 
whence by (6.1) we can write down the formulae for Ak,k-t(t =1 ,2 ,3) . In particular 
(5.3) - (5.5) are obtained and the normal forms of A2 , A3 , A4 are also computed. 
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