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Borel classes in AST. 
Measurability, cuts and equivalence 

MARTIN KALINA, PAVOL ZLATOŠ 

Abstract. A kind of measures on the universe V and the Borel hierarchy are introduced. Us­
ing measure-theoretical methods Borel representable pairs of cuts, i.e. pairs of form (X. X) 
where X is a Borel class are characterized. Borel equivalence is studied and described in 
terms of cuts. Class-theoretical operations on Borel classes are related to arithmetics of 
Borel cardinals. A Ramsey type theorem relating Borel and real equivalence on sets is 
proved. 

Keywords: Alternative set theory, measure, Borel class, real class, lower cut, upper cut, 
Borel equivalence, Borel cardinal 

Classification: Primary 03H20, 04A15, 28A05, Secondary 03E70, 03H15, 28E05 

This paper is a direct continuation of our preceding works [K-Z a], [K—Z b]. 
It starts with introducing of certain type of measures fid (d £ N\ {0}) on V and 

investigating the resulting notions of measurability which can be characterized cut- _ 
theoretically. However, they differ considerably from the cut-theoretical measure 
and measurability introduced by A.Tzouvaras [Tz ]. In fact, our measures fid rather 
remind of the Loeb measure [L] which was reformulated into the framework of AST 
by M.Raskovic [R] (see also [C a]). On the other hand, it differs in not being located 
to a single (hyperfinite) set but its elementary values 1/d are distributed over the 
whole universe V. The measures fid form a particular case of measures introduced 
by M.Kalina [K] using a sequential approach. However, all his measures behaving 
analogously to the classical ones are in a certain sense equivalent to some fid. From 
this point of view the presented construction of measures fid can be regarded as a 
partial alternative to the sequential approach from [K]. 

In the next section the Borel hierarchy over Sd-classes is introduced. Then the 
results on measurability are applied to the study of cuts of Borel classes. In partic­
ular, Borel representable pairs are fully described. 

Section 4 is devoted to the study of equivalence and subvalence of Borel classes 
under Borel maps. A complete description of this equivalence in terms of the equi­
valence of near equality (introduced in [K-Z a]) of their cuts is obtained for Borel 
semisets. In order to extend this description smoothly also to nonsemiset Borel 
classes, the extension of the Borel hierarchy over Sd-classes to the Borel 
hierarchy over Sd*-classes (a fixed revealment of Sd-classes - see [S—V]) seems 
unevoidable. Then the notion of Borel cardinal can be introduced and represented 
in a natural way. Using the results of [K-Z a], for basic class-theoretical operations 
on Borel classes, the Borel cardinality of the result can be computed in terms of 
Borel cardinalities of the arguments. 
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Finally a compactness, or if you wish - a Ramsey type result relating the Borel and 
real equivalence of sets is established using the concept of compatible biequivalence 
from [G~Z a]. 

1. Preliminaries. 
The reader is assumed to be acquainted with [V] and [K—Z a], [K—Z b]. Notions, 

notations, conventions and results from these sources will be used freely, sometimes 
without any reference. 

Let us recall from [G—Z a] that a pair (R, S) is called a biequivalence if R is a 
7r-equivalence, S is a or-equivalence, dom(i?) = dom(5) and R C 3. The Sd-class 
dom(J?) = dom(S) is called the domain of the biequivalence (i?, 5). A biequivalence 
(R, S) is called compatible if for each infinite set u C dom(il) it holds 

(Var,y £ u)(xSy) =0 (3x,y 6 u)(x £ y & xRy), 

or equivalently 

(Vx,y € u)(xRy => x = y) =-> (3a:, y € u)-i(xSy). 

From Theorem 7 in [G-Z a] it follows directly 

1.1. Proposition. If (R,S) is a compatible biequivalence, then for each infinite 
set u such that u2 C S there is an infinite subset v C u such that v2 C R. 

1.2. Lemma. Let (R,S) be a (compatible) biequivalence with its domain Y and 
F :X ~*Y be an Sd-function. Then (F~l oRoF, F'1 o S o F) is a (compatible) 
biequivalence with domain X. 

PROOF : becomes trivial as soon as one notices of the equality 

F - 1 o f l o F = {(x,y) € X2;F(x)RF(y)} 

and analogously for 5. • 

In particular, if (Ry S) is a (compatible) biequivalence with domain Y and X C Y 
is an Sd-class, then its restriction to X, i.e. (R fl X2, S f) X2), is a (compatible) 
biequivalence with domain X. 

The following compatible biequivalence (c ,̂ ~ ) with domain Q (however in most 
cases restricted to N) wiU be frequently utilized in the sequel 

p ~ q <* p = 0 = q V (p £ 0 / q & p/q = 1), 

p ~ g « . > p = 0 = g V ( j > ^ 0 ^ g & O^p/qE BQ) 

where = denotes the usual equivalence of infinitesimal nearness on Q and 
BQ = {p € Q; (3n)(|p| < n)} is the class of bounded rationals. For how ^ can be 
extended from natural numbers to cuts on N, see [K-Z a]. 

A (not necessarily codable) system of classes M will be called a <r-ring if it is 
closed with respect to class-theoretical difference and countable unions (hence also 
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countable intersections). If M is a <7-ring and /i is an operation defined on M such 
that fi(X) is a nonnegative real number or the symbol oo for each X € M, then fi 
is called a measure on M provided it is cr-additive, i.e. 

^(V{Xn;n€FN}) = ^2^(Xn) 
n 

for any sequence {Xn;n £ FN} C M such that Xm f] Xn = 0 for TO ^ n. A 
measure fi on M is called complete if for any X , F such that X € M, f*(X) — 0 
from F C X it follows F € JV(, and consequently fi(Y) = 0, too. Denoting the 
symmetric difference by 

XVY = (X UY)\(X PiY) = (X \Y)U(Y \X), 

it turns out that fi is complete iff for any K, F such that fi(XVY) = 0 it holds 
X € M 4=> F € M\ then necessarily MC^O = f*(Y) or both values are undefined. 
Finally, fi is called a-finite if each X 6 M is a union of countably many classes Kn 

such that fi(Xn) < oo. 
The following result was in fact established during the proof of Theorems 2.1, 2.2 

in [K-Z b], but was not stated explicitly there. 

1.3. Lemma. Let X be a real class and a be a natural number such that J£ < a. 
Then there is a sequence of sets {un,n € FN} such that X C U{un;n € FN} and 
un-<a for each n. 

We will also utilize a result on real functions proved in [6—V]. 

1.4 .Lemma. Let F be a real function. Then there is a sequence {Fn\n € FN} of 
Sd-functions such that F C U{Fn;n € FN}. 

In fact both 1.3, 1.4 are special cases of a fairly general theorem from [u—V]. 
Two real classes X, Y are said to be really equivalent, notation X & Y if there 

is a real function F : X as Y (i.e. a bijective real map of X onto Y). X is really 
subvaient to F , notation X 5 F , if there is a one-one real function F : X —• F ; X 
is strictly really subvaient to F , notation X % F , if X 5 F but not X S Y Basic 
properties of the notions just introduced can be found in [C—V]. In particular, the 
Cantor - Bernstein theorem XSF & Y*X &X &Y holds. 

Combining the last theorem from [C-V] and Lemma 3.2 from [K-Z b] one 
obtains. 

1.5. Proposition. For each infinite set u there are real classes F, Z C u such that 
F H Z = 0, F = £ = |u | /FN , F = Z = int(|u|), but neither Y^ZnorZ^Y 
holds. 

Let us recall from [C—V a] also the following 

1.6. Lemma. 

(a) For any u,v it holds u & v if and only if \u\ = \v\, or |u|,|v| $ FN and 
\u\ ~ |t>|. 

(b) For each infinite set u it holds \u\/FN % u & | u | . ptft 
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2. Measurability of classes. 
Throughout the whole paragraph c and d denote fixed nonzero natural numbers. 
If to each element x € V the same "weight" \/d is assigned, then the ratio­

nal number \u\/d > 0 becomes the "weight" of the set u. But, because of their 
vagueness, to general classes from the extended universe the described "weight" 
function cannot, at least not directly, be applied. Nevertheless, for some of them 
one can expect that approximating them by sub- and supersets their "weight" can 
be measured with the precision up to the equivalence = of infinitesimal nearness. 

A class X is said to be of bounded d-measure, abbreviation M(d,X), if there is 
a q € BQ such that 

(Vn > 0)(3u,v)(u CXCv k ^~~<q<l4 + ~). 
d n d n 

Note that the number q € BQ is determined uniquely up to the equivalence ==, 
and it can always be taken nonnegative. Hence taking its monad in = a single 
real number fid(X) > 0, called the d-measure of X, is assigned to each class X of 
bounded d-measure. 

A class X (such that M(d, X) holds) is said to be of zero d-measure if fJ-d(X) = 0. 
2.1. Proposition. 

(a) For each X it holds fid(X) = 0 if and only if 

(Vn > 0)(3v)(K C v k \v\/d < 1/n). 

(b) IfYCX and fid(X) = 0 then also fid(Y) = 0. 
(c) Let {Xn; n £ FN} be a sequence of classes such that Hd(Xn) = 0 for each n 

and X = U{Kn; n € FN} . Then ^d(X) = 0. 

PROOF : (a) and (b) are trivial. 
(c) Let m > 0. Then there is a sequence {vn;n € FN} such that Xn C vn 

and \vn\/d < l/2n+1ra holds for each n. By the prolongation axiom there is a 
v 2 U{t>n; n € FN} such that \v\/d < 1/m. • 

2.2. Theorem. For each class X the following four conditions are equivalent: 
(a) M(d,X); 
(b) (Vn > 0)(3ti,t;)(ti CXCv k \v\ u\/d < 1/n) k 

k (3m)(3w)(X C urf* m • cf); 
(c) X TK < d/FN k X <dFN; 

(d) (3s)(fid(XVs) = 0 k \s\ < d.FN). 

PROOF : (a)=>(b) is trivial. 
(b)<=> (c) Obviously, the second members of the conjunctions (b),(c) are equiva­

lent, and in view of 3.1.4 from [K—Z a] so are the first ones, as well. 
(b)==>(d) Let {wn; 0 < n € FN}, {vn; 0 < n € FN} be sequences of sets such that 

for each n > 0 it holds un C X C vn and \vn \ un\/d < 1/n. In view of the second 
condition in (b), we can assume that \vu\/d € BQ for each n. Then there is a set 
S such that un C s C vn for each n. It is routine to check that s satisfies both the 
conditions required. 

(d)=»(a) It suffices to put q = \s\/d. m 
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2.3. Corollary. 
(a) Let X, Y be classes having the same cuts, or more generally, let X ^ H &nd 

X ~ Y hold. Then M(d, X) <* M(d, Y). 
(b) Ifc~d, then M(c,X) <=> M(d,X) for each X. 
(c) Ifc<d, then M(c,X) =-> M(d,X) for each X. 
(d) M(d,u)<fr\u\<d- FN for each set u. 
(e) Ifd € FN, then M(d,X) & Fin(K) for each X. 

2.4. Proposition. Let X,Y be classes such that both M(d,X),M(d,Y) hold, 
and F be an Sd-function. Then also M(d, X U Y), M(d, X f) Y), M(d, X \Y) and 
M(d,F"X)hold. 

PROOF : The assertion concerning the union is completely trivial. Since X D Y = 
X \ (X \ Y) and X \ Y = (X U Y) \ Y, it suffices to prove M(d,X \ Y) under 
the assumption Y C X. In that case for each n > 0 there are sets u, v,w, z such 
that u C K C v , u > c y c * a n d | i > \ u\/d < \/2n,\z \ w\/d < l/2n.* Then 
u\z C X \Y C v\w and 

(v\t«0\(ii\*)| M - M - | t « u * l + 1*1 K 
d ~ d 

M - M . M - M ^ i 
d d n 

If v is taken in a way that |v| < d• FN, then also \v\w\ < d- FN. 
In view of 2.2 (c), the assertion M(d, F"X) is a direct consequence of 3.1.5 and 

3.L2 from [K-Z a]. • 
A class X will be called d-measurable if there is a sequence {Xn; n € FN} such 

that M(d,Xn) holds for each n and X = U{X„;n € FN}. The system of all 
(/-measurable classes will be denoted by Md-

Obviously, each class of bounded d-measure is cf-measurable and each cf-measu-
rable class is a semiset. From 2.3 (b) it follows c ~ d => Mc = Md and so does 
c < d => Mc C Md from 2.3 (c). Finally, 2.3 (e) implies that Md is the codable 
class of all at most countable classes for d € FN. 

The d-measure Ud can be extended to the whole system Md putting ^d(-K) = oo 
whenever X € Md and ->M(d,K). 

Obviously, if c cr. d then not only Mc = Md, but also fic(-X") = Pd(X) for 
each X € Mc, i.e. jic = Ud. Similarly, if X, Y € Md have the same cuts, then 
m{X) = M(y). 

The following theorem on cuts of d-measurable classes is a direct consequence of 
2.2 and of the results form [K-Z a]. 

2.5. Theorem. For each class X € Md exactly one of the following three condi­
tions is satisfied: 

(a) X<d/FN; 
(b) d/FN<£~X<d-FN; 
(c) \X\ = d-FN. 
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Moreover, for any class X (a) is equivalent to i*d(X) = 0 and so is (b) to Q < 
fjtd(X) < oo. However, (c) is equivalent to pd(X) = oo only for X € Md-

2.6. Theorem. Let {Xn;n € FN} be a sequence ofpairwise disjoint d-measurable 
classes and X = U{Xn;n € F N } . Then 

M*) = E^(X»)-
n 

PROOF : If the series J2n A*<-(-̂ n) diverges (which is always the case if pd(Xn) = oo 
for some n), then obviously fid(X) = oo. Assume that it converges. Let qn € t*d(Xn) 
for each n. Now taking any k > 0, there are two sequences {un; n € FN}, {vn; n € 
FN} such that un C Xn C vn and 

< 9 n < ^ + : 
a* 2*+2k * a 2n+2k 

holds for each n. From the convergence of the series it follows that there are set 
prolongations {u*;i < a},{v,;t < a},{^,;* < o.} of the mentioned sequences such 
that for all t, j < a, i' ^ jf, it holds Uj fl tij = 0, u, C VJ, 

d 2»+2k * ^ 2»+2*' 

and an m € F N such that E L m ft < 1/2kt W e P u t 

« = U{ut; 0 < i < m}, *> = U{vt-; 0 < • < a} 

and 

a 

$=0 

Then u C I C u and the real number E n M - ^ n ) is the monad of q. A simple 
computation $ves 

q - \u\/d = £ ( * - |u«|/<2) + 2 > < £) -J.J-J + -t-* < -/*• 

MA* - 9=DM/**'*> < £ =sr < V*-
t = 0 1=0 

Hence $ € l*d(X). This shows the desired equality. • 

2.7. Corollary. Let M(d,X) andYQX hold. Then Y G Md iffM(d,Y). 

Summarizing, one obtains 
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2.8. Theorem. The system Md of all d~measurable classes is a a~ring and fid is 
a complete, a-finite measure on Md. 

PROOF : Let X = U{Kn ;n G FN},Y = U{Fn;n € F N } , where M(d,Xn), 
M(d, Yn) hold for each n, belong to Md. It remains to show that X \ Y G Md. For 
all m,n we put Z m n = Xm n F n and Zm = U{Z m n ;n G FN}. Then M(d,Zmn) 
holds by 2.4; hence Zm G Md and M(d, Zm) follows from the inclusion Zm C Xm 

and 2.7. The equality X \ Y = U{Xm \ Z m ; m € F N } concludes the proof. The 
rest has already been proved. • 

According to the previous results, each class X G Md can be represented both in 
the forms 

X = U{Xn; n € FN} = U{Fn; n € F N } 

where for each n it holds M(d,Xn),Xn C Kn+i, and M(d,Yn),Ym n F n = 0 for 
m ^ n. Then 

/irf(X) = sup^(K n ) = ^2fid(Yn). 
n n 

The following theorem is perhaps rather surprising, but otherwise a trivial con­
sequence of 2.4. 

2.9. T h e o r e m . Let X £ Md and F be an Sd-function. Then F"X G Md and 
»d(F"X) < iu{X). 

2.10. Corollary. If F is a one-one Sd-function and X C dom(F) ,X € Mdy then 

Hd(F"X) = ^(X). 

As a consequence, the measure fid is invariant with respect to the group of all 
bijective Sd-functions F : V « V. 

2.11. Theorem. Let X € MC,Y € Md. Then X x F € JVfCri and /ic.*(K x F ) = 
Hc(X).»d(Y). 

PROOF : If M(c, X), M(d, F ) hold, then it is obvious. The transfer to the general 
case is also trivial. • 

3. Cuts of Borel classes. 
The system of all Borel classes is the least cr-ring containing all the Sd-classes. 

More precisely, one can introduce the hierarchy of Borel classes indexed by countable 
ordinals a 6 0 as follows: 

X is a (Jo-class iff X is a 7ro~class iff X is an Sd-class. 
If 0 < a € 0 , then X is a aQ-class (7ra-class) iff there is a sequence {Xn;n € F N } 

such that each Xn is a 7r^~class (<r^-class) for some fl < a and X = U{Kn; n € F N } 
(X = H{Xn; n G F N } , respectively). 

X is a 8a-class if X is both a aa-class and a 7T0-class. 
Finally, X is a Borel class if X is a aQ-class, or equivalently a 7ra-class, for some 

a GO. 
From the hierarchy described it follows that the Borel classes form a codable 
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Obviously, each Borel class is a real one. 
Instead of the terms a\ -class and TTJ-class we will say simply a-class and 7r-class, 

respectively. Note that S\ -classes and Sd-classes coincide. 
As it is not our aim to undertake a deeper study of the Borel hierarchy just 

introduced, whose properties moreover are quite analogous to those of the Borel 
hierarchies over classical metric spaces, we are going to state here only one result 
of general nature which will be necessary for our purpose. 

Since inverse images under functions preserve all the operations generating the 
Borel family, the following lemma can be easily proved by transfmite induction over 
0 . 

3.1. Lemma. Let F be an Sd-function, a € 0 and X be a aa-class (ira-class, 
6a-class). Then (F""1)".^ also is a aa-class (wa-class, Sa-class, respectively). 

As a consequence, inverse images of Borel classes under Sd-functions are Borel 
classes. In particular, if X,Y are Borel classes, then X"1 and X x Y are Borel 
classes, as well. 

The following result concerning the cuts of Borel classes is an analogue of Theorem 
2.4 from [K—Z b] on cuts of real classes and it plays a similarly important role. 

3.2. T h e o r e m . Let X be a Borel class and a G N. If X_ < a < JC, then 

int(a) < X < a < X < cl(a). 

PROOF : Let X_ < a < X. We will prove the inequality int(a) < X, or equivalently, 
that |a( l — 1/&)J < X holds for each k > 0. By 1.3 there is a sequence {wn;n € 
FN} of sets such that X C \j{wn;n 6 FN} and |u;n| < a for each n. We put 
YQ = XnwQ,Yn+! = ( X H t i ; n + i ) \ ( F o U - - - u r n ) . Then {Fn ;n € FN} is a sequence 
of pairwise disjoint Borel classes and X = {Yn; n € F N } . As Yn < wn~<a < X, there 
has to be an m such that a < YQ U • • • U Ym. Let for each n <m t*n, vn denote sets 
such that un < Yn C vn and |vn \ un\/a < l /2 n + 1 k . Then u = u0 U • • • U um C X, 
\u\ = |u0 | H h |um | and a < \v0 U • * • U vm\ < \v0\ H h |vm | . Let us compute 

m m 

l-l = E lu'l > Edv 'l - *TTT) >«-- /*> L«(i - i/*)J-
t = 0 

Consequently, [a(l - l/k)J < X_. Now, assume that JC < cl(a) does not hold. Then 
there is a b > a, 6 jk a such that JC_ < b < X. Then, as just proved a < int(6) < X, 
contradicting & < a. • 

3.3. Corollary. Let X be a Borel class. 

(a) If either £ or X is an additive cut, then X = X. 
(b) If 2Lt X are nonadditive, then int(a) < Jf < X < cl(a) for some a. If 

additionally X_ ^ X, then each a € X \ X_ satisfies the above inequality. 

( c ) X s I 
(d) & = X V (Va 6 X \ 2L)M{a, X). 
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A pair of cuts (A, B) will be called Borel represent able if there is a Borel class X 
such that A = X, B = X. 

Obviously, each Borel represent able pair of cuts is really represent able, it consists 
of two nearly equal cuts and each of them is a cr~ or a 7r-class. 

3.4. Theorem. A pair of cuts is Borel representable if and only if it is exactly of 
one of the following two iypes: 

(1) (A, A) (A - real, i.e. a- or w-cut); 

(2) (a - A, a + A) (A - additive, real, 0 < A < a). 

PROOF : In the proof of Theorem 3.3 in [K-Z b], characterizing really repre­
sentable pairs of cuts, it was in fact shown that both the types (1), (2) are Borel 
representable. Obviously, they cannot overlap. It suffices to prove that none of the 
remaining eight types of really representable pairs of cuts is Borel representable. 
This will proceed in a uniform way. For any i = 3 , 4 , . . . , 10 we will assume that 
there is a Borel class Xi with cuts of the t-th type. Starting from Xj a Borel class 
Yi with cuts contradicting to 3.2 will be constructed. 

(3) X3 = a + 6/FN, X^ = a + int(6) (FN <b). 

There i s a u C X3, such that \u\ = a. We put F3 = X3 \ u. Then I3 = 6/FN, 
n = int(6). 

(4) X4 = a + 6/FN, Xl=a + cl(b) (FN < b). 

Again there is a u C X4, \u\ = a. For F4 = XA \ u it holds I4 = 6 / F N , % = cl(6). 

(5) X5 = a - 6/FN, X5 = a + int(6) ( F N < 6 < a • F N ) . 

There i s a O I 5 such that \v\ = a + 6. We put Y5 = v \ Xs. Then Ys = 6/FN, 
F5 = cl(6). 

(6) X6 = a - 6 / F N , X e = a + cl(6) ( F N < 6 < a • F N ) . 

There is a v D X6,|v| =-= a + 26. For Y6 = v\X6it holds ^ = int(6), % = cl(26). 

(7) K7 = a + 6/FN, ^r" = a + 6 . F N ( F N < 6). 

There is a u C X7 such that \u\ = a. We put Y7 = X7 \ u. Then *V = 6/FN, 
Yt = 6 • FN . 

(8) X8=a-6/FN, K8^a + 6 - F N ( F N < 6 < a • F N ) . 

If a/FN < 6 < «_FN , then even the class F8 = X$ contradicts 3.2, since 
X8 = int(a), X8 = a - FN . If 6. F N < a, then there is a set v D X% such that 
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\v\ = 2a. For Kg = v \ Kg it holds *g = a - b • FN, Y% = a + 6/KN. The fact that 
the existence of such a Borel class Fg is in contradiction with 3.2 will be shown in 
(10) below. 

(9) K9 = a - 6 . F N , X9~ = a-b/FN (FN <b<a/FN). 

There is a set v D X9, \v\ = a. For Y9 = v \X9 it holds YQ = b/FN, % = b- FN. 

(10) Xi_y=a-bFN, KTo" = a + b/FN (FN <b<a/FN). 

There is a w D X\Q such that \w\ = a + b. We put Yio = w \ Kio- Then 
Yio=int(6), F10 = 6.KN . • 

Let (C,D) be a Borel represent able pair of cuts. We put Y = (C x {0})U 
((D -r C) X {1}). It can be easily verified that Y = C, Y = D, whenever (C, D) 

is of type (!) or (2). This not only proves the Borel representability of pairs of 
cuts of types (1), (2), for which we have referred to [K-Z b], but also the following 
theorem. 

3.5. Theorem. For every Borel class X there is a 62-class Y (in fact Y can be 
chosen to be a union of a a-class and a ir-class) such that 2L = Y_ and X = Y. 

Consequently, for the study of the behaviour of Borel classes with respect to the 
measures fid it suffices, in some sense, to deal with #2~classes> only. 

4. Borel equivalence. 
Preliminarily we have to list some basic facts concerning Borel functions, i.e. 

functions which at the same time are Borel classes. 

4.1. Lemma. Let F be a Borel function. Then there is a sequence {Xn;n € FN} 
of Borel classes and a sequence {Fn; n E FN} of Sd-functions such that 

dom(F) = U { K „ ; n € F N } 

and 

F = U{Fn \Xn;n£FN}. 

PROOF : Let {Fn]n € FN} be the sequence of Sd-functions guaranteed to F by 
Lemma 1.4. For each n let Fn denote the Sd-function defined by Fn(x) = (Fn(x), x) 
for x 6 dom(Fn). We put 

Xn = {x;Fn(x) = F(x)}=(Fn-*)"F. 

After 3.1, Xn are Borel classes, and both the remaining conditions are trivially 
satisfied. • 
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4.2. Theorem. 
(a) If F is a Borel function and X is a Borel class then (F~~1)"X is a Borel 

class. 
(b) If F, G are Borel functions then F oG is a Borel function, as well. 

PROOF : 

(a) Let {Xn;n 6 F N } , {F n ;n € F N } be the sequences guaranteed to F by the 
previous Lemma. Then 

(F-^'X = U { ( F - 7 ' ( X n K n ) ; n € F N } 

obviously is a Borel class. 
(b) Let additionally {Yn;n € FN},{C?n ;n € F N } be such sequences for G. 

Then 
FoG = U{(Fm \Xm)o(Gn ryn);m,n€FN} 

= U{(Fm oGn) r (Yn n(G;7'Km);m,n € FN} 
is a Borel function, again. • 

4.3. Remark. There are also functions F which are not Borel, but ( F - 1 ) " X is 
a Borel class for each Borel X. Namely, in [V] for every pair of infinite sets u, v a 
bijection F : u & v is constructed such that (VK C u)(Set(X) & Set(F"X)) holds. 
Nevertheless, if |u| </> \v\, then owing to 1.6 (a) F cannot even be a real class. 

4.4. Remark. Note that a composition R o S of Borel relations I2, S need not be 
a Borel relation. 

Borel classes X, Y will be called Borel equivalent, notation X « y , if there is a 
one-one Borel function F such that dom(F) = X, rng(F) = Y. X is Borel subvaJent 

6 
to y , notation X < Y, if there is a one-one Borel function F : X —* Y. Finally, X 

b b b 

is strictly Borel subvalent to Y, notation X X Yy if X •< Y and not X w Y. 
Since the relation of Borel equivalence is trivially reflexive and symmetric and 

its transitivity follows from 4.2 (b), the term "Borel equivalence" is fully justified. 
Also, both the relations of Borel subvalence and strict subvalence are tranzitive. 
The last statement, however, is based on the Cantor - Bernstein theorem on Borel 
equivalence. 

b * 
4.5. Theorem. Let X, Y be Borel classes. Then X &Y if and only if X <Y and 

b 
Y<X. 

PROOF : Let us concentrate on the nontrivial implication, only. Let F : X —• y, 
G : Y —• X be one-one Borel functions. By induction over FN two sequences 
{Zn;n € F N } , {Wn;n € F N } can be constructed putting ZQ = Y \ F"X,Wn = 
G"Zni Zn+i = F"Wn. Owing to 4.4 (a), all the Wn,Zn are Borel classes, hence 
W = U{Wr,;n € F N } is a Borel class, as well. The fact that the Borel function 
F r (X \ W) U G"1 r W establishes the equivalence between X and Y is already 
well known. • 

The following theorem is trivial. 
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4.6. Theorem. Let {Xn;n € FN},{Yn;n € FN} be two sequences of Borel 

classes, such that Xn « Yn holds for each n. Then 

(a) XoxXx&YoxYu 
(b) if Xm fl Xn = Ym fl Yn = 0 for any m ^ n, then 

U{Xn; n € FN} « U{Yn; n € FN}. 

4.7. Proposition. Let A,B be real (i.e. Borel) cuts. Then A « B if and only if 
b 

A~ B, and A< B if and only if A < H. 

PROOF : First let us assume that there is a Borel bijection F : A « B. Then by 
3.1.3 from [K-Z a] it holds F < A,B < F. By 3.3 (c) we have F ~ F, hence also 
A ~ B. Now assume that A ~ B. Then either A = B or there is an a such that 
A ~ a cz B. According to 4.5 it suffices to prove int(a) « cl(a) for each a. This is 
a special case of the following lemma. • 

6 

4.8. Lemma. Let a £ N and C < a be a real additive cut. Then a — C « a -f C. 

PROOF : It suffices to deal with the case a £ FN, 0 < C < a. The Borel bijection 
F:a — C « a - f C can be constructed directly putting F(3c) = c, F(3c + 1 ) = a — c, 
F(3c + 2) = a + c for c G C and F(6) = b for 6 6 (a - C) \ C. 

The rest of the proof of 4.7 is also trivial, now. • 

4 .9 .Lemma. 

(a) Let X be a a-class. Then X « |X | . 

(b) Let X be a w-class and a semiset. Then X « \X\. 

PROOF : (a) X can be written in the form X = U{Xn ;n € FN}, where Xn are 
Sd-classes and Xn C Xn+i for each n. If all the Xn are even sets, then obviously 
|X| = U{|Xn | ;n € FN} and a Borel bijection F : X « |X| can be constructed 
easily by induction. If at least one of the classes Xn is proper, then obviously 

|X | = |X n | = N and there is an Sd-function F : Xn « N for such an n. X « N 
then follows from the Cantor - Bernstein theorem 4.5. 

(b) Since X is a semiset, it can be written in the form X = fl{un;n 6 FN}, 
where u n+i C un for each n. Let {gn; n € FN} be a sequence of functions such 
that gn : un « |un | . Then there are set prolongations {ui;i < a},{g ,;i < a} such 
that Wt+i C Ui for each i < a and g, : u, « |u,| for each *' < a. A set sequence 
{fai £ a} s^ch that / , : Ui « |u,| for each i < a and /i+i C / , for each i < a will 
be constructed by induction downwards, putting /« = ga and 

/,•_! = /> U ay^i f (uy-i \ uy) 

fori < a , j ^ 0 . Then the Borel function F = U{/ , ; FN < i < a} = f l { / n ; n € F N } 

establishes the equivalence X « |X | . I 
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6 b 
4.10. Theorem. Lei X be a Borel semiset. Then K « X w X. 
PROOF : According to 1.10 from [K-Z b] there are semisets F, Z such that Y C 
X C Z, each of them is a a- or 7r-class and \Y\ = X, \Z\ = X. By 4.9 it holds 

6 6 6 6 

|Y| « v , Z w \Z\. The Borel subvalences Y < X < Z are trivial. By 3.3 (c) it holds 
|Y| = X ~ X = |Z|, hence by 4.7 also X = | F | « \Z\ = X. The Cantor - Bernstein 
theorem 4.5 completes the proof. • 

4.11. R e m a r k . Neither 4.9 (b) nor 4.10 can be generalized omitting the semiset 
presumption. In fact, as pointed out by K.Cuda [C b] there is a 7r-class X which is 
not a semiset, i.e. |X| = N, but there is even no real bijection F : X « N. For X a 
class of indiscernibles, whose existence was established in [S-Ve], can be taken. We 
leave out the proof of this fact requiring several notions and results going beyond 
the scope of the present article. 

In view of the Remark we have to decide which one of the following two possible 
ways we will follow. On the one hand, we can try to classify the structure of Borel 
classes with cut N with respect to the Borel equivalence. However, this equivalence 
is no more describable in terms of their cuts, and probably would turn out rather 
dependent of the chosen extension of the basic axiomatic system of AST. On the 
other hand, we can regard the remarked phenomenon as a kind of pathology and 
look for tools enabling to surmount it. The notion of Sd*-class offers the possibility 
to proceed in the latter way which seems more appropriate to us. 

The codable system {X; Sd*(X)} of all Sd*-classes is a fixed revealment of the 
codable system {X\ Sd(X)} of all Sd-classes (see [S—V ]). Roughly speaking, the 
Sd*-classes form a system of revealed and even sharp classes containing the Sd-
classes as a subsystem and behaving in exactly the same way with respect to normal 
formulas of the language FLy. Additionally, for each sequence {Xn\n € FN] of 
Sd*-classes there is an Sd*-relation R such that Xn = JR"{n} for each n; i.e. 
enabling to apply the prolongation technics, Sd*-classes behave much more like 
sets than Sd-classes. (All essential properties of Sd*-classes are briefly listed also 
in [G-Z b], p. 685). 

The codable system of all * Borel classes can be constructed from Sd*-classes in 
exactly the same way as the system of all Borel classes from Sd-classes. Terms 
like a*-class, 7r*-class, etc. are self-explanatory. Everything holding for Borel 
classes remains true under appropriate "starification". In particular this concerns 
the notions of * Borel equivalence, subvalence and strict subvalence, in symbols 

* * * 
X « F, K -<Y and X -< F , respectively. 

Since each * Borel semiset is a Borel one, X « F <=> X « F for Borel semisets. 
Similarly, as each * Borel cut is a Borel one A « B <=> A « B for Borel cuts. 
Analogous results relate both type of subvalences and strict subvalences. 

On the other hand, the pathology from Remark 4.11, and also that from 1.8 in 
[K-Z b], disappear. 

4.12. Theorem. For arbitrary * Borel classes X,Y the following statements hold: 

( a ) X w X « X ; 
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(b) X & Y & & ~ Y *> X ~ F ; 

(c) X i Y V Y 5 X. 

PROOF : (a) It suffices to show X « N for each * Borel class which is not a semiset. 
By 1.9 from [K-Z b] there is a 7r*-class Y C N such that \Y\ = N. Using the 
prolongation property of Sd*-classes, there is a proper Sd*-class Z C Y. Obviously 
Z « N, hence X « N by the Cantor-Bernstein theorem. 

(b) follows directly from (a) and 3.3 (c). 
(c) is a consequence of (b) and of the fact that A ;< B is a dichotomic relation 

on cuts, stated in [K-Z a]. • 

Thus the system of all Borel classes behaves much better with respect to the 

equivalence « than with respect to « . Let us recall that Co denotes the codable 
system of all Borel cuts and that the linearly ordered algebra (co/—; +»•» ]C> ~) w * t n 

isotone operations, called the algebra of Borel cardinals, was introduced in [K—Z a]. 
Now its name can be justified. Each Borel class X determines uniquely its Borel 
cardinality 0(X) as the equivalence class of its (no matter which one) lower or 
upper cut with respect to ~ / If somebody would prefer to represent Borel cardinals 
directly as classes from the extended universe, it suffices to fix some selector from 
the equivalence ~ on Co. Let us mention the following three possibilities of doing 
this. 

(1) Similarly as in the Cantor set theory, f3(X) can be represented as the least 

cut A such that i « I , i.e. f$(X) = int(JQ = int(X). 

(2) Dually, we can put fl(X) equal to the largest cut B such that B « X; i.e. 
fi{X) =-= cl(X) = 7l(X). 

(3) Finally, we can fix a selector's from the equivalence ~ on N and put fi(X) 
to be equal to the unique element a £ S such that a c_! X ---. X provided X has 
nonadditive cuts, and P(X) = |X| if X has an additive cut (like in the previous two 
cases). 

There is no need to specify such a choice, that's why the equality of Borel cardinals 
of X, Y will be denoted rather by p(X) - P(Y) than f3(X) = p(Y). 

Theorem 4.6 and the results on cut arithmetic from [K-Z a] yield immediately 

4.13. Theorem. Let {Xn;n € FN} be a sequence of Borel classes. 

(a) IfXo n Xi = 0, then p(X0 U Xi) a. 0{XQ) + P(Xt). 
(b)fi(XoxXi)~0(XQ)-p(Xi). 
(c) IfXm 0Xn =-= 0 for m^n, then 

ß(V{Xn;n Є FN}) ~ VJ{^(X„);n Є FN). 

The most substantial difference between the Borel and real equivalence seems to 
be the following strengthening of 1.5. 
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4.14. Theorem. For each infinite set u there are real classes Y, Z C u such that 
Y 3 Y Z Y,ZZ Z<Z and-,(Y*Z\/Z* Y). 

PROOF : Owing to 1.10 from [K—Z b] and 4.9 for each real semiset X it holds 
X 5 X £j X. Let Y", Z C u be the classes guaranteed by 1.5. Since Y_ = j£ = 
|tx|/FN X u & int(|u|) = F = "Z by 1.6, none of the four real subvalences F 5 Y 5 
Y,Z_% Z ~£ Z can turn out to be real equivalence. • 

If x,y are sets, then x & y <& \x\ ~ \y\. (Essentially the same conjecture for 
hyperfinite sets within the scope of nonstandard analysis was raised by CHenson 
[H] during a meeting in Oberwolfach; an affirmative solution was then announced as 

a result of a discussion between CHenson and D.Ross [H-R].) Hence {(#, y); x » y} 
is a ^-equivalence on V. Similarly, x & y <=> \x\ = \y\ V (|x|, \y\ £ FN k \x\ ~ |y|), 

hence { ( x , y ) ; . r & y } i s a 62-eqnivalence). Therefore the pair (« ,&) of equivalences 
on V coincides on infinite sets with the pair ({(x,y); |a:| ~ |y|}, {(x,y); \x\ ~ |y|}) 
which, by 1.2, is a compatible biequivalence on V, since (-^,~) is a cdmpatible 
biequivalence on N. 

Now, let u be an infinite set such that x & y f o r a l l ; r , y € t i . Then either there 
is an infinite set v C u such that elements of v are finite, or an infinite set w C u 
such that all elements of w are infinite. In the first case there is an n € FN and 
an infinite set VQ C v such that \x\ = n for each x € VQ. In the second case, by 1.1, 
there is an infinite set WQ C to such that |a:| £_ |y| for all x, y € WQ. 

We have proved the following Ramsey type theorem 

4.15. Theorem. Let u be an infinite set such that x & y for all x,y € u. Then 
b 

there is an infinite subset UQ C U such that x « y for all x,y € tio-

REFERENCES 

[C a] Cuda K., The consistency of measurability of projective semisets, Comment.Math.Univ. 
Carolinae 27 (1986), 103-121. 

[C b] Cuda K., private correspondence. 
[C-K] Cuda K., Kussova B., Basic equivalence in the Alternative set theory. Comment.Math.Univ. 

Carolinae 23 (1982), 629-644. 
[C-V] Cuda K., Vopenka P., Real and imaginary classes in the Alternative set theory, Com-

ment.Math.Univ.Carolinae 20 (1979), 639-653. 
[G-Z a] Gurican J., Zlatos P., Biequivalence and topology in the Alternative set theory, Com-

ment.Math.Univ.Carolinae 26 (1985), 525-552. 
[G-Z b] Gurican J., Zlatos P., Archimedean and geodotical biequivalences, Comment.Math.Univ. 

Carolinae 26 (1985), 675-698. 
[H] Henson C.W., "Descriptive set theory on hyperflnite sets," lecture at the Conference An-

wendungen der Infinitesimalmathematik, Oberwolfach, 1987. 
[H-R] Henson C.W., Ross D., "oral commucation," 1987. 
[K] Kalina M., A sequential approach to a construction of measures, Comment. Math.Univ.Ca­

rolinae 30 (1989), 121-128. 
[K-Z a] Kalina M., Zlatos P., Arithmetics of cuts and cuts of classes, Comment.Math.Univ.Caro­

linae 29 (1988), 435-456. 
[K-Z b] Kalina M., Zlatos P., Cuts of real classes, Comment.Math.Univ. Carolinae 30 (1989), 

129-136. 



372 M.Kalina, P.Zlatos 

[L] Loeb P., Conversion from nonstandard to standard measure spaces and applications in prob­
ability theory, Irans.Amer.Math.Soc. 211 (1975), 113-122. 

[R] Raskovic M., Measure and integration in the Alternative set theory, Publications de l'lnst. 
Math. 29 (1981), 191-197. 

[S-Ve] Sochor A., Vencovska A., Indiscernibles in the Alternative set theory, Comment.Math.Univ. 
Carolinae 22 (1981), 785-798. 

[S-V] Sochor A., Vopenka P., Revealments, Comment.Math.Univ.Carolinae 21 (1980), 97-118. 
[Tz] Tzouvaras A., A notion of measures for classes in AST, Comment.Math.Univ.Carolinae 28 

(1987), 449-455. 
[V] Vopenka P., "Mathematics in the Alternative Set Theory," Teubner, Leipzig 1979; Russian 

translation Mir, Moscow 1983. 

MFF UK, MIynska dolina, 842 15 Bratislava, Czechoslovakia 

(Received December 22,1988) 


		webmaster@dml.cz
	2012-04-28T17:57:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




