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Remark on the structure of the range of second order 
nonlinear elliptic operator 

P A V E L D R Á B E K , P E T R T O M I C Z E K 

Dedicated to the memory of Svatopluk Fučík 

Abstract. In this paper we study the solvability of the boundary value problem for semi-
linear second order elliptic partial differential equation at resonance. We consider nonlin-
earities g satisfying the sign condition and investigate the set of right hand sides for which 
the problem has a solution. , 

Keywords: Nonlinear second order elliptic equation, semilinear problems, nonlinearities 
with linear growth 

Classification: 35J65, 35J60, 35J25 

1. Introduction. 
Let ft C RN(N > 1) be a bounded domain with the smooth boundary #ft, we 

suppose dQ is at least of a class C1,A\ 0 < p < 1, and let 

ť.ťssl »* ijasl 

be a second order symmetric uniformly elliptic operator with smooth coefficients. 
More precisely, we suppose 

aij(x) = aji(x), I < ij < N, ao(x) > 0 on ft, 
N 

ijml 

for all x 6 ft, £ € HN \ {0}, a,, € C*(S), 1 < ij < 1V,ao € JS°°(ft). 

We shall discus the solvability of the selfadjoint boundary value problem 

(1.1) Lu + Aiti + g(x$ u) =- / in ft, 

u SB 0 on dft, 

where Ai > 0 is the first eigenvalue of-X, / 6 -f(ft) withp > iV, and g : ft xR -> R 
is a Caratheodory's function which grows at most linearly, i.e. g(-, u) is measurable 
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function for any u € R, #(*>•) is continuous for a.e. x € ft, and there exist a 
constant c\ > 0 and a function c2 € LP(Q), p> N such that 

(1.2) W*,tt)|<d|_| + c(_) 

for a.e. _ G ft and for all _ € R. 
When this is the case, the first eigenvalue A- > 0 of -L is simple and the cor­

responding eigenspace is generated by a smooth function (p. It is y> > 0 in ft and 
§JJ < 0 on dft, where ^ is the outer normal derivative. These facts follow from 
the Bony's maximum principle and the abstract Krein-Rutman theorem (see e.g. 
Bers, John, Schechter [2]). 

In what follows we shall denote by P the orthogonal D2(ft)-projection onto the 
eigenspace generated by <p, |M|L« = 1 and by Q = I — P the complementary pro­
jection. 

2. Preliminaries. 
The following lemma is proved in Iannacci, Nkashama, Ward [7]. 

Lemma 2.1. Let T_ G £p(ft), p > N Then there exists a constant d = d(T_) > 0 
such that for aHp+,p_ G Lp(£l) satisfying 

(2l) 0<p+(_)<d , 

o < P-(x) < r_(_) 

for a.e. _ G ft, and all u G W2>P(Q), p> N, for which 

. Lu + Xiu + p+(x)u+ -p_(_)_"~ = 0 m ft, 
( ' A AO 

u = 0 on aft, 
one o/ the following assertions hold: 

(i) ti = 0 on ft; 
(ii) M(_) > 0 for all x € ft and f* < 0 on dft; 

(iii) ti(x) < 0 for all x G ft and f j > 0 on 0ft. 
Remark 2.1. Similarly it is possible to prove a "dual version" of Lemma 2.1. with 
an arbitrary T+ € £p(ft), p > N, a constant d = d(r+) > 0 and functions p±(x) 
satisfying 0 < p+(x) < T+(_), 0 < p-(x) < d. 

If 0 < r_(a?) < A2 — Aj for a.e. x € ft, then the assertion of Lemma 2.1. holds 
with any _ < A2 — Ai (A2 is the second eigenvalue of — L). This follows immediately 
from Lemma 1 in [7]. 

Remark 2.2. Using the shooting argument in one-dimensional case (N = 1) we 
can find the explicit relationship between T_ and d (see Drabek [4]). That is why 
in the case N = 1 the results of this paper can be proved with more accurately 
formulated assumptions. 
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Remark 2.3. Let us consider the operator A : W2>p(ti) n Hi(Q) «-> LP(Q)> p > 2, 
defined by 

A : y *-+ Lu + \%u. 

Then it is well known that 

L2(Q) = N(A)@R(A) 

(the orthogonal decomposition of £2(ft)), where N(A) is the kernel and R(A) is 
the range of A. Moreover, K = A""1 is a well-defined operator from R(A) onto 
D(A) n R(A) (D(A) C L2(Q) is the domain of A), K(R(A) f) Ip(ft)) C W2>P(Q) f) 
J?}(a) ,p>2, and 

||K/lk-..-<cp||/|U„ 
for any / € R(A) n LP(Q). The operator K is called the right inverse of A. 

Any function / € LP(Q), p > 2, can be written in the form 

/ = sip + h = Pf 4- Q/, 

where s € R, h € .£*(&) n .R(A). 
In what follows G will be the Nemyckij's operator generated by g = 0(;r,u), i.e. 

G(u)(aO = ^s,u(aO). 

Due to (1.2) G is a continuous operator from LP(Q) into itself, p> N. 
Due to our notation the boundary value problem can be written in the equivalent 

form 

(2.3) Au + G(u) = / . 

3. Main result. 
Let y r f t xR—>Rbea Caratheodory's function satisfying the growth condition 

(1.2). Then we can assume, without loss of generality, that for the functions T± 
defined by 

(3.1) ~ + ~ 
l i m s u p ^ - ^ ! - = r + ( x ) , 
«-.+oo U 

Umsup£(£i!í)=r_( í ;), 

for a.e. x € ft, we have T± 6 17(0), p > N. 
Let us suppose that g satisfies the following sign condition 

(3.2) $(x,u)u>0 

for a.e. x € ft and all u € R. 
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Theorem 3*1. Let us suppose that r_ € 1/(0), p > N, is the function defined in 
(S.l) and let d = d(I\-) be the constant associated with T_ by Lemma t.l. Suppose 
that the function T+ from (S.l) is such that 

0 < T+(x) < d 

for a.c. x € 0, Moreover, assume the validity of (S.t). Then the boundary value 
problem (1.1) has at least one solution u 6 W2*(0) f) #•}(&), p > Nt for any 
f € 1/(0) satisfying the orthogonality condition 

(3.3) f f(x)<p(x)dx~Q. 
Jo 

The proof of Theorem 3.1 can be found in Iannacci, Nkashama and Ward [7]. 
In addition to (3.2) we shall assume 

(g) let at least one of the following conditions be fulfilled: 
(i) there are open sets of positive measure 0± C ft, d0± n dO ^ 0 and real 

numbers u+ > 0,u_ < 0 such that g(x,u+) > 0, for a.e. x 6 0+, g(x, u_) < 
0, for a.e. .e€Sl.; 

(ii) there are real numbers u+ > 0,u_ < 0 such that g(x,u) > 0 for a.e. x 6 
0+(u) and all u > u+ , g{x,v) < 0 for a.e. x € flL(v) and all v < u_, 
respectively. Here 0+(u),0~(v) are subsets of 0 of positive measure. 

Note that in the case (ii) it is possible dO+(u) ndU = 0,dQ.(v) n 80 = %. 
If g = g(u) does not depend on x € 0, the previous condition (g) has this more 

simple form: 
(g) there are ui > 0 and u2 < 0 such that g(ui) > 0 and g(u2) < 0. 

Theorem 3.2. In addition to the hypothesis of Theorem S.l suppose that (g) is 
fulfilled. Then for any fixed h 6 R(A) n 1/(0), p>nf there exist Ti = Ti(h) < 0 < 
T2(h) = T% (where possibly T\ = -oo or T2 — Fooj such that the boundary value 
problem 

( . Lu + Aiu + g(x, u) = 3(p + h in 0, 
1 * j u = 0 on dO, 

has at least one solution u € W2»'(0) H H^Q provided that 

a6(Ti,T2) . 

Remark 3.1. If g(x, u) = 0, the FVedholm alternative implies that the problem 

Lu + Aiu = / in 0, 
u = 0 on dO, 

has a solution for / satisfying (3.3). Theorem 3.2 asserts that if nonlinearity g is 
in some sense "nontriviaT (see condition (g)) then right hand sides / satisfying the 
orthogonality condition (3.3) form a proper subset of the set of all right hand sides 
for which (1.1) has a solution. Moreover, the orthogonal decomposition of / gives 
more precise information about the structure of the range of the operator defined 
by the left hand side of (3.4) (see the definition of T\ = Tx(h), T2 = T2(h) in section 
4). 
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Remark 3.2. The proof of Theorem 3.2 uses essentially the assertion of Lemma 
2.1. Taking into the account the Remark 2.1 then also "dual version" of Theorems 
3.1 and 3.2 hold: the function 1+ € -S'(Q), p > N given in (3.1) may be arbitrary 
and r_ (given also in (3.1)) must be such that 

o<r-(*)<d 

for a.e. x 6 ft, where d — d(T+) is the constant associated to T+ by a "dual version* 
of Lemma 2.1. 

Remark 3.3. Theorem 3.2 completes Theorems 1 and 2 in Iannacci, Nkashama 
and Ward [7]. Our result is also a generalization of the result of de Figueiredo, 
Ni[5], Gupta [6] and Drabek [3]. 

4. Proof of the main result. 
Let / « sy> + h, s € R, h € R(A) n L*(Q)iP > 1V\ be arbitrary but fixed. We 

shall suppose that g fulfills both (3.2) and (g). Assume, at first, that g -fe g(x, u) fa 
bounded in the following sense: there exists 6 € If(Q) such that 

\g(x,u)\<b(x) 

for a.e. x € ft and for all u € R. 

Step 1. (Ljapunov - Schmidt reduction). Using the usual decomposition of (2.3) 
we obtain an equivalent bifurcation system 

(4.1) t; + KQG(t<p + v) - KQf =- 0, 
(4.2) PG(t<p + v)-Pf =-0, 

u = tip + v, v € R(A), t 6 R. 

Step 2. (solvability of (4.1)). Let t; 6 R(A) C\ If(Q) be an eventual solution of 
(4.1) for arbitrary but fixed t 6 R. It follows that v 6 W^(ft) n ^ ( f t ) , P > N, 
and moreover 

(4.3) Mw**£c,m» + M»hP>* 

(for c, see Remark 2.3). Applying the Schauder fixed point theorem and using (4.3) 
we can prove that for any fixed t € R there is at least one v € R(A) satisfying (4.1). 

Step 3. (solvability of (4.2)). The Sobolev imbedding theorem and (4.3) yield that 
t; € Cl'»(Tl) and 

(4.4) ||w||c-.#. < const. 

for any solution of (4.1) with the constant independent on t 6 R. Set 

S m {(t, v) € R x [R(A) n I/(Q)); v + KQG(ttp + v) m KQf) 



460 P.Drábek, P.Tomiczek 

and define a real function ф : S —• R by 

Ф(tyv)= / g(x,Џ(x) + v(x))ip(x)dx, 
Jӣ 

(t,v) € S. Then the solution of (2.3) is exactly u = tip + v such that (t, v) G S and 
*(*•»)-Jq/(»M*)«k« «-

FVom (3.2), (g) and (4.4) follows that there exists ii > 0 such that 

(4.5) ^(ti, v) > 0 and ^(-*i, ti>) < 0, 

for all (h,v) G S and (—*i,u;) 6 S. according to Lemma 1.2 from Amann, Am-
brosetti, Mancini [1] there exists a connected subset Stt C S such that [—ii,<i] C 
proj# Sf,. Since the function %l> = i/>(t, v) is continuous on connected set Stt, there 
are due to (4.5) at least one t € (—*i»ti) and v G R(A) such that (t, v) € S and 

*(*,«) »0 , 

i.e. u = tip 4- v is a solution of (1.1) with the right hand side / satisfying the 
orthogonality condition (3.3). For fixed h G R(A) set 

Ti= inf inf *p(t,v), T2 = sup sup i/>(t,w), 
h (t,v)€Stl tx ( i , w )€S t l 

where the first "infw and "sup" are taken over all t\ satisfying (4.5). Note that 
Ti < 0 < T2. Then for any s € (Ti,T2) we can find t G R and v € R(A) such that 
( t ,v )€Sand 

tl>(t,v)~s, 

i.e. u = tip + v is a solution of (1.1) with the right hand side / = s<p -f h. This 
completes the proof of Theorem 3.2 for a bounded g. 

Rirther, let us suppose, that g is not bounded in the sense mentioned above. For 
fixed n € N we shall define a new function gn in the following way 

!

g(x,u) , x€$l, \u\<n, 
g(x,n), x€ti, u>n, 

g(x, —n), x € H, u < —n. 
Then, with respect to (1.2), for any n € N there exists bn € .k*(ft), P > N, such 
that 

\gn(x>u)\<bn(x) 

for a.e. x G 0 and all u G R, i.e. each gn is bounded. 
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Step 4. (an apriori estimate). Let us suppose that / € LP(Q) satisfies (3.3). We 
shall prove that there exists no € N such that ||u||c» < no for any solution of 

, 4 gx Lu + Xtu + gno(x,u) = / in ft, 

u = 0 on dft. 

Suppose the contrary, i.e. there is a sequence of u n € W2,P(Q) (1 HQ(Q) with 
llMn||c- > n such that 

(4.7) Lun + Xxun + gn(x, un) = / in ft. 

Setting vn = tx n / | |u n | | c - , we have from (4.7) 

r / 9n(x,un) . 
Lvn = j . — - -—r. Ait;n in U, 

(4.8) | |un | |C- | |un | |C i 
vn = 0 on 8Q. 

Prom the growth condition (1.2) it follows that fr« A , is bounded in LP(U). Hence 
the right side of (4.8) is bounded in Lp(tt). Using a standard JD-'-estimate and the 
compact imbedding of W2 ,p(ft) into Cx(ft) (for p > N), we deduce from (4.8) that 
there exists v € Cx(ft) such that 

( 4 9 ) vn-+v inC^Q), I H | c t = l , 
v = 0 on dU 

(we pass to a subsequence if necessary). 
Since ||Xt;n||Li» < const, LP(Q) is reflexive Banach space and L is weakly closed 

operator, we get that v € W2,P(U) fl HQ(Q),LVU —- Lv in I/(Q). Hence we can 
pass to the limit in (4.8) and obtain that v solves the problem 

Lv = - P ( x ) - Xiv in ft, 

* ' ' v = 0 on 0ft. 

The function P 6 .^(ft) is the weak limit in P^ f t ) of the sequence 

1 Kiic- w 
Let us define function p = p(x) by p(x) = f l ^ if v(x) •/ 0, p(x) = 0 if v(x) = 0 and 
set 

p+(x) = p(x) for x € {x € ft; v(x) > 0} , 

p_(x) = p(x) for x € {x G ft; t>(x) < 0}. 
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Then clearly 

0 < P+(x) < T+(x), 
0<p-(x)<r_(x), 

for a.e. x € Q (see (3.1)) and the equation (4.10) can be written in an equivalent 
form 

Lv -f X%v + p+(x)v+ — p~(x)v~ = 0 in ft, 
v = 0 on dQ. 

It follows from Lemma 2.1 that either 

v > 0 in H, -r- < 0 on dQ, or 
on 
r\ 

v < 0 in 0, -r~ > 0 on dQ. 
on 

Let us assume that v > 0 (the case v < 0 can be treated similarly). Since by 
(4.9) vn —> v in Cl(Q) with v > 0 in Q and f j < 0 on dQ, we have un(a;) —> oo 
uniformly on each compact subset of Q and 

un(x) > 0 

for all x € Q and n sufficiently large. Multiplying the equation (4.7) by the eigen-
function (p and integrating over H, we get 

/ gn(x,un(x)) <p(x)dx~0. 
J« 

But our hypotheses (3.2) and (g) imply 

/ gn(x,un(x)) <p(x)dx>0, 
JQ 

for n large enough, which is a contradiction. 
The apriori estimate just proved yields that any solution of the problem (4.6) is 

simultaneously the solution of (1.1). 

Step 5. Take / € £*(&), p > N, satisfying (3.3). Define gno with n0 so large that 
gno satisfies (g) and any solution of (4.6) satisfies the apriori estimate ||ti||c* < no* 
Since gno is bounded, (4.6) has at least one solution by Step 3. It is the solution of 
(1.1) too (see SkBii). 
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Step 8. (proof of Theorem 3.2). Let h 6 R(A) n IS(Q),p > N, be fixed. Let us 
consider the boundary value problem 

( . Lu + \!U + gno(x}u) = s<p + h in Q, 

* u = 0 on dQ, 

where gno was defined in Step 5 for f = h. Then any solution uo of (4.11) with 
s ss 0 satisfies 

(4.12) Utiollci < no. 

It can be also written in the form uo = h<p + VQ, where 

^n0(*o»v0)= / gno(x,t0<p(x) + v0(x))<p(x)dx = 0 , 
Jo 

(<o,Vo) € Sn° (see Step 3). Moreover, there exists <i > 0 (which only depends on h 
and not on s) and a connected set SJJ° C Sn° such that [—<i,<i] C proj f t S4

n°, 

(4.13) 4n0(ti,v) > 0, iM-<i ,w) < 0 

for any (<i, v) 6 SJ£°, (—<i,u>) € SJJ0. Since V>n0 -» continuous on Sf
n°, its Darboux 

property together with (4.12) and (4.13) imply that for any s 6 (Ti(h),T2(h)) with 
Ti(h) < 0 < T2(h), |.7i(fc)|, T2(h) sufficiently small, there exists at least one solution 
u of (4.11) such that 

||u||c- < n0. 

This completes the proof of Theorem 3.2. 

Remark 4.1. Let 

g~"°°(x) = limsupgf(x,u) and g+oo(x) = liminfflr(ar,u) 
u-~+—oo *—>+oo 

be well defined functions bounded from above and from below respectively, and 
instead of (3.2) assume that 

/ g"~°°(x)<p(x)dx< / g+oo(x)<p(x)dx. 
Jӣ Jӣ 

Then the boundary value problem (1.1) has at least one solution u € W2*P(Q) f\ 
H^(U) for any / 6 !*(&), p > N, satisfying 

(4.14) / g~°°(x)<p(x) dx < f f(x)<p(x) dx< f g+oo(x)<p(x) dx. 
Jn Ju Jo 

Let us give a sketch of the proof. We can make an apriori estimate similarly 
to the Step 4 for any right hand side / satisfying condition (4.14). Then using a 
truncation of g outside of a sufficiently large interval we prove the solvability of 
(1.1). We proceed by the same way as in Steps 1-3. 
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Remark 4.2. The same result as mentioned in the previous remark can be proved 
using the degree-theoretical approach (see e.g. [7] and [4]). 

Remark 4.3. The same result as our Theorems 3.1 and 3.2 holds also for Neumann 
boundary value problem 

Lu + g(xtu)~ / inO, 

-r- = o on an. 
on 

To prove it we have to use the corresponding modification of Lemma 2.1 and a 
"stronger version" of condition (g): 
(gjv) there are Q±(u) C Q,measO±(u) > 0 such that g(x,u) > 0 for all u large 

enough and a.e. x € H+(u), g(xy u) < 0 for all —u large enough and a.e. 
x € n_(u). 

If g = g(u) is independent on x € ft, then the condition (gjv) is of the form: 
(HN) g(u) > 0 for u large enough and g(u) < 0 for —u large enough. 
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