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NONISOLATED SINGULARITIES OF SOLUTIONS TO A
QUASILINEAR ELLIPTIC SYSTEM

Jan MALY

Abstract: There is presented an example of a quasilinear elliptic sys-
tem which has solutions with nonisolated discontinuities.

words: Elliptic systems of partial differential equations, weak so-
lutions, regularity.

Classification: 35360, 35010

1. Introduction. lLet fle¢ R" be an open set. We consider quasilinear
elliptic systems
< g =
€D} D*Aig(u) Dnu =0, i=1,...,m.
(The summation convention concerning repeated indices is used throughout the
paper; i,j=1,...,m, e,f3 =1,...,n.) Referring to the system (1) we always as-
sume the coefficients to be bounded uniformly continuous functions on R™ sa-
tisfying the ellipticity condition
«fBel o] 2 mn
(2) AT gazlgl for each gc R™,
By a (weak) solution of (1) we understand a (vector valued) function
1,2 m
Llewloc (f,RY) such that
() o, b;°=0, i=1,...,m
holds in the sense of distributions for
% _pfd J
(@) b =ATS (WD .
The counterexample by E. Giusti and M. Miranda [3] shows that for nZ3
the discontinuous function
u:x r-'-TiT
solves a system of type (1). Thus one cannot expect full regularity results
in this general setting. Typical results estimate the Hausdorff dimension of

singularities.
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Theorem 1. (E. Giusti [2), see also [1].) Let u be a weak solution of
(1). Then there is an open set JH)C L such that u is locally Holder con-
tinuous on Slb and the Hausdorff dimension of Sl‘\SLO is less than n-2.

An easy modification of the above mentioned counterexample shows that
for every nZ4 there is a system of type (1) which has a solution disconti-
nuous at every point of

N oy =y =
{xeR 1X) TXp=X3=0 3
Thus, it has been known for a long time that the singular set can be noniso-
lated if nZ4. We shall prove the following theorem concerning n=3.

3 6

Theorem 2. There are a weak solution s:R"—>R° of a system of type (1)

and a sequence {zkk of discontinuity points for s such that zk4n0, z — 0.

2. Reduction to two singularities. Let z € R3, zO-i-O. Let u, be a boun-
ded weak solution of (1). For each k=0,1,... denote
_ k
zk-zo/Z y
_ K
uk(x)—uo(Z XD,
B =B(z, 1z, |/8)
(B(z,r) denotes the open ball with center at z and radius r). By a simple ho-
mothety argument we see that U also solve (1) (the coefficients are fixed!).
Now let us assume that
U =ug outside BOLJBI.
Put
.- { Uy outside Bl’
1
u; on Bl‘
0f course, $1°Y; outside Bo' As the concept of weak solution is local, we
see that s; solves (1). We define recurrently (k=2,3,...)

.- { S.p Outside By,
=
Y, on Bk'
We see by induction that s, solve (1) and
2 -k
ls, -s, ;A £C0(Q) 2
k%K1 wh2@)
for every bounded domsin f ¢ RB. Hence the sequence {ski has a limit s in

the sense of (strong) Niég convergence. By routine arguments we see that s

solves (1), too. If u, is discontinuous at Zg
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then s is discontinuous at



all points 7, (and at the origin).

Conclusion. Theorem 2 is proved if we construct a system (1) (i.e. coe-
fficients A‘I"J(‘) and its bounded weak solution u such that
(5) u is discontinuous at some point zé R}, z#$0,

(6) u(2x)=u(x) for all x¢B(z,|z|/4)uB(2/2,]|z|/8).

3. Construction. Fix a decreasing function e CZ(LU,IJ) with
¢'(1)=0, @(0)=1, @(1)=0

and denote by ¢ its inverse. Now, prolong the functions ¢ and y to [0,00)
putting

@(r)=0, y(t)=0 for r,te(1l,00).
Fix a point ze R3, |z|=4. Denote
y=x-z for every stS.
Let c be a fixed constant,

(7) cz2 sup (4+1)] ?'(r)l:r&([l,l).

Put
i3
o 5T 1f 1=4,5,6,
(8) ut(x)= "
gy 7 if i=1,2,3.
We have
c « Xi-3%e .l
T (d{ 5~ I |2 ) if i=4,5,6,
. X
i
(9 D= vy vy
3%{-‘-) (8% 1%, ¢' Uy DA% it 1=1,3,3.
berot lyl lyl
enote
X. X
Tor (S5 —T’—T-z;‘—‘—) if i=4,5,6,
X
“_
(10) b=

2 Y;Y,
—"-(—]-Y—P (85 L2, o' (lyD(E 1% i i=1,2,3.
y i 2 i 2
lyl lyl
By a routine calculation we obtain the validity of (3). Obviously, the func-

tion u satisfies (5) and (6). It remains only to find coefficients A‘I‘Ja such
that (4) holds.
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A. Coefﬁcients. In this section we construct coefficients
l\"’3 (v,w) (v, wsR ) such that the functions u®, b"l" given by (8), (10) satis-
fy
an v =P, e?), W) g

We follow essentially the method due to J. Souek [6). Denote

Y= \r(lvl)’
X= .{IBY ﬁTI’ v+0,
4, v=0,
h= cY
cY+X?iY5 ’

_ _Xe(Y)
f= cY+Xe(Y) °
g'(Y)
CY+Xq Y

Using the conventions

1"“ =0 if v=0, ———4'5— =0 if w=0,
l |2 w)?
;17W;=0 if idd{1,2,3%,

we define

W: W V.V V.V
BY =h( 8 5+ T'T;‘- )+1( 87+ I‘l;‘>+g<5‘;‘- Ill?)’
w v v

W, W
% _p(ge . .13« o«
T =h(87 5 o (87 - l |2 2-)+g T2

(i=1,...,6; ¢ =1,2,3). Finally we put

Q=nin (1, |w]) (38;7,-T,7)7%,
15~ 9168 «aoeg -1 388 18 )
(i,3=1,...,6; «, 3 =1,2,3). By (7) we verify that Q is a nonnegative boun-
ded function on RBxR Indeed, we have
3222 (a3 (x @ (N42x1 ()% 13 v2(c2-axP (" (1))
(cYX p(¥))?

BBiTi-TiTi=

Vivee Wi-3We
]
IviZ " w2

The coefficients are continuous: discontinuities , X are always
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neutralized being multiplied by vanishing continuous functions. We observe
that the supremum of |A%/#| as well as the modulus of continuity of A‘.f!’ are
estimated by the same quantities on {v:|v|£ 13x<{w:|w|&13. Hence the coeffi-
cients are bounded and uniformly continuous. By a direct calculation we see
that (11) is satisfied.

5. Some remarks. A) If we admit discontinuous coefficients (Borel mea-
surable only) then Theorem 1 does not hold.

Let a;g‘ be bounded Borel measurable functions on R3 satisfying
«f ¢ 1 ] 2 9
af §¢§ﬁ z[gl for each §6 R”.
Let v be a weak solution to the linear system
%[ J.
(12) D-Gaij (X)Dﬂ vU=0.
Then the function u defined by
sl 11,23, utax ), 85,56

solves the quasilinear system

D AL (WD w0

where
a‘i‘Jf‘(u",us,us) if i,j€{1,2,3},
A?P(u): .
1 d'-ij d"of otherwise.

However, solutions of (12) can be everywhere discontinuous (see [4)).

B) Our example does not fill the gap between the estimate of Hausdorff
dimension of singular sets given in Theorem 1 and n-3-dimensionality of sin-
gular sets in the known counterexamples. It is not even clear whether the
singular set for n=3 can be uncountable.

C) It would be nice to have counterexamples (or further positive regu-
larity results) in case when the quasilinear system (1) is obtained as a sys-
tem in variation. The only known counterexamples (see e.g. J. Netas [5]) have
one singular point.
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