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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
28,1 (1987)

LINEAR FUNCTIONALS IN SLM-SPACES
J. MICHALEK

Abstract: This article deals with linear functionals
defined on statistical linear spaces in Menger 's sense (SLM-spa-
ces). The main aim is to describe all continuous linear functio-
nals defined on a SLM-space (5,7%,T) as a SLM-space, too. For the-
se purposes we shall define a statistical norm of a linear func-
tional which in a simple way characterizes continuous linear
functionals.

Key words: Statistical metric space, statistical linear
space, €-7 -topology, t-norm. '

Classification: 60B99

Let a SLM-space (S,},T) be given. Let S* be a vector space
of all linear functionals defined on (5,},T), let S° be a linear
subset S'c $¥ of all linear functionals continuous in the e-7 -
topology. The besic properties of the g€-7 -topology are given in
(11, £2). A special case of the dual space to a SLM-space is stu-
died in [3].

Definition 1. Let a SLM-space (5,%,T) be given, let feS*,
f£0. A function Ff(-) defined by

Ff(U)=£;.s‘§l(’g*éFx( -E&l‘-)-l +wa(l-£-l(75-)-L)} for u>0

Ff(u)=0 for u< 0,

(wF (u) is the jump of F _(.) at u), will be called a statistical
norm of the functional f. For f == 0 on S we put F (u) H(u) where
H(u)=0 for u&€0 and H(u)=1 otherwise.

Properties af the statistical ‘ncrm:

1. let 0<u;<u, then -Lf—(-"—)-'- M for every x€S. It implies

that for every x with f(x)+0 "2 \

JELER)! £(x) f £(x)
1- {F, (LA )+ wf & Lt <1- {FX(L_S.;M),MX(J—‘TL)}
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and hence Fo(u;)£F,(u,). The statistical norm of feS*is a non-
decreasing function in reals. Further, it is evident that OéFf(u)é
41 for every u e Rl.

2. The function Ff(-) has at most a countable number of disconti-
nuity points and at every point the limits at the left and at the
right exist.

3. In general, it is not true that lim Ff(u)=1. In every case,
of course, lim F.(u) exists and lim F_ (u)£1.
w0 I w00 L

4. If Ff(u)=H(u) for every u e.ﬂ.l, then £(x)=0 for every xe€S.

5. In case of such a 'SLM-space (S5,%,T) where wFX(0)=0 for eve-
ry x+0 the statistical norm Ff can be expressed in the form

Fe(u)=1- 31230&’(( lfl(jx)|)+ wF ( Ifl(j)() | %, too.

Definition 2. A functional fe $* is said to be bounded with
respect to the statistical norm if

lim Ff(u)> 0.
DR

Theorem 1. A functional fe S* is bounded with respect to the
statistical norm if and only if f is continuous in the €- % -topo-
logy.

Proof. Let fe S* and let f be bounded with respect to the
statistical norm. As f is linear it is sufficient to prove its
continuity at the null vector in S. Assuming iigw Ff(u)= e0>-0
then

lim s%x”éfx(-‘%ﬁ—x—u% wa(l—f—S—x-z-l-)} =1- ¢, and hence for

oo {x:

every x,1t001>0, 1in_ §F, (L. wr AL 1o o et

{xn}T;:l be any sequence in 5, x #+0 for every n e N and X, —> 0
in the ¢-m -topology. It is clear that for every n.e M

' (x| 1£(x )|
h‘fa,”xn( - )+wan(-—J—-)} =“’Fxn(°)"1“ €

Let us suppose that If(xn)lv‘" 0. Then there exist such an

-4 o0
€,>0 and such a su\bsequence ixnk} k=1€ h‘n‘n:l that

|£(x_ )| =z &, for every ke M.
N 1

Hence
lf(xnk)l If(xnk)| ) ¢,
F"n (—5 )+wan (———)2 F"n I+ @F, (5D
K K k Mk
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also for every k € 7l and it implies that for every u>0
If(xnk)‘ lf(xnk)l
‘lcl_;nw{F . (——)+ wank(-——u——-—)} =1 because xnk-—> 0
in the €¢-7 - topology.
But as follows from the properties of the supremum

IF(x, )| [f(x, )|
sup  4F AL wr 2Oyt p Ky er,

ix £ 0040 Ny ne O

for every k e L and therefore
2 ;&3*0}{FX(JL(_:'2'L)+ QFX(JL(—S—)L)}:l for every u>0.

This last equality is contrary to the assumption that
[£(x) [£(x) 1.
LLim {xs‘;l(g)w}{Fx( U Yrwf (L2220 =1- ¢ < 1.
This result implies that fe S* must be continuous in the e-7n -to-
pology.
Let us suppose, on the contrary, that fe S is not bounded
with respect to the statistical norm, i.e. for every u>0
[£(x)] [0 yq -
g0 X @F (0T =L
As f is a linear functional, Definition 1 implies that for
arbitrarily chosen k>0

-1- k k
"7 o @ OF @ too

Further, £ is continuous and hence |[f(x)|%£ kD in an g¢-7n -neigh-
borhood 0°(e,, m,). Now, let u +oo, £ N 0. Then for every n eN
there exists y_eS where lf(yn)|=k and therefore y_ -0 in the

€-7-topology but

i ey l£GOl 10y
S RIS e e S A
[£Cy )1
+wF «(____'3,_ +E £¢g +F (——-)+ FooX) <
Yo Yn, )y En "y, g Yo U

Kk
& 5n+Fyn(U: + d7) where dJ NO.

. : k k
It implies that 1-(t=,+£n)<Fyn(u—n + d'n), i.e. yneO’(e+en,U;+ d';‘)

(for every neM) and we have proved that y,—> 0 in the £-%-topo-
logy. This result, of course, is in contradiction to the continuity
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of the functional f at the null vector in S. Q.E.D.

Let a SLM-space (S,},T) be given. Let a€<0,1) and let us de-
fine n (x)=inf{A > 0:F (A )>at. If x=0 then n_(0)=0 for every |
ae<0,1). On the contrary, if na(x)=0 for every a e<0,1) then
x=0 in S because x=0 if and only if Fx(u)=H(u) for every u e :Rl.
At the first sight it is clear that na(o\x)=|alna(x) for every
Ae .’Rl and xe€S. Unfortunately, it is not true that na(x+y) £
éna(x)ma(y) for every pair x,ye S in (S,%},7) besides the stron-
gest t-norm T(a,b)=min(a,b). Nevertheless, we can define for eve-
ry f€ S* and every a e<0,1)

NN, =sup -{If(x)l:na(x)éll-

Let us denote 0'a= {xes:n (x)£ 1. From the definition of ng(e)
it follows that when a£b, then na(x)énb(x) for every x €S and
hence 0O, 30’b. Further, we immediately obtain that Ilfllazi\fllb
if a£b. We also see that for every real A

H.J\flla=|3\| "fﬂa for every ae<0,1) and

every fe s*. We can prove, in an easy way, the triangular inequ-
ality
||f+gﬂa < ILf!la+ llg\la
for every f,ge S* and every a ¢<0,1) because we know that
sup {1f(x)+g(x) |3 < syp 11£(x) )} +sup {lo(x)|¥. If Oe S* is the

null functional in S (O’(x)=0 for every xe€S), then surely
I!Ulla=0 for every a e<0,1). On_the contrary, let us suppose that
Ilfl|a=0 for every a €<0,1). This assumption implies that f(x)=0
for every x & O’°= {xe S.:no(x)é 13. Since for every xe& S there
exists such a vector y e O’a, y=Ax, we obtain that f(x)=0 for
every x € S. We can prove a stronger statement even that \\fl\a=0
implies f(x)=0 for every xeS. The assumption l\f\la=0 gives that
f(x)=0 for every x ¢ 0’8= {xeS:na(x)éI}. Let x €5, na(xo)z 1.

x
So, yfﬁ:('?(';T € 0, and hence f(y )=0. It implies that also f(x )=

=0 and it yields together that f£(x)=0 for every x€ S. The proved
results lead us to the formulation of the following definition.

Definition 3. Let a SLM-space (5,%,T) be given. Let f be a
linear functional in (S5,%,7), let ae<0,1). Then the number
llﬂ\axsup {If(x)l:na(x)él}
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where na(x)=inf{A>O:Fx(A )>a} will be called a conjugate norm
to n (+).

The conjugate norm l\fla can assign the infinite value, too.
Iiflta is defined in <0,1), is nonincreasing and we put ||fl11=
=inf &I\fl\a:a< 1}. As for every x& S the corresponding probability
distribution function Fx is left continuous, then for every x eS$§
na(x) as a function in the argument a in <0,1) is right continu-
ous.

Theorem 2. Let f be a linear functional defined in a SLM-
space (S,#,T). f is continuous in the €-7 -topology if and only
if there exists aoe(O, 1) such that

i, < o0
3

Proof. Let us suppose that “f\\a < +0o for aoe<0,1). As

Ilflla is nonincreasing in {0,1), then llf\\a< + oo for every
a e(ao,l) , \\f\\1=infa<ll\flla. From the definition of the conjuga-
te norm |if|\a it follows that for every x € 0’a = {x:na (x)£1%
) )

[£OO £l . Since n, (x)<1 iff F (1)>a_, we see that the
o o

functional f(e) is bounded in the €-7 -neighborhood O'(ao,l) and
hence f is continuous in the €-7 -topology.

On the contrary, let us suppose that f is a continuous line-
ar functional in the €-7 -topology. Let us suppose that \\fNa=+OO
for every a €<0,1). This assumption implies that for every ne N
there exists x €S such that |f(xn)|>n and x_e 0, anf'l. If

(x| ;

X
we put y = —p—;, then |£(y )|= =

1 -
>1 for every n and y & & O’an—

21 . - . 1 i
== ixe S.nan(x)!:l?, = {xeS:n, (x) n} and hence y —> 0 in the

n
¢-n-topology although [f(yn)|>1. It is impossible because we as-
sumed continuity of the functional f at the null vector in S. Q.E.D.

At the beginning of our considerations we defined the statis-
tical norm of a linear functional defined in a SLM-space (S,},T).
At this situation .a natural question arises about the relation
between the statistical norm F, and the conjugate norm lf\\a in
case of a continuous linear functional defined in S.

For this purpose let us put a =inf {a:_l\ﬂla< + o0} in case of a con-

tinuous functional f and I\ﬂl1=inf “f“a‘ By these relations we

a<l
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defined a nonincreasing function Ifll_ in the interval (ao,l) with

finite values in (ao,l> . It is clear that lii£l " (B4}

a e(O,l-ao) is a nondecreasing function in <0,1—ao> .
Now, let A2z 0 and let us define

Fo(a)=int £a>0: WEl 2 A3 if {a>0: WEW zAt+ ¢
Fe(an=1 if £a>0: WEN 2 AY= 0.

1-a’

In this way we obtain a nondecreasing function defined in <{0,+o)
: s : ~ - - = . ~
which is left continuous, }Lﬂn‘n Ff(J\ )=1 a,. Let us put ¢ lllﬂmw Ff(/\).

Theorem 3. For every continuous linear functional f defined in
a SLM-space (S ids T) the function Ff defined above is a nondecrea-
sing left contlnuous real valued function in <0, ) with
lim F (A) la <1 and F, (0)0
A>00

Proof. As Ulfl\\ = \\f“l _g in <o, l—ao) is a nondecreasing func-
tion then {a>0: lllfm 2 A }3{a>0 lllfmaz 3\2} for every pair
2159\2 and hence F (?\ )_F (Ay). Let A > 0 be fixed and let
us consider A /?\ surely sup ?’ ( ?\ )‘F (A). From the defini-
tion of F (?\) we know that for every e> 0 there exists a >0
such that F (J\n)+ ¢>a_  and Wem anz ﬁn' for every n € L . Since

Q‘n < ?\n+1 for every n e 7l we can choose a, in the same way, a_<«

n%

€3 .1, and hence lﬂtm a =a, exists. Surely }Lia’mw ?f( )\n)z a,-¢.

The function lllfll\ is nondecreasing, hence lim mfma £ Hl'fllla,
n

then lllf“l 2 A which _implies that T (A)<a, In this way we

have proved that lxmw F.(a ) F (J\) and hence F ( ) is left con-
tin uous in (0,+w) at those p01nts Ae<0,+m) where

{a: lllfl\\a- AY#+@. It lasts to prove the left continuity at that
Ae (0,+c0) where {a: Wfill 32.7\§=ﬂ. Let A /’/\ and {a: WIifhl >9\}=ﬂ.
If, at least for one noe’n{a: leIlla § is empty, too, then by

the definition of ?f(-) Ff( ?\n)=1 and hence F. ( ) is left con-.
tinuous at A . Let us suppose that for every n e 'Yl {a: \Ilf\\\a>?\ni
is nonempty, i.e. for every A there exists a e(O,l—ao) such

that lllf\“ z A . Since Iﬂfll\ is nondecreasing in (0,1-a ) we
3

can choose {a § as a nondecreasmg sequence, too; ll_gnw a.=a,.

Hence lim Ulfm £ Wit l“ and Hlfl\| z A but it means that the
my o

a,
set da: WE£WN >-.7\} is nonempty which is contrary to the assumpti-

on. So, a number n,e M must exist such that {a: UIfNa zZA 3 =0
o
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and ?f(.) is left continuous at A . Q.E.D.

Theorem 4. Let £ be a linear continuous functional defined
in a SLM-space (S,#,T). Then the statistical norm Ff(.) and F}(-)
are equal at all points.
Proof. First we shall prove the implication
Feu)<a = MENl  zu.

Let ae<0,1) and u>0 be such that Ff(u)‘<a. By the definition
Ff(u)<a implies
gF 20O Ly, o (20D 1y3 5 4.
R L e e e i
It means there exists Xq € S with f(x0)4=0 such that
[£(x )| [£(x )|
(—=—) (—=

X u +wX u
s} s}

)>1-a.

Then we can state by means of nl_a(xo)=inf{3:> 0:F (A )>1-at

that Y o
£(x
0
) ml-a(xo)é'_—TT——'
ux, .
N = P4 =
Now if we put z, Tfr;ETT then nl_a(zo)._l, If(zo)[ u and hence

"f“l_a=sup {lf(z)|:n1_a(z)é 13> u.

It proves: if Ff(u)< a then Ilfﬂlaz u. This implication can be
expressed in the following form

{a:Ff(u)< ajc{a: Ulf“|az ut.
Now, let us prove the opposite implication
Fe(u)2a = Illfmaéu.
Let a€<0,1) and u> 0 be such that Fe(u) za, i.e.

[£Ca) ] 1100 | -
T A Rt e

This implies that Fx(-l-f—(:—)]-)él-a if £(x)#+0.
The definition of "l-a(') and the monotony of Fx give
l-f-(-"j—)-lénl_a(x).

The last inequality holds for f(x)=0 of course, too. It means the
inequality |£(x)|£ u must hold for every x €S satisfying nl_a(x)é
4£1. The definition of “f“l_a gives immediately that
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|\fﬂl_a= lllfl\laéu.
We proved the implications
{a: WEW _>ulc fa:Fp(u)<alcia: WeW  zus.

Further, if € is any positive number, then .

{a:Fe(u)< atcfa: WEN a2 ulc {a: mf|l|a>u-e} c {a:Ff(u-e )< al.
~
F

Now, by means of the definition of £ we obtain

~
Felu-e )£ F (u)£F (u)
and the left semicontinuity of Ff gives that
~,
Ff(u)=Ff(u).

In case {a: lllflllaZ u} =@ we have also {S:Ff(u)<a§ =@ and thus
Feu)=F (uw=1. Q.E.D.

We have not so far mentioned the existence of a nontrivial
continuous linedr functional in a SLM-space (S,},T). In every SLM-
space (S5,7,7) the trivial continuous linear functional 0 exists,
0(x)=0 for every x€ S. The existence of a nontrivial continuous
functional is closely connected with the strongest locally convex
topology which is weaker than the £-7 -topology. The collection
of all convex circled neighborhoods of 0 in the g¢-m-topology
forms a base for such a locally convex topology. In case of a
SLM-space (S,},T) with t-norm M(a,b)=min(a,b) every e-7 -neigh-
borhood is convex and circled and hence the topological dual
space S  is sufficiently rich in continuous linear functionals.
In case of the space (S,},M) we know, further, that for every
a €<{0,1) the number

na(x)=inf i > O:Fx(.ﬁ )>at

is a seminorm in S and in case of continuity at 0 of Fx for eve-
ry x#+0 na(-) is a norm even for every a €(0,1). But without any
assumption about a form of t-norm T in a SLM-space (S,‘},T) we
can prove that the conjugate norm

BEl =sup {1£(x)|;n (x) £1%, a «<0,1)
has properties similar -to a norm because l\Olla=D for every
ae<0,1), 1if heh =0 then £=0 in S, DALN =12 | WEL, for any
Xe R, if Ml <+ and Nf+gll < fl_+ gl for every.ae<0,1)
if Ml < + o0, llgl|a< +00 , Using the conjugate norm we construc-

ted the function ?:'t for every continuous linear functional f in
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S where F. £(+) is defined in <0,+o0), nondecreasing and left con-
tinuous with lim G (u)- te, €€ (0,17 . Let us construct a map-
ping 0 u£l

. /
ST ¥, £ F )= 7
3 3 (0w-= (u N\ Fg(u) for u>0

where S° is the topological dual space of S, ¥ is the set of all
left continuous condecreasing functions defined in ‘Rl with non-
negative values less or equsal to 1.
If £=0, then Nfl =0 for every és(o 1) and Wzl g0 for
(0 1> , too, which 1mp11es that F (u) HCu) for every u If
F (u) 1 for every u>0, llflla< + 00 tor ae<0,1- ao), and therefore
3 (u)< l-a; but it is impossible. It implies that e al+®
1n <0,1). Let us suppose that for every u>0 there exxsts 8, €<0,1)

such that WfM , 2 u. As follows from the definition of 3 (u) in
0
this case T"f(u)é a,<1, and it is also impossible. It means that

{a: wem z u>0% is empty and the only possibility is that wrm.=
=0. This fact implies that f=0 in S. Let A be any real number
and f any continuous linear functional in 5.'Then for every a &
6<0,1) with U|f|||a<+oo Ma£u =|9‘| umu and for A\ % 0

{a: WA N,z ut = lllUll -r--r} and hence F f(u) =F (m)
In case A=0 we have Af=0 and Faf(u)—H(u) and if we put Ff(U)=

=H(u) for every u>0 then Ff'(ﬁf-r)m(u) for every u>0. Let us
prove the generalized triangular inequality given by the t-norm
T(a,b)=min(a,b), i.e. )
Ff+g(u+v)z min(FfT(u),Fg'(v)).

Surely, it is possible to consider the case u>0, v>0 only. The
functionals f, g are continuous and for f there exists such a num-
ber €.>0 that lllfl\\a< +o00 in <0, ef), similarly for g, lﬂglla<
< +00 in<0, Aeg). It follows that for every

a €€0,min( €ss eg))

f+g Illa £ NEm at g Na
B8y the definition‘.

" Fg(uw=ing {a: WM > ul

3; Fé(v):inf {a: Mg zvi

Sa: MEW = ul#gbia: Wgh 2 v}
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and {a:lﬂf+g\“az u+v}c(a:leHIa+\Ng\HaZ u+vt as well. Now, let
us suppose that

Ff+g(u+v)< miﬂ(Ff’(u),Fé(V)). ®

It means that there exists such a number aSZ‘O that
f+g
Then for every azmin(inf {a: il 2 ut, in {a:lﬂgluaz vi)

age fa: Mi+rgll 2 usvl ag-e<Fl (urv)<a < min(Ff'(u),Fé(v)).

a_ < a.

£

It means thatlnfﬂla <u, ngHIa < v, which together gives
‘ e . e

leHlae+|UgH|a£< u+v.

As for a, \l|f+g|||a 2z u+v, then this fact is contrary to the conclu-
€
sion that

I”fl“ae+lﬂgﬂiae< u+v.

This proves the inequality

F£+g(u+v)2 min(Ff(u),Fé(v))
must hold.
Now, we must consider the case F:(u)=1, F_(v)=inf {a: gl 2> vi.
It means that Sa:iﬂfﬂiaz ul =@ and {a:l”gnlaz vi%*@. In case if
Xa:l\f+gHaZ usvi g F£+g(u+v)=inf {a: Hf+gﬂaz u+v?. Now, let us
suppose the conirary again, i.e.

F£+ (u+v) < min(F}(u),Fé(v)); then for some
age {a:le+gH|az u+vi
- < F£+ (u+v)< ag< min §F'(v),13. It means, of course,
that mglﬂae< v, lelHa< u for every a e<0,1) and hénce I"g\ﬂae+

+ WEW < usv. As If+gM_ > u+v then WEW_ + ligll_ 2z u+v, which
ag a ag ag

is impossible and the generalized inequality 'imust hold. Now, sup-
pose that {a: Wf+gll_ Zu+vl =@. Then, by the definition F£+g(u+v)=
=1 and the generalized triangular inequality holds in a trivial
way. - .

The last possibility is the case da: lHf+gll, z u+vi#4 @ but

{a: Nl zud = {a:l!guaz v} =g. Then F£(U)=1, F£(V)=1, too. Let
us suppose F£+g(u+0)< 1. Then there exists a, <1 such that
F£+g(u+v)< a,<1l. As we suppose {a:\lf+gﬂaz u+v} is nonempty then
Wf+gll, 2 u+v which implies either Hfﬂa zZu or “g“a;z v. This con-
clusion is of course impossible and the generalized triangular
inequality holds in this case,lggo.



We have proved that to every f¢ S it is possible to assign

a function Fg such that £=0 iff F.=H,

- _ . u ’
Faf(U)_Ff(m) for every u € 3‘1 and every Ae ®;
and the generalized triangular inequality
F£+g(u+v)2 min(Fé(u),Fé(v))

holds for every f,g€S and u,v e R .

In general, F£ need not be a probability distribution func-
tion because lgmn Ff(u)= e need not be equal to one. This fact
leads us to the following definition.

Definition 4. Let S be a linear space, let T be a t-norm,
let %' be the set of all real valued nondecreasing functions defi-
ned in reals which are left continuous and Ablggo F(u)=0,

lim F(u) 21 for every Fe &', If g’ is a mapping g':5—>3" such
A~ @D
that
1. (x=0) <> (F'(x)=H) where H(0)=0, H(u)=1 for every u>0
}’(x)[01=0

2.7'(2x)[u)=)’(x)[1—ﬁ] for every xeS and every Ae 3?»1

) 3.)'(x+y)[u+vJZT(’;’(x)[u),’;’(y)lv]) for every x,y €S and
u,veiRl

.

then the triple (S,%",7) is called a generalized statistical line-
ar space in the sense of Menger (CSLM-space).

The definition 4 is nonempty because every SLM-space is a GSLM-
space, of course, and the dual space‘(S',?’,min) to every SLM-spa-
ce (S,%,T) is a GSLM-space, too.

Theorem 5. 'Let a SUM-space (S,)”T) be given. Then its topo-
logical dual space S  can be understood as a GSLM-space (S’,g’,min)
where

}'(f)=F£(.) for feS’.

The proof of this Theorem 5 was given before. We shall try
to use the mapping ;’ in the dual space S  to introduce an analo-
gical topology to the gsvl—topologyf Similarly, as for the g-7 -
dopology, we shall define a family of neighborhoods which forms
a base of a topology. Let & e (0,1) » >0, then the subset in S’

o'(f,, 8,7 )= {1e S':Fé_fo('q )>1-¢}

will be called an £-7 -neighborhood of f_ in §°. It is clear that

the family {U = {o’'(f,, ‘e’,v,_), ve (0,17 ,7>0%, f,€5°¢ forms a
- 121 -



base for a topology which we shall call the g-7 -topology, too.
It is clear that for every o'(f ,e,7) f ¢ o"(fo, €,7) becau-
se Féo_fo(u)=H(u)=1 for u>0. For any pair o’(f, €5, n3), i=1,2

7
there exists such an d(fo, € 1) that
o'(f,, g, 1) € 0'(f,, &, NI NO(E, &y, M,).
It is sufffcient to put e =min( &, &), 7% =min( N, Mp). Fur-
ther, if o (ID, €y 710) is given then for every € = ¢,
nz 1, o"(fo, t,m)c of’(fo, £4s M) similarly, for every
£z e NEY, o(f,, e, )& (f,, €., 7). It
yeo'lf, g5, ), i.e. th -t (74)>1- g,, then there exists
' 1 "o

o‘(f,, e¥,n*) such that

, o'(t), ex, M colty, ey, 7y)-
As the function Ffl'fo( 7o) is left continuous at 7%  there ex-
ist &< €, N< N, such that

Ffl_to(rrl )>1-¢ >1- €.

Let 0< 4* <% -7, e*=¢€ and consider the ¢-7 -neighborhood
it e*,n*)- {feS':Fff_fl(vl*)>l— ex}. Let feo'(f), e, n¥)

then F. . (m )=F_ . (m -n+7n)2min(F, . (n*),F. _ (7n)) =
' £-£ " M0’ g-1 "o n+n -1, n £,-1, K

z min(l- €¥,1-¢) >1- &  hence f € (£, &, 7).

We have proved that the system of the e—-;l—neighborhoods in
S defines a topology. This topology will be called also the
g+ 7 -topology and thanks to the generalized triangular inequali-
ty F£+g(u+v)?.min(Fff(u),Fé(v)) it is no problem to prove that
every net {f;‘}‘ in §° ﬁas at most one limit point because Fff =H
it and only if £=0 in S . This fact proves that the € - n -topolo-
gy is a Hausdorffian topology. The generalized triangular inequ-
ality enables us to prove also that

if t —>f and g _—> g then f_ +g"--l> f+g.
Unfortunately, it is not true that .A‘f--» 0, in general, in this
c-q-topology if .7\"--9 0 in reals because if e£<1 then

aiismolgd;f(u)ih?’ma Ff’(Tﬁli—rk €y< 1 for every u>0.
This fact says that the s-n-topoloéy in S” is not a linear topo-
logy, i.e. the operation of A. f need not be continuous in R < 5
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Theorem 6. The &- 7-topology in the dual space (8°,3F',min)
of a SLM-space (5,7,T) is a linear topology if and only if €f=l
for every feS’ .

Proof. The proof is very simple. If zf=1 for every feS',
then for every A,—> 0 of reals and every f&S’

, a‘lti»mo F,;df(u)= alim, Fé‘n":"r’= €1 ’
for every u>0 and hence A f—> 0 in the € -7 -topology.
If there exists, at least, one f e S" with &< 1 then
.’Ad"fo =0 in the ¢-7 -topology which cannot be a linear topology .
in such a case. Q.E.D.

Theorem 7. The £-7 -topology in the dual space (S°, %/, min)
of a SLM-space (S,;,T)_ is metrizable.

Proof. The mapping ?%(f) is constructed using the conjuga-
te norm Wfl _=sup 4]£(x)|:n (x)£1%, ae<0,1), feS . For our '
purposes we have put W fH a” IIf\ll_a for ae(0,1> and €;=
=sup {a: WM a<+o°? . Now, we use INfMl  for the definition of
a metric in the dual space S . Let us define for every f,ge s’

lig-ghi

’na(f—g)= mm—; for ae<0, ef_g)

’n,a(f-g)=1 for a e(af_g,l).

Using the inequality pig2 min( e, eg) we can immediately
prove that for every ae<0,1) ’na(.) is a metric defined in §°.
Since 'na(~) <1 for every ae<0,1) then the integral

p(f;0)= j: N, (t-g) da

exists and @(f;g) is also a metric in S . Let -[fn} be a sequence
in S° such that p(0;£ ) —> 0. As
m~¥ 0o

. & ME
@0, )= [N (f)da= [, 8 0 5 o1 da+(1- ¢, ) for every ne M,
a n
. ' g Mt N
it is clear that ¢, —> 1 and j; ™ — da — 0 if n —> oo,
n n" a

lllflll8 is a nondecreasing function in <{0,1) hence 'na(r) is also
a nondecreasing function in <0,1) and the convergence p(O,fn)—-»
—> 0 implies that 'na(fn)——9 0 for every a €<0,1) hence

lﬂfnma—> 0 if n —> oo for every ae<0,1).
Now, let u be any positive real number, then according to
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the definition of Ff’(u)
Ff'n(u)=inf fa: g W =z ul
or
Fffn(u)=1 if fa: e M 2ut =g,
We proved that ll!fnllla —> 0 for aoe(O,l), i.e. for every

o
aoe<0,l) and every u0>0 there exists a natural L such that for
every nz Ny

me W, < ug.
It means that F£ (uO)ZaD for every nZno. The arbitrariness of

ug and of ag impTies immediately that

ﬂlti_:nw an(uo)=1.
This fact proves the convergence of {fn}:‘;l to the null functi-
onal in S° with respect to the e-7 -topology.
Now, on the¢contrary, let a sequence ”n}cnll converge to 0
in S with respect to the €- 7 -topology, i.e.

lim F£ (u)=1
m-—» oo n

for every u>0. We have for every ¢ > 0 and every u>0 there ex-
ists a natural "o such that for every n2 no

Ffn(u)> 1-¢ -
As follows from the definition of Fi(.) either {a: Wt Nl 2 ul=p
or inf {a: lﬂfn Hlalu}>l—6 . It implies that
{a: Mf N _<ulo<0,1-¢)
Then A{a: I”fnllla< u}>1-e& (A is'the Lebesgue measure) for eve-
ry u>0 and this proves that m:nma ~> 0 if n —> o for every
ae<0,1). As ’na(fn)él for every n € M, thus
P,z )= [ M (2 )da —> 0

where n—» oo and Theorem 7 is proved. Q.E.D.

Theorem 8. Let a SLM-space (S,%,min) be given. Let
(5',?',min) be its dual space. Then the g¢-7 -topology in
(s,%,min) is normable if and only if

inf e, > 0.
fe S’

Proof. Let (S,%,min) be given and let the e -n -topology in
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S be normable. Then there exists such a convex neighborfhood K
which is ¢-7 -bounded. It means that the set K must be bounded
with respect to every seminorm na(-), ae<0,1); in other words,
for every ae<0,1) there exists K, such that for every x €K,
na(x)éKa< +00 . Let £ be any continuous linear functional defi-
ned in S. The continuity of f implies that sup |f(x)|£Kf<+o:>-
Further, since K -forms a neighborhood in the €- 7 -topology in S,
there exists o (e, no) in 5 such that o' (e, 7 )ckK, € >0,
Mo >0. It means that for every x 6 &( €05 M) |f(x)|£Kf, too.

As o ey, )= {x:nl_eo(x) <7yt =n0{x:n1_50(x)<1§ then

for every x efx:n;__ (x)<1% and fes’
o

K
sup «Hf(x)[:xe{x:nl_eo(x)< 13 = ‘rLLO<+co.

Further, f is continuous and by the aid-ef Definition 3 we ob-
tain K
e, =sup f£]£(x)}:xe o, _ t=sup {|£(x)|:n (x) 213« L

1 £ ) 1 € l—ab 7

which implies that mflﬂs < +o00 for every fe S'. It says that
o

€ Z €,> 0 for every fes’, i.e. inf{e;:tes’3>0!
Let us suppose, vice versa, that inffeS’ E¢= 60>0. It means
that for every a e<0, ¢, ) and every feS” M a<to and lllfllla
is a norm in S°. As for any ae<0, 90)

Mgl = dg, _ =sup {1£C)[:n)_(x) £1<+ @
then {x:n; __(x)£ 1% must be € -7 -bounded. Further, fx:n) () £1%
is an absolutely convex neighborhood of 0 in the £-m -topology as
was shown in [1].

This € - m -boundedness proves that the ¢- -topology is norm-

able by a norm
xW =inf{a> 0:n; (x)€A¥=n; . (x). Q.E.D.

Theorem 9. Let B be a Banach space and B  its topological
dual space. Then B=(B,%,min) where % (x)Lul =H(u- I xll) and B~ =
=(B’,%',min) where P(£)Lul =H(u- NEN).

Proof. First, we must verify all the requirements which are
put on ¥, . If x=0 in B, then ¥xll =0 and 7% (0)[u) =H(u). As
UAx =] A | Uxh, then HCu- 1A xI)=H(u-|A] IxI)=H(gzr ~ 11

and therefore ’}(QX)[u]=’}(x)[17u\T]. If H(u- UxID=H(u) for every
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u>0 then it is possible only if x=0 hecause Axll is a norm.
Thanks to the triangular inequality flix+yli«ilx}j + Uyl it holds that

HQu+v-lx+yl) 2 min[HCu-Ixd)  H(v-RyD)].

The same properties can be proved for the mapping 3'. The mapping
4' can be defined using the statistical norm of f€S°, i.e.

’ _ 1(x) £(x) -
p) W(f)[u]—l-xstipo {Fx('LT_"L)*“’Fx('L—E_L)} =

s1-sup. EHCEOAL _ cnys w20 _ i3
x% 0 u u

=H(u- I £1) because for every xeB [t (x)|<lxll Ifh.

Q.E.D.

References

£1] ). MICHALEK: Statistical linear spaces. Part I. Properties
gg £ -n-topology. Kybernetika, Vol.20(1984) No 1,
-72.

[2) 3. MICHALEK: Statistical linear Spaces. Part II. Strongest
t-norm. Kybernetika, Vol.20(1984), No 2, 135-146.

[31 J. MICHALEK: Random seminormed spaces. Comment.Math.Univ.
Carolinae 27(1986), 775-789.

The author of the paper is indebted to Dr. J. Jelinek for his
comments and advice.

Ustav teorie informace a automatizace $SAV, Pod voddrenskou v&Z{
4, 182 00 Praha B-Liben, Czechoslovakia

(Oblatum 28.5. 1985, revisum 10.12. 1986)

- 126 ~ ‘



		webmaster@dml.cz
	2012-04-28T13:49:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




