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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

28,2(1987) 

PARITY OF ORTHOGONAL AUTOMORPHISMS 

Ale§ DRAPAL and TonuiS KEPKA 

Abstract: The parity of orthogonal automorphisms of some 
finite abelian groups is investigated. 

Key words: Parity, orthogonal, automorphism. 

Classification: 20B25 

The concept of orthogonal permutations of groups is well 

known and these permutations were used by many authors in vari­

ous situations (see e.g. [1] for further details and references). 

In the present note, we are investigating the parity of orthogo­

nal automorphisms of some finite abelian groups. The results al­

low us to construct idempotent quasigroups with prescribed order 

and parity of translations. 

1. Introduction. Let Q be a quasigroup (i.e. a groupoid 

with the unique division). For each aeQ, we have two transfor­

mations of the underlying set Q; they are called the left and 

the right translation by a and they are defined by :&(a ,Q)(x) = ax 

and 5l(a,Q)(x) = xa for every xeQ. Since Q is a quasigroup, both 

these transformations are permutations, and hence they belong to 

the permutation group 'rf(Q) of Q. We put VI (Q)= <^(a ,Q) ;a e Q >£ 

Qtf(Q); 7Ttr(Q) = <^(a,Q);aeQ> and 7)l(Q)- s /^(Q) u V] V(Q) ) . 

A quasigroup Q is said to be 

- of type (1) if 7/KQ) Q C U Q ) (the alternating group); 

- of type (2) if ^l (Q) c &(Q) and ft(a,Q) <£ U(Q) for each aeQ; 

- of type (3) if 1?lr(Q) Q ii(Q) and i£(a ,Q) cfc (X(Q) for each aeQ; 

- of type (4) if &(a ,Q), Jl(a ,Q) <£ Cu(Q) for each aeQ. 

1 • 1 • Lemma. Let n ? 2 , S,,...,S be finite sets of orders 

mx, . . . ,mn, resp. and let fl e ^ ( S 1 ) , . . . ,fR <s ̂ f(Sn). Put S = SX x 
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x...xS , f = f-,x ...xf and n.=m1,...,m /m., i = l,2,...,n. Then n' 1 n i l ' ' n i ' 

sgn(f )= I'TT^ (sgn(f. )) 1. In particular, if n = 2, then sgn(f) = 

m« m, 
= sgn(fx)

 z.sgn(f2) •. 

2. Orthogonal and complete mappings. In this section, let 

G be a group. A permutation h of G is said to be complete if the 

mapping x —•*• h(x)x is again a permutation of G and, moreover, 

h(l)=l. An ordered pair (f,g) of permutations of G is said to be 

a pair of orthogonal permutations of G if f(x~ )x=g(x) for every 

x£G and, moreover, f(l)=l. The permutation g (which is determin­

ed uniquely) is then called the orthogonal mate of f. A permuta­

tion of G is called orthogonal if it possesses the orthogonal 

mate. 

Now, we shall formulate some easy observations concerning 

orthogonal and complete mappings. They are collected here just 

for the sake of reference. 

2.1. Lemma. A pair (f,g) of permutations of G is a pair of 

orthogonal permutations iff the pair (g,f) is so. 

2*2. Lemma. (i) If (f,g) is a pair of orthogonal permuta­

tions of G, then the mappings x -—*- f(x)x~ =g(x~ ) and x ~~=» f(x~ ) -

=g(x)x~ are complete permutations. 

(ii) If h is a complete permutation of G, then the mapping 

x—> h(x~ )x~ is a complete permutation and (x —** h(x~ ), x * 

—> h(x)x is a pair of orthogonal permutations of G. 

2-3. Lemma. (i) If G, is finite and f is an automorphism 

of G, then f is orthogonal iff f(x)-±-x for any l=*-xeG. 

(ii) If G is finite and commutative and h is an automorph­

ism of G, then h is complete iff h(x)4-x~ for any 14=X£G. 

2-4. Lemma. Let H be a group, (f,g) a pair of orthogonal 

permutations of G and (h,k) a pair of orthogonal permutations 

of H. Put K = G><H, p=f h and q = g*k. Then (p,q) is a pair of or­

thogonal permutations of the group K. Moreover, if both f and h 

(resp. g and k) are automorphisms, then p (resp. q) is an auto­

morphism. 

2.5. Lemma. Let (f,g) be a pair of orthogonal permutations 
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of G. The following conditions are equivalent: 

(i) Both f and g are automorphisms of G. 

(ii) G is commutative and f is an automorphism, 

(iii) G is commutative and g is an automorphism. 

Now, suppose that G is finite. We denote by Op,(G) (resp. 

0p2(G), Op-j(G), Op.(G)) the set of pairs (f,g) of orthogonal 

permutations such that sgn(f)=l=sgn(g) (resp. sgn(f)=l, sgn(g)= 

=-1; sgn(f)=-l, sgn(g)=l; sgn(f)=-l=sgn(g)). Moreover, if G is 

commutative (see 2.5) and l==i--=4, then we put Oa. (G)=0p. (G) n 

!^(Aut(G)x Aut(G)). 

3. Orthogonal mappings and idempotent quasigroups. In this 

section, let G be a group and (f,g) a pair of orthogonal permuta­

tions of G. We shall define a new binary operation, say o , on 

G by x o y = f(xy )y = g(yx )x for all x,yeG and we denote by 

0'(G,f) the corresponding groupoid G ( 0 . It is easy to see that 

G(o ) is an idempotent quasigroup. The following results are 

clear. 

3-1- lemma. Put G(* )= Cr(G,g). Then the quasigroups G(o ) 

and G(*) are opposite, i.e. xoy = y*x for all x,yeG. 

3.2. Lemma. %(xfG(c ) ) = *Jl(x ,G)f %(x~l ,G)= ft(x ,G)f .ft(x ,G)" 1 

and ^6(x,G( o )= 3t(x,G)g Jl(x"1,G)= &(x,G)g ^(x.G)" 1. In particular, 

£(l,G(o )) = f and «£(l,G(o ))=g. 

3-3. Lemma. Suppose that f (resp. g) is an automorphism of 

G. Then #(x,G( 0 ) = J«g(x) ,G)f (resp. & (x,G( «- ))= 3t(f (x) ,G)g) 

and 777r(G( c )>= < Hlfi(G),f> (resp. 'TO1(G( c ) )= < 7»r(G) ,g» . 

3-4. kejnma. Suppose that f, g are automorphisms of G. Then 

mG(o ))= <7nr(G),f,g>-

3-5- Lemma. (i) hMh-1=M for any h e 7 l l r ( G ) , where 

M=T.&(X,G( o ));xfcG*. 

(ii) hNh_1 = N for any h e ^ ^ G ) , where N = {#(x,G( o ));xe Gi. 

(iii) The group l\l (G) is contained in each of the groups 

\ ( 6 ) ( W r ( G ( o ))), /ncp(G)(^^1(G(o ))) and 71^ G ) ( W(G( c ))). 

3-6- Lemma. Suppose that G is finite. 
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(i) If both f and g are even, then G(c ) is of type ( 1 ) . 

(ii) If f is odd and g is even, then G( c ) is oi type (2). 

(iii) If f is even and g is odd, then G(c ) *is of type (3). 

(iv) If both f and g are odd, then G(c ) is of type (4). 

3*7. Lemma. If f is an automorphism of G, then x oy= 

=f(x)g(y). If g is an automorphism of G, then x c y=g(y)f(x. 

An idempotent quasigroup Q is said to be orthomorphic if 

there exist an abelian group Q(+) with the same carrier and a 

pair (f,g) of orthogonal automorphisms such that Q(c )= 

= U'(Q( + ),f). An idempotent quasigroup Q is said to be orthostrop-

hic (left orthomorphic, right orthomorphic) if there exist a 

group Q(+) (not necessarily commutative) and a pair (f,g) of or­

thogonal mappings such that Q=Gv(Q(+),f) (and f is an automorp­

hism, g is an automorphism of Q(+)). Clearly, orthostrophic (left 

orthomorphic, right orthomorphic, orthomorphic) idempotent quasi-

groups are closed under cartesian p roduc t s . 

3-8 . Remark. For a group G and a pair (f,g) of orthogonal 

permutations of G we could define an idempotent quasigroup 

i?(G,f)=G(<S ) by x 0y = xf(x-1y)=yg(y"1x). Then S£(x,G(e)) = 

= <£(x,G)f ̂ (x,G) _ 1 and 31 (x ,G( © ) )= S£(x ,G)g ̂ (x , G ) _ 1 . If G* is 

the group opposite to G, then D'(G,f)= CX(G,g). 

4. Orthogonal automorphisms of cyclic groups. In this sec­

tion, let n-3 be an odd positive integer (cyclic groups of even 

orders and infinite cyclic groups have no orthogonal automorph­

isms) and let G = G( + ) = Z ( + ) = iO,1,...,n-l } (the additive group of 

integers modulo n). Further, denote by G*=Z* the multiplicative 

group of invertible elements of the r-ing Z . Hence G*= { i; 1 ± i ̂  

= n-1,gcd(i,n) = l \ and card(G*)= <f(n), where 9 denotes the Euler 

f u n c t i o n . Notice that c^(n) is an even number. For any i e G f we 

have an automorphism f of G defined by f (x)=mx for each x€G. 
m J m 

Since G is a cyclic group, every automorphism f of G is equal to 

f for some m^G* and the mapping f —-> m is an isomorphism of 

Aut(G) onto G*. For meG*, let s(m) = s (m)=sgn(fm). 

4.1. Lemma. The following conditions are equivalent for 

m e. G*: 

(i) f=fm is orthogonal. 
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(ii) m-leG*. 

In this case the mapping g.x —*- (l-m)x = («n-l)(-x) = (nm-n-m+l)x 

is the orthogonal mate of f. Moreover, sgn(g)=s(n-l)s(m-l). 

4.2. Lemma. n - H G * and s(n-D = (~l) (n~1)/2. 

Proof, f , is composed from (n-D/2 2-cycles. 

4.3. Suppose that n = pr, where p2:3 is a prime and rz-1. Let 

2^m^-pr-l be such that m generates the group G*. We shall find 

the decomposition of f into cycles. If r = l then f is a (p-D-
m J m 

cycle (since m generates Zn = zD-*£°}) >
 a n d n e n c e sgn(f ) = s (m)= -1. 

Assume that r £ 2 and, for every i = 0,1, . . . ,r-l, let A. be the set 

of jeG such that p1 divides j and p does not (in Z). Then 
G--iO} is the disjoint union of the sets A. and f

m(
Ai)=Ai f o r any 

i. Moreover, card(A.)=pr~1- (p-1) are even numbers. Clearly, the* 
r-1 

set Ai contains just all elements from G which have order p 

in G. However, each subgroup of G is cyclic, and hence, if a,b e 
e A., then b = ja for some jeG*. But j is a power of m and now it 

is clear that fm|Ai is a cycle. In particular, sgn(f )=(-l)r. 

4-4. Lemma. Suppose that n = pr, where p 2" 3 is a prime and 

r j> 1. Let mtG* be a generator of G*. 

(i) s(m)=(-l)r. 

(ii) If r is even, then every automorphism of G is even and 

s(i) = l for every ieG*. 

(iii) If r is odd, then card -{ie G*;s(D = l} =card He G*; 

s(i) = -U=pr-1(p-l)/2. 

Proof. See 4.3. 

4.5. Lemma. Let n = p , where p > 3 is a prime and either p > 7 , 

or pfe{3,5^ and r is even. Then there exists ie G* such that 

i+1£G* and s(i)=s(i+l)=l. 

Proof. If either n = 7 or pe43,5}, then we can put i = l (use 

4.4(ii)). Now, assume that p > 7 , n>ll and that the assertion is 

not true. Then s(l)=l, s(2)=-l, s(4)=s(2)s(2)=l, s(5)=-l, s(9)= 

=s(3)s(3)=l, s(10)=s(2)s(5)=l, a contradiction. 

^•6- Lemma. Let n = pr, where p ^ 3 is a prime and r >: 2. Then 

s(kp + l) = l for every 0^*k^pr_1-l. 
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r-1 
Proof. (kp+l)p =1 in G (by induction on r), fkp + 1 i-

s an 

automorphism of odd order and s(kp+l)=l. 

4-7. Lemma. Let n = pr, where p > 3 is a prime and r is odd. 

Then there exists i € G* such that i + leG*and s(i) = l, s(i + l) = -l. 

Proof. Let m e G* be a generator of this group. There exist 

0 -r k -= p -1 and U j = p-l such that m=kp+j. Consider the numbers 

kp+1, kp+2,...,kp+p-l. By 4.6 and 4.4(i), s(kp+l)=l and s(kp+j)= 

=-1. The assertion is now clear. 

4-8. Lemma. Let n = p , where p ? 3 is a prime and r is odd. 

Then card^i;l-=i-=p-l,s(i) = l"} =card ( i;ls-i4p-l,s(i) = -l} = 

=(p-l)/2. 

r-1 *. 
Proof. There are p elements in G of the form kp+1. As 

r-1 
(kp+l)p =1 in G, the Sylow p-subgroup S < G ^ is formed exactly 
by all these elements. Consider the set P= \ 1,2, . . . ,p-l}. If 
i=fk ,(3) for any i,jd P, then i-3 is divisible by p, and hence 

i = j. Therefore G*=PS=SP, and by 4.6 card i i € G*;s(i) = l •' = 

=card(S)»card \i£ P;s(i) = lf. The rest follows from 4.4(iii). 

4«9- Lemma. Let n = pr, where p>5 is a prime and r is odd. 

Then there exists i£ G* such that i+1& G* and s(i)=s(i+l)=-l. 

Proof. Assume that this is not true.. As s(l)=l, by 4.8 we 

have s(2i-l) = l, s(2i) = -l for any 1 = i 4 (p-l)/'2. However, s(4) = 
=s(2)s(2)=l. 

4.10. Lemma. Let n=pr, where p-5 is a prime and r is odd. 

Then there exists ie G* such that i+l£G* and s(i)=-l, s(i+l)=l. 

Proof. Assume that this is not true. We have s(l)=l, s(4)= 

=s(2)s(2)=l, and hence s(2)=s(3)=l. Now, by induction on i, we 

are going to show that s(i) = l for any ie.G*, p > i r- 4. If i is not 

a prime, then s(q)=l for each prime divisor q of i, and so s(i)= 

=1. If i is a prime, then p>i+l, i+1 is even, s(i+l)=l, and so 

s(i)=l. 

4-H. Lemma. Let p = 2k + l, k i l , be a prime, 

(i) If k is even, then 4 divides pr-l for any r ;1. 

(ii) If k is odd, then 4 divides pr-l iff r is even. 
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Proof. We have pr+1-l=p(pr-l)+p-l. 

Put specc(n)= U ; 1 =. i -r 4 ,Cai(G) •¥ 0r. 

r, r 
4.12. Proposition. Let n=p, ...p u, where l~u,r-,...,r 

and 3^p,^p ?<...<:p are odd primes. 

(i) If p.£ 7 and r. are odd for some 1= i £ u, then specc(n)= 

= U,2,3,4*. 

(ii) If p1=3, r,is odd and the numbers r „ , . . . , r are even, then 

specc(n)= \ 4 x. 

(iii) If all the numbers r. are even, then specc(n)= i H . 

(iv) If either p,=3, p2 = 5, r« is odd and the numbers r,, r,,... 

...,r are even or p,=5, r, is odd and the numbers r«,...,r are 

even, then specc(n)= \2,3,4*. 

(v) If p,=3, p2 = 5, r, , r2 are odd and r,,...,r are even, then 

specc(n)= U,2,3"i. 

Proof. The ring Z is isomorphic to the cartesian product 
r i 

of the rings Z , n.=p.. The assertion may be now derived easily 

from 1.1, 2.4 and the results of this section. 

5. Orthogonal automorphisms and finite fields. In this sec­

tion, let T be a finite field of order n = p , p 2 2 a prime and 

r>1. For every as T* = T-iO: we have an automorphism f of T( + )=T 

defined by f (x)=ax. We put s(a)=sT(a)=sgn(f ). 

The prime subfield of T will be denoted by P. 

5•1• Lemma. (i) If p=2 then s(a)=l for every ac T*. 

(ii) If p - 3 , then card i. a .-. T* ;s(a) = l} =card \ar T*s(a)=-1:= 

=(n-l)/2. 

Proof. (i) T* is a group of odd order. 

(ii) If a s f is a generator of T*, then s(a) = -l. The rest 

is clear. 

5.2. Lemma. Suppose that p c 3 and r £ 2 . Then there exist 

a,b,dcT-P such that s(a) = s(a"1 ) = s(a""1 + l ) = s(d+l) = -l and s(d) = 

=s(a+l)=s(b)=s(b+l)=l. 

Proof. If ccT-P, s(c) = -l, then s(c_1) = -l and s(c + l) = 
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= s(c)s(c~ +l) = -s(c~ +1). If s(c" +1) = -1,' we put a = c, otherwise 

a = c . Further, put d = a+max -(i;s(a + i) = l and l £ - i < : p V If s(a + 2) = 

=1, we put b=a+l; in the other case let b=a(a+2). Then s(b)= 

=s(a)s(a+2)=l and s(b+l)=s(a+l)s(a+l)=l. 

Put specf(n)= i i ; l ^ i ^ 4 , Oai(T( + ))n(LxL)^0i, where L = 

= 4 f a € T * V 

5.3. Proposition. Let n=pr, p ? 2 a prime and r £r 1. 

(i) If p e 7 , then specf (n)= 4 1,2 , 3 ,4j . 

(ii) If p = 2 and r^2, then specf(n)= 4 1 V 

(iii) If p £ 3 and r > 2 , then specf(n)= 41,2,3,4V 

(iv) specf(2)=0, specf(3)= 44} and specf(5)= -12,3,4}. 

Proof. Use 5.1, 5.2 and 4.12. 

6. Summary. For a positive integer n, let spec(n) designa­

te the set of 1 £ i £ 4 such that Oa.(G) is non-empty for a finite 

abelian group of order n. 

6.1. Proposition. Let n .> 3 be odd. 

(i) If n is divisible by a prime > 7, then spec(n)= 4 1 , 2 , 3 , 4 V 

(ii) If n is divisible either by 9 or by 25, then spec(n)= 

= 4 1 , 2 , 3 , 4 V 

(iii) spec(3)= 44}, spec(5)= 42,3,4? and spec(15)= 4 1 , 2 , 3 V 

Proof. Apply 4.12, 5.3, 2.4 and 1.1. 

6.2. Proposition. Let n^4 be an even number divisible by 

4. Then 1t spec(n). 

Proof. Apply 6.1, 5.3, 2.4 and 1.1. 

6.3. Corollary. le.spec(n), provided either n > 7 is odd or 

n is even and divisible by 4. 

6.4. Corollary. 4fcspec(n), provided n is odd and n^-15. 

6-5- Corollary. 3,2fespec(n), provided n > 5 is odd. 

6«6. Corollary. Let n--" 2 be an integer. 
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( i ) If either n £ 7 is odd or n is divisible by 4, then there 

exists an orthomorphic idempotent quasigroup of type ( 1 ) and 

order n. 

(ii) If n^5 is odd, then there exists an orthomorphic idempo­

tent quasigroup of type (2) (resp. (3)) and order n. 

( i i i ) If n4s15 is odd, then there exists an orthomorphic idem-

potent quasigroup of type ( 4 ) and order n. 
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