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Differentiability of Musielak—Orlicz sequence spaces

RYSZARD PLUCIENNIK AND YINING YE

Abstract. In this paper a sufficient and necessary condition of differentiability of Musielak—
Orlicz sequence spaces and the expression of gradient are obtained. These results are non—
trivial and important generalization of previous results from paper [9] written in Chinese
by Yining Ye.

Keywords: Musielak-Orlicz sequence space, Gateaux differentiability, Gateaux differen-
tiable norm, 63 —condition

Classification: 46E30

1.Preliminaries.
Let X be a Banach space equipped with the norm || - || and S(X) be the unite
sphere of the space X i.e. S(X)={z € X : ||z| =1}.

1.1, Definition. The Banach space X is said to have a Gateaux differentiable (or
shortly, differentiable) norm at z¢ € S(X) whenever for given y € S(X)
— pirg NZo Ayl — ol
grad (z¢,y) = }Eﬁ) 3 i
exists. If the norm of X is differentiable at each point of S(X) then we say that X
is Gateaux differentiable (shortly differentiable) space.

The notion of differentiability of the space X is equivalent to the smoothness of
X. It follows immediately from Th.2.1.1 in [1). We can consider differentiability
of Musielak—Orlicz sequence spaces. To this end, denote by N the set of positive
integers and by R the set if real numbers. The brackets (-), {-} we will use for de-
notation of sequence and set, respectively. Let ¢ = (¢n) be a sequence of Young's
functions, i.e. for every n € N ¢, : R — [0,00] is a convex, even, not identically
equal to zero function vanishing at zero and the function t — @n(tu) is left contin-
uous for fixed u > 0. We define a modular on the family of all sequences z = (z,)
of real numbers by the following forinula

00

Io(z) =) nlen).

n=1
1.2. Definition. The linear set

lp={z = (1‘»)‘1 Ja>0l,(az) < oo}
equipped with so called Luxémburg norm

|lzlle = inf{k > 0: IL(k'z) <1}
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700 R. Pluciennik and Yining Ye

is said to be Musielak-Orlicz sequence space.

89-condition. We say that ¢ = () satisfies the 63-condition if there are con-
stants a,k, an integer m and a sequence (c,) of nom-negative real numbers such
that

oo
Y ea<oo and ¢n(2u) < kpa(u) +ca

n=1
for all n > m and u € R with p,(u) < a.
Define
0 if ¢i(u)=0
pi(u) = o if pi(u)=o00

left derivative of i(u), otherwise.
It is easy to notice that for every : € N p;(u) is nondecreasing and

|

pi(u) = [ pi(t)dt.
/

Put
a; =supf{u >0:p;(u) <1} (i=12,...)
1.3.Lemma. If the function ¢ = (p,) does not satisfy the 63-condition, then an
element = € S(l,) can be found such that for every ¢ € (0, 1) we have

1
I[(1+¢e)z] =00 and I,[(1-¢)r] < 3
ProOOF : We will construct z € S(l,) with desirable properties. Analyzing the
proof of Th. 1.1 from (2], we conclude that if ¢ does not satisfy 67-condition then
there is a sequence y = () € S(l,) such that ¢i(255) < 00 (i = 1,2,....), Ly(y) < 1
and J,(2y) = o0. Put
ko = sup{k : I (ky) < 0}.
Obviously, 1 < ko < 2. Denote z = koy. If for every k < 1 we have I, (kz) < %

then we can put z = 2z and such element = has properties from the thesis of the
lemma. Otherwise, there is a number k; < 1 such that

— 1
L(kiz) = 3 pilkiz) < 7,
=N,

where z(!) =(0,0,...,0, zN,v“, )

Now, if for every k < 1, we have I, (kz(!)) < % then putting z = 2(1) we obtain
z with desirable properties. Otherwise, there exists a number k2 > 51;—1- such that
I (k2zM) > 1. Since I(k;z")) < oo, then N2 > N can be found such that

I.,(kzz(z)) = Z pi(kez;) <273,
i=N,
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where z(2) = (0,0,...,0,2n,, 2Ny 415+ )-

Repeating the above argumentation, we arrive at the conclusion that either there
exists a number i such that I,(kz)) < 1 for every k < 1 and then putting z = 2(¥)
we obtain the thesis of the lemma, or otherwise there are two sequences (N,) and
(ki) such that N; T oo and k; T 1 as i — co. In the second case we define

z=1(0,0,...,0,k 2N, .. krzn,—1, k22N, - o Rizng RizN, 41,00 )

Then .
oo
Io(z) < Io(k1z®) + Iy(kpz®) + - < 22_i =

=2

1
21

So |izll, < 1. On the other hand for any ¢ € (0,}) there exists io such that
ki, > ;—1:; Consequently, we have

Ll(1+€)2] 2 I, [k (1 +€)209] = o0,

50 ||z||, can not be less then 1. Reassuming, we have that ||z||, = 1 and for every
e €(0, %) I,[(1 4 €)z] = 0o and I,[(1 — €)a] < 1, what finishes the proof. [

2.Main Result.
2.1. Theorem. The Musielak-Orlicz sequence space l, is differentiable if and only
if the following conditions are satisfied:

(1) The function ¢ = (pn) satisfies the 83 -condition.
(ii) There do not ezist two positive integers ny and ny such that

®ni(@ny) + Pry(an,) 1 and  @n,(an,) >0, @a,(ang) >0

(iii) The left derivative pi(u) of p,(u) is continuous for 0 < |u| < a, (i =
1,2,...).

PROOF of necessity: Suppose the Musielak-Orlicz sequence space I, is differen-
tiable and the function ¢ = (;) does not satisfy 6J-condition. Then we can divide a
sequence (n) of all natural numbers into two subsequences (nx) and (m;) possessing
the following properties:

a) {ne:keN}N{m:leN}=0

b) {nk:keN}U {mi:1eN} =N,

) ¢V = (¢n, Jken and ¢ = (o, )ien do not satisfy 69-condition.
Applying Lemma 1.3 we can find 2™ € S(I,(1)) and 2* € S(I,2)) such that

Iy [(1 +€)1-(1)] =00, I, [(1 +€)I(z)] = oo,
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for any ¢ € (0,1). Denoting ") = (2n,,2n,...) and z(
define
z = (z1,%2,...) and y=(y1,¥2s---)

where
‘_{0 if iG{m,:IéN}
v= z, if iE{nk:kEN}-
Then we have

L{(1 +€)2] < Loy [(1+)2] = o,

LI+ )] = Loy [(1 + )2V = oo,

Li(1 - e)a] = Loy [(1 + )2 ™] + L[t —e)e®] < % + % =1

l\)l»—d

L[(1-e)y] = I, [(1 - 5)1(1)] <

= (TmyyTmgy---

’

) we

for every € € (0,31). Hence z € S(I,,) and y € S(l,). Further, for each A > 0 we

have
z+ Ay

(r+/\y
1+,\ )2 L, »(1)

Io(—— )= v(l)(

1+
1+3

because (14 A)/(1 + 2) > 1. This means that ||z + Ayll, > 1 + 3. Therefore

Az(l)) =00

e+ Mlle = lzlly 1+3-1_1

= 2> =35

grad (z,9) .\1—)‘{& A ,\ll.r?,, A 2

On the other hand, for A < 0 we have
T+ ™) =
(s )- ¢(2)(1+,\) Lo(T3 )=o0
because 1/(1+ 3) > 1. Thus ||z + Ayll, > 1+ 2 and

Nzt Ml el o 14311

= _—_— T < = -,

grad (z,y) = lim ) < im 3

It proves that the gradient grad (z,y) does not exist what implies that the space
1, can not be differentiable. This contradiction completes proof of (i).
Now we will prove the necessity of the condition (ii). To this end suppose that
the Musielak-Orlicz space 1, is differentiable and there exist two positive integers

‘n; and ny (n; < ny) such that

#n1(@n,) +¥n,(@a,) 1 and ¢, (an,) >0, @n,(as,)>0.
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Define

z=(0,...,0,an,,0,...0,an,,0,...)
y=(0,...,0,a,,,0,...).

It is easy to verify that |||, = 1 and ]jy||, = 1. For any A > 0, we have

z+ Ay
142X

) ‘Pn,(am ) + Y’nz(l T ,\aﬂ:) <1

so [lz + Ayll, <1+ A. But, for any 0 < k <1+ A, we get

z+A 14+ 1 14+
Iv( A y) > Pn,y < 2 am) + @n, (man;) > Pn, (Tan,) > 1,

ie. ||z + Ayll, = 1+ A. Hence, ||z + Ay|l, = 1+ A. Therefore,

— A -
A—04 A—04

Ontheotherhand,for/\<0wehavel>1+’21>1+,\a.nd

T+ Ay 142 1 1
Iv(l_*_%):‘Pm(l—:%am + @n, 1““+%an 2 Pn, 1+%a,,, >1

so ||z + Ay|l, > 1+ 3. Consequently,

ll= +/\y”¢ llzlle < lim 1+ % -1 _1_
x—.o_ A—0_ A 2

Thus,
o 2+ 2wl =l
A—0 A

does not exist. This contradiction proves the necessity of (ii).

For the proof of necessity of (iii) let us assume that the space I, is differentiable
and that exist a natural number N and a real number u such that 0 < u < ay and
pn(.) is not continuous at the point u. We can choose a sequence of real numbers
(un) such that 0 < u; < q; for i # N and

1) I(z) =Y pi(w) + on(u) =1,

i#N

where z = (u;,u,,.. ,uN 1, %, UN+1,-.. ). Then, by (i), z € S(1,).
Let y = (0,...,0,ay,0,... ). Obviously, Z,(y) < 1 and [lyll, = 1.
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Denote ka = ||z + Ayl|,. It is easy to notice, that &y > 1 for A > 0. First, we will
prove without 6J-condition that

@ 1%

To this end suppose I,( z -,IC- Ay

3 M%‘i) <Y euw) < I(z) <1,

iEN A N

) < 1anddenotee =1-1,

so there is a natural number Ny > N such that for every ky > k > 1 we have

ad ug, €
Z ‘Pi(‘k_')<§'
1=No+1
Further N
0
+
Y e+ N(i—-——)51~e‘
i=1,i#N

Since kx > 1 and u/any < 1, then A > 0 can be found such that A < kx ~ u/an.
For A defined in this manner, we have (u + Aan)/kx < an. By the continuity of ¢;
(: =1,2,...) on the interval (0, a;), there is k — A > k. > 1 such that

No
A 2
> ( )+<.9 (__4—__9_)<1_§€
i=1,iAN
Hence
aN 2 - u; 1
Tl ten( T <1-34 3 g <1-ge<t,
i#N 1=No+1 €

which contradicts the definition of k. This finishes the proof of equality (2). From
(2) we obtain

® T i) on(p + =1

i#ZN

Henee

u  Aa
PN+ p) =1 Z¢.(~) >1= Y pilui) = pn(u).
i#N
Thus, by the monotonity of ¢n, we have
=+ an > u.

ka ka
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q! P

Therefore, applying (1) and (3), we get

T eitu) = T eilE) = ol + So2) — ontw)

i#N #N kx
This gives
u; u/kx+(A/kr)an
Y [aoa= [ o
i#Nu.'/k; u
Denote

Jim p(t) = P7(v), Jim pt) = PH(v) (i=1.2...)

Since pi(.) is non-decreasing function, we have
u;

/ pilt) dt < P (ui)us — 1)

i
and
(ut+Xan)/ka
pn(t)dt > P(u) {—g;(u + dan) — u] .
v
Consequently,

Z P (ui)(u; — Z—;—) > Pi(u) [El;(u + Aan) - u] .
i#N

The above inequality is equivalent to the following one

(ka=1) [Z P (ui)us + P,t(u)u} > Aan P(u),

i#N
so
@ Bl an P ()
A iy WP (w) + uPy(u)
for A > 0.

Now, we will consider the case of A < 0. Then we have ky = [lz 4+ Aylly, < 1.
Repeating this same argumentation as above we obtain the equality

S

}:/pe(t)dt= ] pn(t)dt.

#Ng, (utran)/kx

765



706 R. Pluciennik and Yining Ye

Since kx <1 and pi(-) is non—decreasing, so

u
() dt > Y P |2 —
and u
- 1
[ entds Py [u- ek ram).
t(u+;\a~) .
Thus )
U -
g}:vP‘.*’(ui) [x-; - u,-] < Py(u) [u - k—'\(u + /\aN)] .
Hence
k,\ bt 1 aNPE(u)
) D) < TiEN ;P (u,) + uPy(u)

Since pn(.) is not continuous at u, then Py (u) < Py (u). It implies that

an Py (u) < aNP;,'(u)
E.‘;eN “-’Pi-*(“i) +uPpy(u) E.’;eN uiP7(ui) + "P;(“) ’

so, by (4) and (5),

lim

o+ dylle = lzlle _ . Fa=1
A—0 A

A—0 A

does not exist. This contradiction completes the proof of necessity of (iii).
PROOF of sufficiency: Let z € S(I,). By the assumption (ii), at most one i-th
coordinate can be equal to a; or —a;. Consider two cases:

I. We will show differentiability of the norm at z with exactly one (say N-th)
coordinate equal to ay or —an, i.e.

z = (uy,uz,...), where |un|=an and |u;]<a;fori# N.
II. We will prove differentiability of the norm at other points z from S(l,), i.e.
z = (u1,us,...) and |u;} < a; for every i € N.

I Let y = (y1,¥2,...) € S(l,). First we will consider the case Auny~n < 0. For

0<K<14A=—

YN
un
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we have 2
uN YN
| K |>a
Therefore
z+ A u; + Ay; uUN + Ay un + A
I ( y) > e KJ)+<PN( NK JN)Z&PN(—&‘R—E"!ZI

t#N

ie lz+ Myl 2 14+ Ayn/un.

Now we will give an upper estimation of the norm of element z + Ay. To this
end, let 1 > M > 14 Ayn/un.By (i), there cxist constants a, k an integer m and
a sequence (¢, ) non-negative real numbers such that

o0
@n(2u) < ko, (u) + ¢, and Zc. < oo

=1

for all n > m and u € R, provided p,(u) < a. Fixan e > 0. let N;, N; and N; te
natural numbers greater then N such that

(=<}

. @ €
(6) -';; ¢ < mm{§, e 1},
oo 1 oo
(7) Z LP.‘(U.‘) < min{E(a - Z cj), i;}
i=N: =Ny
and
oo 1 oo
(8) Z vi(yi) < min{E(a — Z i)y Z%E}
i=Ns =M

Using 62-condition, we have
oo = =]
Z tpg(?u.') < a and Z ‘,9,'(2y¢) < a.
i=N, =N3
Moreover, we will show that there is a natural number Ny > N such that

u; + Ayi
(9) ( M |<a.-

for i > N, and every |A| < } with dunyn < 0.
Since M > 1+ Ayn/un > 1-|)| and |u; + Ay;] < Iu,l + Ala;|, then inequality (9)
is true provided there is Ny > N such that

uil < ai(1 —2|A])

707
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for i > Ny and || < } with dunyn < 0. Further, note that pi(a;) can be equal
to zero only for finite number of a,. Indeed, if ¢ > m and ¢,(a;) = 0 < a then, by
82-condition, we get

¢i(2a;) < kpi(a;) +¢i = ;.

But (¢;) is convergent to zero, so without loss of generality we can assume that
¢; < 1for i > m. Thus ¢;(2a;) < 1, what contradicts the definition of a;. Therefore,
we can assume that ¢;(a;) > 0 for i > m. Moreover, by the assumption (ii), we have
wi(ai) 2 § (i > m) except at most one integer, say i = no. Further, by 62—condition
I,(2z) < co. Hence there is an integer Ny > ng such that

Z i(2u;) < < vjilay)
=Ny

for j = Ngy Ny +1,..., 50
0i(2ui) < pi(ai) (1= N4 Ng+1,.00).
Consequently, by the definition of Young’s function, we obtain

2|u,~|<a,' (i=N4,N4+1,...).

This implies that
fuil < (1 = 2{A]a;
for i > Ny and |A| < § with duyyy < 0. Thus (9) holds for every |A| <

1

4

with Auyyny < 0 and ¢ 2 Ny. Taking Ny = max{N;, N, N3, N,} and using (9),
83-condition, (6), (7) and (8), we have

= ui + A
e < Zso. 2u; + 2y;) <

i=Np i=No

<3 Y wldu)+3 Z pildy) < 53 [pieu) + o) + Y <
i=Ny i“No “i=No i=No

. 2 ® o0
S% v(u!)+22cl %Z‘pl(yl)“'zzct"' Ecn"‘

=Ny =Ny =No 1=Ng i=Np
% 2 [‘Pl(ui) + ‘Px(yx)] + (k + 1) 2 ¢ < "’E
=Ny =No

Further, for any ¢ = 1,2,...,Ng — 1 and i # N, by |u;| < q;, a real mumber \;
can be found such that A\;u~nyn < 0 and

led + Aisd

<
14201 “
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P

Denote A = {1,2,...,Ng — 1}/{N} and X = I%if‘l{)\;}. Obviously,

—uil + Aoy .
Xotnyy <0 and P (*—1—'%!;-%"-%—')0010: i€ A
We put
- — ¢ luil + {hoys]
P~ = - (L2 T 1700
and
Aoyn

P € -1 .
34 = min { Gt 022+ ™ s )

For 0 < |A] < min{|Xol, |Xpl, 1} with sign A = —sign unyn, we have

sl + Pl (wil+1Ayi) /M
Ui Yi
Z [‘Ps(-‘—M—) - (p;(us)] = Z / pi(t)dt <
IEA iI€EA il

oy Juil + Al {1 = M)juif + [Ayil

<pry bl < pry (ot Bud o
i€EA i€A
- YNu; £ 1
<P ZU:‘;‘| +lyl)IAl < 2'2',,‘_—2 <3&
1€EA 1I€EA
Moreover,
uy + A
<PN("N—#£) < ¢nlan),

by previous assumptions concerning M. Reassuming, we have

T4\ X ui + Ayi + A — u; + Ay
L{—7 Y) =Z‘Pi(Ty—) +‘PN(B*’LA-/{£)+ z¢i(“"ﬂ"—y') <

€A i=Np
1 3
< Z‘Pi(“i) +3 +on(an) + €= 1+
i#N

Since £ is arbitrary, we have
YN
A < A=
lz+2yllp <1+ un

Therefore
Iz + Ayllp = 1+ A2
uN
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For Aunyn > 0 one can be proved analogously the same equality. Thus, if
z = (ug,u2,...) € S(Iy), |ui| < a; for i # N and jun| = an, then

”T + '\y"v llzlle =N
uN

grad (z,y) =

for every y € S(l,). This completes proof of the case 1.

II. Let z = (u1,u2,...) € S(l,) with |u;| < a; for every 1 € N. Since ¢ satisfies
63-condition, so, by Theorem 1.1 from [2] I(z) = 1. Fix y € S(I,). Denote
kx = ||z + Mylle- We will show that there is 0 < Ay < } such that

i A i
(10) |2 <o
ka

for |A| < Ao and every i € N.

Since ka > |lzlle — IAylle =1 = |A] and |u; + Ayi| < |ui] + |Ma, using this same
argumentation as in proof of inequality (9), we conclude that there is a natural
number N such that (10) is satisfied for ¢ > N and A\g = }. Further for every
1 <1 < N there is A; > 0 such that

it 1} ’; AVilc o for A< A

Thus, putting
. 1
Ao =min{[Adl, Az, 1wl 71
the inequality (10) is proved.

Moreover,
1, =1
then, by &3 - condition,
I ( L -Z/\/\y) =1

(see [2], Th. 1.1). Hence, we have

i [so (Lt '\y') v-(u‘)]

1=1

_IT..!L

Z f pit)dt =

=1

In view of (iii) there exists a real number v; between u; and 1‘{%“ such that

Zp. (vi)(—— u'+/\y' —u;) =0.

i=1
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It follows that
i .(v,)l:_k_"u.+i .(v.)i (=0
'_=l PI 1 k‘A 1 .=1 pl 1 kAyl .
Hence

ka—1 _ 32, pi(vius
A Yoy Pivi)u;

for every |A| < Ag. Therefore

i et Al —lelle _ o ka1 EZ, pi(uidyi
grad (:l‘., y) . }lil’; A - ilir:) A - E:I p.'(u,-)u,-’

what completes the proof of Theorem 2.1. n

Analysing the proof of sufficiency of Theorem 2.1 it is easy to conclude the fol-
lowing:

2.2.Corollary. If conditions (i),(ii) and (iii) are satisfied thcn for every z =
(u1,u2,...) and y = (y1,92,...) from unite sphere S(l,) we have

gra.li (I, y) = Z::p,-(ul)u,'.
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