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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
29,1 (1988) 

BLON UP ABOVE STATIONARY SOLUTIONS OF CERTAIN NONLINEAR 
PARABOLIC EQUATIONS 

Nářek FILA, Ján FILO 

Abstract: The instability prooerties of nontrivial equi­
libria of the Dirichlet problem for a class of nonlinear parabo­
lic equations are studied. It is shown that every time dependent 
solution with initial function lying above an arbitrary nontri-
vial equilibrium blows up in a finite time. 

Key words: Degenerate parabolic equations, blow up, statio­
nary solutions. 

Classification: 35K65, 35K55 

0. Introduction 

The present paper is concerned with the instability proper­
ties of nontrivial equilibria of the problem 

(0.1) u t =Au
m + u p - au x€D, t>0, 

(0.2) u(x,t) = 0 xcaD, t>0, 

(0.3) u(x.O) = uo(x)(*0) x€D, 

where DcR is*a smoothly bounded domain, a»0, 0<m$p, 1<p and 

pm~1< (N+2MN-2)"*1 if N^3-

It is known that for ueL°°(D), u0^0, the unique weak solu­

tion u(t,u ) exists locally, i.e. there is a t x(uQ) = sup{T:>0: 
u(t,uQ) exists on [0,t]} , tmax«oo. If tmax< oo then 

||u(t,u0)/lIpo(r))~*'
00 a s t""~**tmax a n d w e s a y t h a t u b l o w s UP in 

finite time. 
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There are various conditions in the literature which ensure 

that solutions of related problems do not exist globally and thus 

that a blow up occurs (see e.g. Ball [2], Fila and Filo [6],[7], 

Galaktionov [9], Payne and Sattinger [18], Nakao [15], Ni, Sacks 

and Tavantzis [17], Sacks [203, Tsutsumi [22], Weissler [23j). In 

[6],[7] Lyapunov functional is used to describe a set of initial 

data for which the solutions of (0.1)-(0.3) blow up. 

The aim of this paper is to establish a new sufficient condi­

tion for blow up, namely to show that ^ x (
u
0 )

< 0 0 ^ U
0^B (v) = 

= {u €L°°(D): u >Vj u £v on the support of v} , where v is an ar­
bitrary nonnegative nontrivial equilibrium solution (equilibria 

with compact support in D may occur only if Urn, 0<a). We prove 

this result in the following cases: 

(i) a=0, 0<m<p, 

(ii) a>0, 0<m^p, N=1, 

(iii) a^O, m=1 . 

For a,m as in (i),(iii), the existence of positive equilibria 

is well known. If (ii) is fulfilled (D=(-L,L), L>0), nonnegative 

nontrivial equilibria exist when m<p or m=p, L>-*/2 (Section 3) • 

The present characterization of nonnegative initial functions 

which cause blow up is different than in £6],[7](see Remark 1) , 

except of the case when (i) or (iii) is satisfied and the positive 

equilibrium is unique. But the positive steady states are known to 

be not unique for example if D is an N-dimensional annulus, a=0 , 

m=1, p is close to (N+2)(N~2) ([4]). For the interesting geo­

metry of the set of (many) positive equilibria for a=1, m=1, p an 

odd integer, D an annulus, we refer to [10, Example 2.13] . 

In the case (iii) we do-not restrict ourselves to nonnegative 

equilibria and initial data. Instead of u^-au we consider the 

growth term I ui^ u-au ând we show in addition that the solution 

u(t,uQ) blows up if u0€B
+(v)uB~(v) (B""(v)={uQ̂  L

0(>(D) :uQ^v, uQ^v>), 

where v is an arbitrary equilibrium which changes the *sign. The e-

xistence of infinitely many steady states with this property was 

demonstrated in [21] for a nonlinearity more general than luf̂ "" u. 

The basic step of the proofs of our results consists in find­

ing a solution w of (0.1),(0.2) such that u(t ,uQ)>w(* ,0) for some 

tQ>0, Hw(« ,t)H-rp is unbounded and w(x,t) is nondecreasing in t for 
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each x€D. A Moser-type estimate (Proposition 4) yields that 

IIw( • , t)|Lm+p is unbounded. The monotonicity in t implies the exis­

tence of limits of || w( ,t)|| Lq as ^ " ^ ^ a x ^ ^ J 0 ^ f o r every q̂ 1 . 

An argument based on an idea of Sattinger and Payne [18](Proposi­

tion 5) leads then to the conclusion that "t x(u )< cQ . 

It is not difficult to see that every solution of (0.1)-(0.3) 

with u (B (v) is unbounded in the L°°-norm. From [173 it follows 

that unbounded positive solutions of certain parabolic equations 

blow up. However, the problems considered in [17] cover our prob­

lem only in the particular cases a=0, m=1 , 1<p<(N+2)/N , D-convex 

or a=0, 1<m<p<(N+2)/N, D-convex and u - decreasing near dD in a 
suitable way. 

Since the behaviour of solutions to (O.D-(0.3) depends 

strongly upon the structure of the set of nonnegative stationary 

solutions, in Section 3 we describe the dependence of this set on 

m when N=1. This detailed information about equilibria will be 

useful in the proof of our result in the case (ii). 

1. Preliminaries 

Throughout this paper we shall use the following hypotheses 
about the data D and u : 

(H1) D is a bounded domain in R whose boundary 3D, is of 

class C . 

(H2) u^€L°°(D)nHQ(D) and uQ*0 a.e. in D. 

We shall refer to these hypotheses collectively as (H). For simpli­

city we restrict ourselves to u €L°°(D)nH (D) , as it is known that 

any weak solution u(t,uQ) of (0.1)-(0.3) for u 6L°°(D) only is ac­

tually in L°°(D)r.HQ(D) at any later time (see e.g.[1ll). 

Let us now introduce some notation: QT=Dx(0,T),ST=dDx(0,T), 
IDI- Lebesgue measure of the set D, |u| = Hu||.-q,I)N, 1<;q<.o0, |u(^= 

= ( l u l ) q , j|ull = ( f i V u I 2 d x ) 1 / 2 , \ h ( t ) =f h ( x , t ) d x , ff h = 
q JD JD JD j j Q T 

= ff h ( x , t ) d x d t and ( u ( t ) , v ( t ) ) = f u ( x , t ) v ( x , t ) d x . 
JJQT h 

DEFINITION 1. By a so lu t i on of Problem ( O . D - ( 0 . 3 ) on [0 ,T ] 
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we mean a nonnegative function u such t h a t 

u€C(rO,T];L2(D))nL°°(QT), u^L»(0,T;i£(D)) 

and u satisfies 

(1.1) ( u ( t ) , f ( t ) ) - [f (u<p+ -VumVf+ f(u)f) = (u ,f(0)) 
Q t 

for a l l t€[0,T] and f€H1 (0,T;L2(D) hL^OjTJH^D)), f(u)=up-au . 
A subsolution (supersolution) of Problem (0.1)-(0.3) is defi­

ned as above wi th equality in (1.1) replaced by^ (̂ ) whenever P^Q. 

In the sequel we s h a l l often denote the solution u(=u(x,t)) 

of Problem (0.1)-(0.3) by u(t,uQ). 

DEFINITION 2. By a stationary solution (equilibrium) of Prob­

lem (0.1)-(0.3) we mean a nonnegative function v such t h a t 

vm€C2(D)nC1(D), v=0 on 3D and Av m + f(v) = 0 in D . 

By E=E(D) we s h a l l denote the set of all nontrivial stationa­
ry solutions of Problem (0.1)-(0.3) • 

PROPOSITION 1 (Comparison principle). Suppose t h a t D satis­

fies (H1) and t h a t u and v both satisfy (H2). If u is a subsolu­

tion and v is a supersolution of Problem (0.1)-(0.3) on [0,T] wi th 

u < v then u<- v a.e. in QT. 

For the proof of t h i s proposition for m»1 we refer to [1j 
and for 0<m<1 to [8](the comparison principle holds also for weak 

sub- and supersolutions wi th initial functions from L°°(D) only) . 

PROPOSITION 2 (Existence). Suppose t h a t (H) holds. Then the re 
exists a number t x, 0<tmax.$cO(which depends on the data D,m,f 
and uQ) such t h a t Problem (0.1)-(0.3) possesses a unique solution 
u on [0,T] for any T€(0,tmax). If tmax<oO then 

(1.2) lim _ |u(t,u)| =0Q. 
t-»t ° °° max 

Moreover for °4s<t<tmax u satisfies 

(1.3) ^ffi_^[t|(u(^l)/2)t|2 + J ( um ( )H J ( um ( 8 j) ? 
(m+1) Js 

- 182 -



where 

(1.4) J(w) = ̂ llwll2 - f (Wf(r1/m)dr . 
JDJ0 

For the proof of Proposition 2 for nu1 we refer to [12] and for 
0<m<1 to [8]. 

To study the asymptotic behaviour of solutions to Problem 
(0.l)-(0.3) we introduce the notion of c«-limit set: 

uo (u ) = {w€C(D): t h e r e exists t —»»oo such t h a t um(t ,u )—->wm o L n n7 o 

uniformly as n—»-oo } 

Some basic observations are collected in the next proposition. 

PROPOSITION 3. Suppose t h a t (H) holds and t h a t u(»,u ) is a 
bounded (in L00 norm) solution of Problem (0.1)-(0.3) on [0,oO) . 

T h e n (i) (um(t,uo): t»e } is relatively compact 

in C(D) for any £>0 

j(u ) is non€ 

(iii) Ou(uQ)c Eu{0} 
(ii) uo (u ) is nonempty 

For the proof of the assertions (i) and (iii) we refer to [11] 

and (ii) follows from (i). 

PROPOSITION 4. Suppose t h a t (H) holds, 

(i) Assume f u r t h e r t h a t 

0<in<p, 1<p for N=1 ,2 , 
( U 5 ) 0<m<p<(N+2)m/(N-2), 1<p fo r N»3. 

Let l u ( t , u Q ) l m + p be bounded on [ 0 , t m a x ) . Then t m a x = oo and 

| u ( t , u 0 ) l w ^ C ( | u 0 U , 0 | u P 0 0
, u ( t j U o ) | m ^ p ) 

fo r Oi*;t< oo . 

( i i ) Let m=p and l e t l u ( t , u 0 ) ! m + 1 be bounded on [ 0 , t m a x ) . 

T h e n tmax= 0° a n d 

l u U - u ^ U * C(»uolo0 , 0 | u P o 0
, u ( t > u o ) l m + 1 ) 

fo r Ost<oo. 

- 183 -



For the proof we refer to T7](for m»1 , m<p see [16]). 

PROPOSITION 5- Suppose that (H) holds, 

(i) If 0<m<p and lu(t,u
Q
)|

 m + p
™>00 as t->t

m a x
, then t

max
<cx>. 

(ii) If m=p, a>0 and I u(t,u
Q
)l

 m+
f*<» as t~-**t

max
, then t

max
<oo. 

Proof. We shall prove the assertion (i). For the proof of 

(ii) (which is analogous and more simple) we refer to C7J . 

Following an idea from [18] we proceed by contradiction. Suppose 

t h a t w-"and d e n o t e M(t) = [ t i u i m : 1 . 
'0 

Then we have 
M 

'0 JD 

/x^ 1 , m + 1 . f f / m+1 ч _ , , m+1 
( t ) = l u o l m + 1 + ) 0 ) D

( u Ч - l u o'm+1 

+ f ( ш + 1 ) ( - | l u m l l 2

+ l u | - : P - a | u | m : ] ) 
-0 'm+p 

and f u r t h e r 

M " ( t ) = (m+1)(-(m+p-#)m~ 1 J(u m (t)) + ( p - m - ^ ) ( 2 m ) " 1 | | u m ( t ) l | 2 + 

+ a ( p - 1 - - 5 ) ( m + 1 ) " 1 | u ( t ) | m : 1 + ^ ( m + p ) " 1 l u ( t ) | m : P ) , 

where we choose 0<-»r<min(p-1 ,p-m). Now (1.3) leads to the inequa­

lity 

MM" - (m+p-*)(m+1 )"
1
M'

2
 > 

>4(m+1)-
1
(m+p-^)(ffu

m+1
ff ( u

( m + 1 ) / 2
)

2
-

J
0
 J
D 0 D

 Z 

" ( ! o l D

u ( m + 1 ) / 2 ( u ( m + 1 ) / 2 ) t ) 2 ) + (-p)"VMiuim:p -

- (1+m~
1
)(m+p-^)J(u

m
)M - 2(m+p-^)(m+1)~

1
|u

0
J
m
:]M' . 

The first term on the right hand side is nonnegative according to 

the Schwarz inequality and the last term may by estimated as 

follows 

-2(m+p-^)(m+1)"
1
|u

6
|
m
:
1
M'> - £(M')m+p- C(£ ,m,p,*,l u^™*1 ), where 

we put 0 < £ < ( m + p ) - V 2 - 1 l D i ( l - P ) / ( m + 1 ) 5 1 i u | m : 1 . Hence we get 

MM" - (m+p-#)(m+1 )~1 (M') 2 > 
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( u 6 ) >M( 2"
1(m+p)-1*lu|^P - (1+m-1)(m+p-*)J(u°) ) + 

+ |u|^P(2-1(m+p)-VlDI(l-P)/(m+l)M -£) - C 

and it is easy to see t h a t t h e r e exists a t >A such t h a t the r i g h t 
hand side of (1.6) is positive for t*t , t h e r e f o r e 

(M~*)"<0 for U t Q where A= (p-1 -£)/(m+1) . 

Since M~ is "decreasing, it must have a root t.>0 what is a con­
tradiction. 

2. Main results 

THEOREM 1. Suppose t h a t (H) holds, and let v be an arbitrary 

nonnegative nontrivial stationary solution of Problem (0.1)-(0.3). 

Then any solution u(t,u ) wi th u €B (v) blows up in a finite time 
if 

(i) a=0 and (1.5) holds 
or 

(ii) a>0, N=1 , 0<m.<p and K p . 

THEOREM 2. Suppose t h a t m=., the reaction term in (0.1) is 
replaced by tulp"1u - au, Kp, p<(N+2)/(N-2) if N>-3, a>.0, D sa­
tisfies (H1 ) and uo€L°°(D)nHo(D) . Let v be a nontrivial equilib­
rium. Then u(t,u ) blows up in a finite time if 

(i) v is positive or it changes 
the sign and u €B (v) , 

or 
(ii) v is negative or it changes 

the sign and u €B~(v) . 

Proof of Theorem l(i). Take an arbitrary nontrivial statio­

nary solution v. According to the Hopf maximum principle for 
elliptic equations ([18]) we have v>0 in D, d(vm)/dy <0 on 3D 
and we can apply the theory of Ber t ch and Rostamian [3] to show 
t h a t v is unstable in the linearized sense. It is shown in [3] t h a t 
in t h e case m>1 the behaviour of u near v depends on the spectrum 
of the eigenvalue problem 
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-Aw = g'(vm)w + A/3'(vm)w in D , 

w = 0 on 5D, 

where t3(r)=r1/m and g(r)=f (/3(r)). More precisely, if Aj<0 then 

there exist £>0 and for uQ^v (uQ$v), uQ^v a T=T(uQ)^0 such that 

um(t,uQ)> v
m+£e (um(t,uo)<v

m-£e) for t>T, where Ae=-1 in D, e=0 

on 3D ([3,Theorem 4.8]). To prove an analogous statement for m<1 

is not difficult and we omit it here. The negativity of % * for g 
convex, g(0)=0 and m=1 is well known (see e.g. [13]) and this re­

sult can be generalized to our situation by an obvious way. 

The linearized unstability of v yields the existence of a 

constant K>1 such that u(t,u )>Kv for t>.T. But Kv is a subsolution 

of Problem (0.1)-(0.3), hence u(t+T,uQ)& u(t,Kv) for t»0 by the 
comparison principle (Proposition 1). The comparison principle 

implies also that u(# ,Kv) is nondecreasing, i.e. u(t,Kvku(s,Kv) 

for O^t^s, thus u(t,Kv) can not tend to a stationary solution. 

This follows e.g. from the linearized unstability of any nontri-

vial stationary solution. Hence fu^Kv))^ is unbounded by Pro­

position 3. By Proposition 4 and monotonicity of u(*,Kv) we get 

that Ju(t,Kv)| + -»oo as t—^t" » so w e c a n aPPlv Proposition 5 

and conclude that t < oo. 

REMARK 1. If the positive equilibrium is unique and a=0 or 

a>0,m=s1 , then Kv?B for K>1 , where B ={w€HQ(D), w-$0 a.e. in D, 

w^O: J(Aw)< d for UA<cx> , d=J(vm)J» . It follows from [6] that 

u(t,u ) blows up if u €B, therefore the blow up result in C6] is 

stronger in this particular case. 

Proof of Theorem 1(ii). The principle of linearized unsta­

bility seems to be not applicable because equilibria with compact 

support in D=(-L,L) may occur and the eigenfunctions of corres­

ponding singular eigenvalue problems are not suitable to construct 

comparison functions (cf.[3,Section 5]). Therefore a result from 

the next section will be useful. 

The classical strong maximum principle implies that u(t.,u0)> 

>v on supp v for arbitrary t-j>0. According to Lemma 2(v) it is 

possible to choose a subsolution v (of the stationary problem) 

which satisfies the inequalities u(t1,uQ)^v in (-L,L), max v > 

>max v (e.g. v = v(-,L-e) on (-L+£,L-£) for some small E > 0 ex-
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tended by zero to [ - L , L ] ) . It follows then that u(t,y ) is not 
uniformly bounded (otherwise by Proposition 3 <*>(¥ )? 0 and 

6u(y )CE, but this is impossible because by comparison 
u(t+t.,u ) ^ u ( t , v ) ^ v for t^O). Another consequence of the com­
parison principle is the monotonicity of u(-,v) as we have alrea­
dy mentioned. Propositions 4,5 yield then that t x< oo . 

REMARK 2. It is not difficult to see that if km^p, L> 

>T(m,tX(m)) (see Section 3), we can choose for every stationary 

solution v an initial function uQ for which it holds that u »v, 

uQ/v in (-L,D , u =v on supp v and u(t,u )->v as t-*oo. 

Proof of Theorem 2 ( i ) . Since v is linearly unstable, it 

follows from [14, Theorem 1j that there exists a function w(x , t ) k 

satisfying ( 0 . 1 ) , ( 0 . 2 ) defined on Dx(-oo,tmQx(w( • , 0 ) ), 
0<t ( w ( ' , 0 ) ) $ c o , such that w ( - , t ) ~^v in C (D) as t—> -oo, 
w is strictly monotone increasing in t. We show that t x(w(*,0))< 
< oo . If v is positive, Propositions 4,5 yield the desired re­

sult. If v changes the sign, then w(*,t) may also change the 
sign for t*0, but lim } w ( - , t ) V , 1 exists, because 

t~>t~
 p ' max 

| w ( - , t ) | p + 1 = f . wp + 1(t) + [ (-w(t))p + 1 = I 1 ( t ) + I 9 ( t ) , 
p+1 J D + ( t ) J D"(t ) 1 2 

D+(t)={x€D: w ( x , t ) > o | (D"(t) is defined analogously) and L. ,I2 

are obviously monotone. The assumption of nonnegativity of u 

in Proposition 4,5 is not needed in this case, hence the conclu­

sion. The proof of the assertion ( i i ) is almost the same. 

3. Structure of the set of stationary solutions in one 

space dimension 

In this section we shall discuss the problem 

(vIl)xx + f ( v ) = ° x€D=(-L,D, L>0, 

v(-D = v(D = 0 , 

where f (v )=v p - av , p>1, a^O and 0<m<oo. 
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We consider first a>0. Set F(m,r)=f um~1f(u)du, o((m) = 

= (a(p+m)/(m+1))1/(p~1) ( <X(m) is the positive root of F(m,*)), 

M={(m,<A4): Ckm<oo, ̂ >o((m)j u {(m,<*(m)): m>1} . 

Let us define the time-map T(m,<M) for (m,<M)€M by the formula 
& 1 

(3.2) T(m,^)=ff f — = t ^ tdr ( M M A , * - ,dy). 
C r2 J l/F(m,>-F(m,r)' , 2 C ^ TfF(m,^)-F(m,^y) 

It can be shown by direct computations that the singularities in 

the integrand are integrable. Analogously as in [13 ,[5] it can be 

seen that the following holds. 

LEMMA 1. v is a positive stationary solution to (3.1) if 

and only if M. 

ff! 
m-1 

£ ,dr = |xl , |xUL , 
v
J
(x) YF(m^)-F(m,r)' 

where (m,/*)€M and L>0 are related by the equation 

(3.3) T(m,^) = L . 

This lemma yields that the number of positive stationary so­

lutions is determined by the number of roots of the equation 

(3.3). Obviously, v=0 is a stationary solution for every L, m>0. 

The next result is the description of the function T given by 

(3.2). 

LEMMA 2. 
( i ) T€C(M), T ^ c C ( i n t M ) . 

( i i ) l im T(m,)tf) = 00 fo r 0<m*1 . 
<*-*4(m) ' 

{ 0 i f Oxm<p, 
3*/2 i f m=p , 

00 i f m>p . 

f ° 
( iv ) l im T(m,cX(m))= 00 , l im T(m,<X,(m) )=« 

m-->1 m-*oo too 
(v) Tu(mJ<M)<0 fo r 0<m*p, (X(m)<<^< CO . 
(vi) There exists a function <f€C((p,oo)) such that for m>p the 

following holds 
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(vii) 

(viii) 

T
:
u(m,

<
M)=0 if and only if <4.=f(m), 

T^(m,
<
M)<0 if «(m) < <U < W m ) , 

T^(m,^)>0 if <M>{f(m) . 

lim f(m) = a
1 / ( p

""
1 )
, lim

 +
<P(m) = 00 . 

m->oo m->p 

f ° 
lim

 +
 T(m,f(m))=3t/2, lim T(m,f(m)) =< 

m->p 

if 0<a<1, 

if Ha^oo. 

The next two remarks which precede the proof explain the 

meaning of the observations collected in the lemma.• 

REMARK 3. It turns out that (0,oo) can be decomposed into 

four subsets: (0,1] , (1 ,p) , {pi, (p,«>) in such a way that for va­

lues of m belonging to different sets we get different forms of 

T(m,- ) (and different numbers of solutions of (3-3)). The four 

types .of graphs of T(m,*) are sketched in Figure 1 . 

T(m,/i) 

Of(m. 

0<mi1 

L 

p-1 

T 

> . T(я\/J) 

ч 

0 aU lll џ 

Tlm.ji) 

ÖT a(mł 

m«p m>p 
Figur« 1. 
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REMARK 4. Similarly as in [1],f5] we can see that for m>1 

there are continua of solutions (which are not strictly positive) 

on intervals larger than 2T(m,0((m)). Thus we obtain two bifurca­

tion diagrams which are outlined in Figure 2 . 

m.Wm.. 

0<Q<1 1*a 

Figurt 2. 

The arrows on the borderlines indicate to which region particular 

pieces of the borderlines belong. For (m,L) lying in the region 

denoted by I there is one positive nontrivial solution, in the re­

gion II - two positive solutions, III - continua of nonnegative 

solutions, IV - continua of nonnegative solutions and one positive 

solution and V - no nontrivial solution. On the curve which sepa­

rates regions II and V (it is the graph of the function T(m,<p(m))) 

there is one positive solution. 

Proof of Lemma 2. 

(i) Take an arbitrary point (m0,^0)cint M. Then for (m,̂ 0 

near (mQ^AQ) and for y near 0 we have F(m,^c)-F(m^»y) > F(m,<̂ i)̂ C1 , 

for y near 1 it holds F(m,̂ u)-F(m!l/4y) >C2(1-y), Ĉ  ,C2 are some po­

sitive constants depending on (m0^AQ)> This implies the uniform 

existence of the integral in (3-2) for (m,^) near (m M̂ ), hence 

we obtain the continuity of T in (mQ^AQ). To prove the continuity 

in (mQf&(mQ)) for mQ>1 we use the inequality F(m^)-F(m^4y) ̂  

> (m+1)~ 1 a^y ) m + 1 (1-yP"1), which ensures that 
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y m (F(m,/*)-F(mj^y))~ has an integrable majorant depending only 
on not . o 

If we set 5(m,s)=2mF(m,s)-s f (s), we get exactly as in [1] 

(3.4) T H < - H * > - ffijy t * ( m » - u ) - * < m ' 8 ) ,/g sm"1ds . 
^ ^ r2 ^ i (F(m,^)-F(m,s)) 3 / 2 

The uniform existence of the integral in (3-4) can be again easily 
verified using the mean value theorem. 

(ii) As <*-»>tf(m)- y
m~1(F(m,^)-F(m,^uy))~1/2 tends to 

C ( m ) y ( m ~ 3 ) / 2 ( 1 - y p ~ 1 ) " 1 / 2 which is not integrable if m«1, thus the 
assertion follows from Fatou's lemma. 

(iii) We can write 

T(m_u) = ( j A m ' » ^ ^ . ) 1 / 2 f (1 Ff m^Y ))" 1 / 2v m" 1d-^ TCrn,̂ ) - (<fA w(m,tA)} J U Ptm^O ; y dy * 

F(m,^y)/F(m><44)^ y
m4"p for ycCO-H , hence ym~1 ( 1 - y m + p 7 1 / 2 is an in­

tegrable majorant and the integrand tends to this function point-
wise as <«->oo. v/2 m_p 

• (iv) T(m,^m)) = (2m(m+1)* m~ 1(m)/a) 1 / 2 ^(sin x)^dx/(p-1 ) 
W2 
\ (sin x) dx = 0(7 l/ tL) as 'V--» QQ. 
J0 • 

(v) For 0<migp, <M>rt(m) the function f(m,-) from (3.4) 
attains its minimum on [0,^M] in the point £A . 

(vi) Follows from [5,Lemma 1.2] . 
(vii) It is clear from (3*4) that f(m) lies between the point 

where £(m,-) attains its minimum and the positive root of £(m,•) , 
i.e. 

(3.5) (a(m-1)/(m-p))1/(p"1)< «P(m) < (a(m-1)(m+p)/(m+1)(m-p))1/(p~1. 

(viii) The first assertion follows from (vi), from the fact 
that T(p^w)—»* ty2 as ^u—*oo and from the continuity of T . 
T(m,vP(m))—>0 as m—**<# if 0<a<1 because T(m,f(m) )<T(m,oC(m)), so 
it remains to prove that T(m,*f(m))—*oo as m—•*-oQ if &>1 • The se­
cond inequality in (3.5) yields 

F(m,?(m))~F(m,f(m)y)< a^ m + 1 (m) ( ̂ =l(1-ym4"p)-(1-ym+1 ) )/(m+1) . 

According to the mean value theorem 1-ym+p.< (m+p)d-y )/(m+1 ) 
for ycC0,1] and we obtain 
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7T/2 

T(m,f(m))>(fm"1(m)(m-p)/a(p-1))1/2 [ (sin x) (m"1 )/(m+1 >dx . 

0 
In the case a=0 we set M=(0,oo)x(0,oo) and for (m,<M)€M we have 

X/2 

T(m„M> = (2m/-p/(m+P))
1/2 J (sin x)

(*-P>/(m+P>dx . 

0 
We see that T(p,<u) = ft/2 for every ( M > 0 . For fixed m>0, m^p, the 
equation (3.3) has precisely one root for arbitrary L>0. 
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