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ANNOUNCEMENTS OF NEW RESULTS • 

Sy^yytllVALUEO^AND^SINGLEVALyED^^ 

Josef Kolorn^ (Math. Institute, Charles University, Sokolovska" 83, 
18600 Praha 8, Czechoslovakia), received 12.1. 1987. 

Let X be a real normed linear space, X* its dual. Recall 
V 

that a mapping A:X—*-2 is said to be: 
(i) hemicontinuous (HC) at uQ€intaD(A) (an algebraic in­

terior of 0(A)) if for any veX and any null-sequence of positive 
numbers tR and x ncA(u n), where un=uQ+tnv 60(A) for sufficient­
ly large n, x —s-* x weakly in X and x eA(u ) ; 

(ii) directionally upper semicontinuous (DUSC) at u 6 
6 intgD(A) if its restriction to any hplf line Ly= -},u0+tu:tj?0}, 
vCX is upper semicontinuous (USC) at u ; 

(iii) demicontinuous (DC) at u oeD(A), if (u )cD(A), u n—#. 
—** u , xneA(u ) imply that (x ) converges weakly to x and 
xQ€ A(uQ). Clearly, if A is (HC) at u 0eint gD(A), then A is 
(DUSC) at uQ. Conversely, if A is singlevalued and (DUSC) at uQ, 
then A is (HC) at u . Similar relations are valid between (DC) 
and norm-to-weak (USC). The following results are related to that 
of m - m . 

V 

Theorem 1. Let X be a reflexive Banach space, A : X — > 2 an 
accretive mapping with D(A)fiX. Then 

(i) If X is smooth and rotund and A is singlevalued at u e 
€ intaD(A), then A is (HC) at uQ; 

(ii) If int D(A)4;0 and A.(u) is convex and bounded for each 
u € int D(A) and the graph G(A) of A is closed in (X, H • H ) x 

x(X, 8f(X,X*)), then A is singlevalued and (HC) on a dense G^ 
subset of int D(A); 

(iii) If X is Frexhet-smooth and A is (HC) at u Qc int D(A), 
then A is (DC) at uQ. Thm. Kiii) extends the result of Kato 123, 
where it is assumed that X* is uniformly rotund and A is single-
valued. 

Theorem 2. Let X be a dual (i.e. X-.Z* for some Banach spa­
ce Z) smooth rotund and (H)-Banaeh space (i.e. if (x )c X, x«X, 
Xn~~* X-weakly, RxnH — • Hx» imply that xn~~> x), A:X —*• 2

X a 
maximal accretive mapping with respect to the duality mapping 
3 : Z * ~ H * Z and such that D(A)cX. If ¥TA)^ z*» z )is convex, then 

Um I 3*(u)« - a0 for each u c JT\„(0(A)a R(I+^A)), where . 

3.««4.AA)'1 and a0 is a unique element of S T A T * «*th the 

minimum norm. 
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Using the result of [ll concerning the convexity of R(A; we 
get 

Corollary 1. Let X be a reflexive rotund (H)-Banach space 

which is uniformly Gateaux smooth (or equivalently X* is weakly* 
y 

uniformly rotund), A:X—>• 2 an m-accretive mapping with D(A)c X. 

Then lim i JL (u)= - a0 for each ufcD(A), where a0 is a unique 
point of R(A) with the minimum norm. 

As a further consequence of Thm. 2 we obtain the result of 
[6] concerning maximal monotone mappings in Hilbert spaces. 
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MINIMAL CONVEX-VALUED WEAK USCO CORRESPONDENCES 

Ludgk Jokl (uVUT Praha, Th^kurova 7, 16629 Praha 6, Czechoslovakia)/ 
received 15.1. 1987. 

We say that a function f:V—>R defined on a vector space V 
is rotund if it is convex and f((u+v)/2)<t whenever u,veV, u-fcv 
and f(u)=t=f(v). In what follows X will be a real Banach space. 

Theorem 1. If there exists a weak* lower semicontinuous 

rotund function f:X*—>-R, then X belongs to the Stegall class if. 

We denote by w* the weak* topology for any dual Banach spa­
ce. Let D be a topological space. Then we write Fe USC0C(F,(X*,w*)) 
if and only if, using the weak* topology, F is a convex-valued 
usco correspondence from D into X* . The set USC0C(D, (X*,wi<)) 
is partially ordered with order 4s , where E£F iff E(d)cF(d) 
for each deD. We denote by uscoc(D,(X*,w*)) the set of all mini­
mal elements of USC0C(D,(X*,w*)). 

Theorem 2. Let T:X—» X* be a maximal monotone operator 
and D be an open subset of X. If Tx-i-0 for all x in 0 then 
T|Dcu%coc(D,(X*,w*)). 

If F is a correspondence from D into X* then we define the 
set C(F,D,X*) as follows: deC(F,D,X*) %i and only if deD and, 
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