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SOME FACTORIZATION THEOREMS FOR PARACOMPACT 6 -SPACES 

Ju.H. BREGMAN 

Abstract: For closed mappings between paracompact ^-spa­
ces and for continuous mappings between regular spaces with 
countable network there are proved factorization theorems by 
weight and dimension. 

Key words: Paracompact 6-space, countable network, facto­
rization . 

Classification: 54F45 

The method of factorization theorems plays an important role 

in dimension theory. Factorization theorems by weight and dimen­

sion are well-known in the classes of compacta and metric spaces 

(see e.g. [5, Theorems 3.3.2 and 4.2.53), B.A. Pasynkov has pro­

ved a factorization theorem for p-paracompacta [73. 

In l3l we have proposed a method of rigid systems for the 

study of dimensional properties of paracompact e'-spaces (i.e. 

paracompact spaces with a €>-discrete network). Here we develop 

this method and use it to prove some factorization theorems for 

paracompact ^-spaces, in particular, for closed mappings betweem 

paracompact ^-spaces (Corollary 1) and for coniinuous mappings 

between regular spaces with a countable network (Corollary 2). 

However, we do not know whether the general factorization theorem 

by weight and dimension for paracompact €>-spaces is true. To be 

precise, is it true that for a continuous mapping f:X—s> Y whe­

re X is normal and Y is a paracompact pf-space, there exists a 

paracompact ^-space Z and continuous mappings g:X—> Z and 

h:Z—-> Y such that f = h e g, dim Ẑ - dim X and w(Z)^w(Y). 

The starting idea for our work was the concept of a weak 

bisection introduced by A.V. Archangelskii [1J. A continuous bi­

section f:X—* Y is called weak if X is regular, Y is paracom­

pact and there exists a ef-discrete family JC in Y such that 
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f (3C) is a network in X. In til it was proved that a space, 

from which there exists a weak bijection , is a paracompact 6~-

space. Besides, every paracompact ^-space can be mapped by a 

weak bijection onto a metric space. 

The next definition generalizes the idea of a weak b i j e c t i o n . 

Definition 1. A continuous mapping f:X—>Y of a regular 

space X onto a paracompact space Y is called ^-discrete if the­

re exists a 5-discrete network % in X such that f(3cf) is a (T-

discrete network in Y. 

The next result is analogous to a theorem of A.V. Archan-

gelskii ClJ. 

Proposition 1. If there exists a c^-discrete mapping from 

a regular space X then X is a paracompact ^-space. 

Proof. Let f:X —v Y be a ^-discrete mapping and let 7K be 

a ^-discrete network in X such that the network f (X ) is fo-dis-

crete in Y. We shall prove that X is paracompact , i.e. that 

every open cover % has a tf-discrete open refinement V . Noti­

ce first that without loss of generality one can assume that for 

each K e X there exists U(K) e U such that Kc U(K). Since Y is 

collectionwise normal, there exists a ^-discrete open family 

40K:K G 3C} in Y such that f(K)c 0K for each K e X . Hence the 

ment of 1£ 

family V =4f "1(0|.) n U(K) :K e ̂ rC \ is a fi'-discrete open refine-

Discrete sets and paracompactness are preserved by closed 

( con t i nuous ) mappings. Hence, we have 

Proposition 2. If X is a paracompact €> -space and a map­

ping f:K—> Y is a closed continuous one, then f is 6*-discrete. 

Let us note 

Proposition 3. Every continuous mapping of a space with a 

countable network onto a regular space is ^-discrete. 

Definition 2. By a quasi- rigid system we call an inverse 

system i X ^ , ^ , JT^; , oc, /3 e A} such that all the spaces X^ are 

paracompact with a <T-discrete network 3^ and sr^ (^)= &/1 

for all ft ^06 . A quasi-rigid system is rigid if all the projec­

tions WQ are continuous bijections. 
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The notion of a rigid system was introduced and considered 

in [2],[3]. It was proved there that the limit of a rigid system 

is a paracompact 6f-space and that every paracompact 6*-space is 

homeomorphic to the limit of a rigid system consisting of metric 

spaces. Notice that in [3J we have constructed an example of a 

rigid system consisting of complete metric spaces, the limit of 

which is not metrizable. Furthermore, in [4l, we have construc­

ted an example of such a system the limit of which is even not 

stratifiable. 

The notion of a quasi-rigid system can be defined in catego­

rical terms. Consider a category *£ with objects ( X j T ) and mor-

phisms f : (X, -3f )—>(Y, %), where X is paracompact, & is a ©'-dis­

crete network in X, f is continuous and f(;T)= X. Then quasi-ri­

gid systems are exactly the inverse systems in the category *€ -

It is obvious that the limit projections of a quasi-rigid 

system are 6*-discrete. Hence the proposition 1 implies 

Proposition 4. The limit space of a quasi-rigid system is 

a paracompact S'-space. 

In [2], [.33 we have proved the next 

Theorem 1. The following conditions for a space X are equi­

valent : 

1) X is a paracompact 6^-space and dim X £ n. 

2) X is a limit of a rigid system consisting of spaces of 

dimension dim^n. 

3) X is a limit of a rigid system consisting of metric spa­

ces of dimension dim^n. 

The next theorem slightly strengthens the previous one: 

Theorem 2. X is a paracompact tS'-space and dim X=fn if it 

is homeomorphic to a limit of a quasi-rigid system of metric 

spaces X^ such that dimX,-*n. 
^ aC d 

Proof. Let S= 4 X^, 3^ , jr£ ,oc,/3£ Aj be a quasi-rigid sys­

tem, X = lim S, ^roC:X—v X^ be limit projections, X^ be metriz­

able and dim X^-6 n for each oc e A. We shall prove that the qu­

asi-rigid system S is cylindrical in the sense of Yajima [8] that 

each finite cozero cover of X has a 6'-locally finite refinement 
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consisting of sets of the form jr^ (U), where U is a cozero-set 

in X^. 
-1 Let 3" = sr^ ( 3^ ) and o> be a finite open (cozero) cover of 

X. Notice that without loss of generality one can assume that T 

is a refinement of co . Let J*> be a standard base in X consist­

ing of the sets of the form jr^ (U), where U is open in X^ 

(cc € A) and let 0JL be a maximal subfamily of 3 which refines co * 
Moreover, without loss of generality one can assume that & is 

a refinement of 16 . Then for every F e $ there exists an open 

set 0(F) e It and an element o& (F) e A such that FcO(F), to' -
= *0(F):Fe#? is a er-discrete family and 0(F)= Jr^F)(u) for 

an open set UcX ,r\. Thus the inverse system S is cylindrical. 

Hence by a theorem of Yajima [8] dim X-^ sup -Cdim X^ : oce.Ai-.rn 

(it actually follows from a result of B.A. Pasynkov £7, Proposi­

tion 101). 

Theorem 3. For every 6*-discrete mapping f:X—> Y there 
exists a paracompact 6-space Z and ^-discrete mappings g:X—-»- Z 

and h:Z —*- Y such that dim Z ̂  dim X, w(Z)^w(Y) and f = h o g. 

Proof. Consider a (^-discrete network X* in the space X 

such that & =f(3C) is a (5-discrete network in the space Y. By 

Definition 1 and Proposition 1 the spaces X and Y are paracom­

pact. The space Y can be represented as a limit of a rigid sys­

tem -^Y^, 3^ , sr£ , oc , (3 e A-} such that all the spaces Y^ are met-

rizable, |A|=w(Y), each element of the index set A has only a fi­

nite number of predecessors and ^oC(J)= 3^ for all oceA, We 

denote by A, the set of all elements of A with exactly k prede-

cessors (k = 0,1, . . .) and let B = «L>0 A. . For each oc e A we define 
f^ = r « f. Hence f (30= K , fA = #% - :£, for each ft £ *> • 
aC oC ot aG ' /* p aO ' 

By induction we shall construct a quasi-rigid system S = 

= {Z , ̂  )Pn »^> /3 £ A} and systems of ^-discrete mappings 

•Ug^.X —^ Z^) : oC€ A} and {(h^.Z^—> Y^) : oc e A} with the follow- -

ing properties for each oce. A and each /5 •< ©o : 1) Z^ is a met-

rizable space; 2) dim Z^ * dim X; 3) wCZ^) .£ w(Y); 4) f^ = 
* W 5 ) h - ( ^ > = ^ 5 6 ) 0^)=<c ' 7 ) 9/1 = P ^ ^ 
8) p * * ^ = ^ • h a 0 . 

By Pasynkov s factorization theorem for metric spaces for 

each o(6 A there exist a space Z^ and mappings g and h^ . 

Assume that a quasi-rigid system Sm= tZ^,^ ,p^ , oc', /3 £ B } and 
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systems of mappings {(g„,.X —•> Z ) : oc € B„Jand 4(h : Z ̂ —*- Y' ) : 

: otcB 5 satisfying the conditions 1) - 8) are already construc­

ted. We shall construct a quasi-rigid system Sm , and mappings n 
, m+1 * 

and h . <x e Am , . 
a* ' m+1 

Consider cc e A . and a mapping tdi= f A(^-^g«: (I < <*>, (3 6 A \ ) : 

X — * Y . x T R z . . : /3 <- oc, ft e A }. By Pasynkov factorization theorem 

for metric spaces there exist a metric space Z^ and 6*-discrete 

mappings h^-.Z^ —>• Y^ x T\{ Z^: ft < co , (3 & A 1 and g^.X — > Z^ such 

that T ^ = ^ 0 g^, dim Z^^-dim X and w(ZoC)^ w( Y xTT-f Z^: /3 -coc, /3 € Am] )̂r 

^w(Y). Define a mapping h ^ as the composition of h^ with the 

projection of h.(Zo(/) onto Y^ in the product Y^x. TT-[ Z« : |3<oc, 

l3 G A j . Then f^ =h<xo g^. Let ^ =goC(^C). It is easy to notice 

that the family &^ is a ^-discrete network in the space Z^ . 

For ft < oc and 0 e A we define pp' as the composition of "Ff̂  

with the projection of hcjC(ZoC) onto Z^ in the product 

Y^xTT-CZo: i3 < cc , /3 £ A }. It is easy to construct other projec­

tions p^: and to notice that h,(oC<)= %z > 9oc^ ̂ = ̂ c ar,d 

p^(^CoC)=^f-3 for each fi £ oc . In the same manner we can verify 

the conditions 7) and 8). 

If we make such a construction for every oC e A , we shall 

get a quasi-rigid system S ,. Thus we get quasi-rigid systems 

AS :m e. IN I satisfying the conditions 1) - 8) and such that 
S c S , . It is obvious that the quasi-rigid system S=^-lS :melN} m m+1 -1 a J m 

satisfies the conditions 1) - 8). 

Define the space Z as the inverse limit of the quasi-rigid 

system S and let p^.Z — ^ - Z ^ be the limit projections ( oceA). 

By Theorem 2, Z is a paracompact 6"-space and dim Z^dim X.. 

Using the condition 3) and the inequality |A|-£w(Y) we get w(Z)^ 

^ |A|-W(Y) £w(Y). Moreover, the system s£ = ^ l } i ^ ) (oceA) is 

a ©'-discrete network in Z. From the condition 7) and the defi­

nition of limits of inverse systems it follows that there exists 

a unique mapping g:X— > 2 which is defined by the system -Ug^ : 

:X — > Z^): oc e A ? and such that g^ =poC © g for every oc e A. By 

the condition 8 the system {(h^.Z^—^YoC):oceAr is a morphism 

in the category of quasi-rigid systems from the system S to the 

system lY^, S£ , JT£ , oc , /3 <s A?. Hence there exists a mapping 

h:Z ~ > Y such that JT^ • h=ho6« p^ for every oc & A. Hence 

h(£6)= £ and analogously g(3£)= X . Thus the mappings g and h 
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are 6-discrete. To complete the proof one has only to notice 

that f=h « g. 

Theorem 3 and Proposition 2 imply immediately the following 

Corollary 1. For every closed mapping f:X —> Y of a para-

compact ff-space X there exist a paracompact ^-space Z and con­

tinuous mappings g:X —*- Z and h-.Z—•> Y such that dim Z^.dim X, 

w(Z) £ w(Y) and f = h * g. 

Theorem 3 together with Proposition 3 immediately imply 

the following 

Corollary 2. For every continuous mapping f:X—>• Y of a 

regular space X with a countable network onto a regular space Y 

there exist a regular space Z with a countable network and con­

tinuous mappings g:X—*• 2 and h:Z —>- Y such that dim Z^-dim X, 

w(Z)-f w(Y) and f=h « g. 
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