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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

29,2 (1988) 

ON THE LARGEST GENERALIZED JOINT SPECTRUM 

V. MOLLER and A. SOtTYSIAK 

Abstract. An explicit description of the largest generalized joint spec­
trum on a Banach algebra is given. It is proved that this spectrum coincides 
with the rationally convex joint spectrum introduced by Waelbroeck. This ans­
wers questions posed in 143* 
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Let A be a complex Banach algebra with the unit 1. By 8 (a), or simply 

6(a) if there is no confusion, we shall denote the usual spectrum of an ele­

ment a* A. A generalized joint spectrum on A is a function 9 which assigns 

to each finite collection {a,,...,a J of elements in A a compact subset of f/1 

(possibly empty) in such a way that the following three conditions are satis­

fied: 

^ n 

(I) ?(a,,...,an)c TT 9 (a ) 
1 n k=l k 

(For simplicity we write 9(a,,...,a ) instead of &(iav...tan\); 

(ID p(9(a1,...,an))c ?(p(a1,...,an)) 

where p is an arbitrary m-tuple of polynomials over C in n non-commuta­

tive indeterminates; 
(III) &(aj,...,a )4»0 whenever elements a-,...,a are pairwise 

commuting, 

The above definition was given in 141. It was shown that there exists 

the largest generalized joint spectrum (with respect to the following obvi­

ous partial order: S , * ^ if and* o 0 ^ if 8.(a,,...,a )c ^ ^ i ' " " * 8 ^ '^ 

all finite sybsets ia1,...,ani of A). 

It was asked if one can give a siaple characterization of this spectrum. 
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The bicommutant joint spectrum was given as a candidate for the largest gene­

ralized joint spectrum. 

The purpose of the present paper is to give a description of this lar­

gest spectrum. We prove that it coincides with the rationally convex joint 

spectrum introduced by Waelbroeck. We also show (see Example 2 below) that it 

differs from the bicommutant joint spectrum in general. 

Following L. Waelbroeck (see 16} or 173) we shall give 

Definition. Let a,,...,a t A (we do not assume them to commute). The 
1 * n 

rationally convex joint spectrum of the n-tuple (a-,...,a ) is the set 

?(a1 , . . . ,an)=i( .A1 , . . . ,^n)%Cn:p(A1 , . . . ,An)€« ,(p(A1 , . . . ,an)) 

for every p €. P | 

where P denotes the set of all polynomials over C in n non-commutative inde-

terminates. 

Theoren. The largest generalized joint spectrum and the rationally con­

vex joint spectrum coincide. 

Proof. First we show that the rationally convex joint spectrum is a ge­

neralized joint spectrum, i.e. it satisfies conditions (I) - (III). 

To see that (I) is fulfilled , take p±(xp...,x )=x. 0=1,...,n). Then 

(ftp..., A n ) c e(A1,...,an) implies 

VPJ( *1' * * * * V € *<Pj<ai» • • • » a
n
) ) = *(aj} 

which gives (I). 

It is also clear that (II) holds true. If ((it-,..., (Lm)*p( ?(ap... ,aR)) 

then ( ̂ p..., f*m)=p( fcp..., A n ) for some (-Ap..., ftn) 6 f (a1,...,afl). Ta­

king an arbitrary qt Pm we get q • p * Pn and (q • p)( &-,..., ftn) 6 

• CT((q»p)(a1,...,a|l)), i.e. q( ftp. ..,(i4m)€ 6"(q(p(ap. ..,an))) which means 

that ((it1,...,fim)€.y(p(a1,...,an)). 

Finally (III) is trivially satisfied since we always have ff(a1,...,an)c 

c tf(a,,...,a ) where CT(ap...,a ) denotes the Harte's spectrum (= the union 

of the left and the right joint spectra) of the n-tuple (a1,...,aJ1). 

Moreover we have ?(a1,...,an)c F(a1,...,an) for every generalized joint 

spectrum «? on A. Indeed, if ( ^ ^ i f i a p . . . ^ ) . then by (II) and 

(I) p(A 1,...,a n)c #?(p(a1,...,an))c er(p(a1,...,an)) for every paP p. 

Hence (Ap..., Xn)* ^(ap...,an) and we are done. So, ? is the largest 

generalized joint spectrum. 
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Let K be a compact subset of c", ( l . f c n < o o ) . Then the rationally con­

vex hull K of K is defined (see 11} or t?l) as the set of all n-tuples 

(A 1,...,A n)cC
n such that |f( A-,..., A n ) | £ sup |f(z,,...,z_)| 1 n i n (2p...,Zn)€K 1 n 

for every rational function f analytic on the set K. Equivalently, 

( 9Vp..., & n ) £ C° belongs to K if and only if p( Ap..., A n)cp(K) for every 

polynomial P6 P . Next corollary shows that if a-,...,a are pairwise commu­

ting elements of a Banach algebra A then ?(a,,...,a ) is equal to the ratio­

nally convex hull of 0(A,,...,a ). Example 1 below will show that this is 

not the case when a,,...,a do not commute. 
1* n 

Corollary 1. Let a,,...,a be pairwise commuting elements of a Banach 

algebra A. Then ?(a,,...,a ) is the rationally convex hull of the Harte's 

spectrum €f(ap...,a ). 

Proof. If elements a-,,...,a are pairwise commuting then the Harte's 

spectrum has the spectral mapping property. In particular, €*(p(a,,...,a ))= 

=p( 6f(a-,...,an)) for all pe PR (see £21). This implies immediately that 

?(a-,...,a ) is the rationally convex hull of the Harte's spectrum 

€T(a1,...,an). 

Corollary 2. Let a . , , . . . ,a be elements of a Banach algebra A. Then 

• ^ _ _ ^ tap...,a J 
8(av... ,an)c ?(a r... ,aR)c C (ap... ,aR) 

tap...,a 3 
where 6* (a-.,...,a ) denotes the Harte's spectrum of the n-tuple 

(a*.,... ,a ) in the algebra ta1,... ,a 1 generated by a,,... ,a and the unit. 

Proof. Let ( Ap..., A R)c tf(ap... ,a n). Then 

p( Ax,..., A R ) € p( €T(a1,... ,an)) c tf(p(ap... ,aR)) 

for every P*P n (see t2j). Hence (A-,..., A n ) « ?(a1,...,ar|) and the ratio­

nally convex hull of tf(a-,...,an) is contained in ?(a1,...,an). 

Property (II) implies that "3 is translation invariant, i.e. 

( A p..., A n) €?(ap...,a_) if and only if (0,...,0) *?(a 1-Ap...,a n- A R ) . 

Therefore to prove the second inclusion it is sufficient to show that 

tap..., a 1 
(0,...,0)«?(a1,...,an) implies (0,...,0)«€T (a1,...,an). 

Suppose (0,...,0)c ?(a1,...,aR). Then M= «Cp(ap...,an):pt PR, p(0,... 

...,0%" is a linear subspace of codimension 1 in the algebra ta1,...,a_|l 
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consisting of singular elements in A (and thus singular in £a,,...,a 1). By 

the Gleason-Kahane-Zelazko theorem (see 18], p. 87) M is a maximal two-sided 

La,,...,a 1 
ideal in laj a ] and (0,...,0)« 6 x (alf...,an). 

Now we proceed to the previously mentioned examples. 

Exaaple 1 (cf. 151, Example 1). Let A be the algebra M5(C) of all 5x5 

matrices with complex entries. Take the following two elements of A: 

0 0 0 0 °\ /° 1 0 0 -1 

1 0 0 -1 0 í ° 0 0 0 0 

0 0 0 0 o and Әд= 1 0 0 0 0 

0 0 1 0 0 \° 0 0 0 1 

0 0 0 1 0/ \o 0 0 0 0 

Then we have a^a^O. Hence S (aO= € (a2)=-CO}. This implies £ (a^a^c 

c {(0,0)i. Further a^a^a^^l and a2a1+a.a2=l where 

/ 

• > • 

v 
Hence 6> (a1,a2)=0. Let B= I a,, ad. 

If we assign to each element b*B the entry of b which is placed in the* 

third row and the third column, then we shall get a linear functional y on 

B. We prove that if is multiplicative on B. By the Gleason-Kahane-^elazko the­

orem it is sufficient to show that Qp(a. a . ... a. )=0 for all finite pro-

h x2 xk 
ducts of a-, and a2 i.e. for all ke{l,2,...J, i-,...,L« {l,2f. This is clear 

if a. =a« as the third row is then equal to zero. From the same reason 
h l 

op(a. ... a. )=0 if a4 =a,, a. =a9. The rest follows from the relations 

h \ h L x2 l 

2 2 3 2 2 2 2 
c p U j ^ ^ a f a2)=0, a^af a«=0 and a-. a2 a^a* which can be checked directly. 

Thus (0,0)=(^(a1), 9(a2))e€T
B(a1,a2) and p(0,0)=p(9»(a1), y(a2))= 

D 

= ̂ (p(a1,a2))c ff (p(a1,a2)) for every polynomial piP 2-

Further «B(p(a1,a2))= 8 €f
 B(p(a1,a2))c 6f

 A(p(ara2)) as dim B < CO . 
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Hence (0,0)6 e (a . , , a 2 ) and <E? (a^.a.-,) is not the rationally convex hull of 

* ^ai,a2)=0. 

Example 2. Let K= « ( ( z 1 , z 2 ) 6 C , |z2l k |z, | 4 1 J. Then K is compact but 

not rationally convex. Its rationally convex hull K is equal to 

K = ( ( z r z 2 ) 6 C
2 ' Iz-jAl, |z2|s»l| 

(see tl], p. 7 6 ) . 

Let A=C(K) be the algebra of all continuous complex-valued functions on 

K. Then the bicommutant joint spectrum €f" (cf. C 41) coincides with the Har-

te's spectrum on this algebra. Put sr^z, ,z2)=z, and ST (zvz2)-z2. Then 

W(xv7t2> *(xvse2>K+K= C(*rv*2)= *"(srvx2). 

Thus we see that the rationally convex joint spectrum is larger than the bi­

commutant spectrum. 
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