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|COMMEN‘I’ATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27,4 (1986)

THE COARSEST TOPOLOGY FOR I-APPROXIMATELY
CONTINUOUS FUNCTIONS
E. LAZAROW

Abstract: In this paper we examine functions f:R--> R which
are ITapproximately continuous on R. The topology, labelled the

I-density topology ﬁ} has been presented in [2). There has been
shown that with respect to UI the I-approximately continuous

functions are continuous. We shall define a completely regular'
topology = ¢ '.TI making all I-approximately continuous functions
continuous.

Key words: I-density topology, I-approximately continuous
functTons. '

Classification: 26A21

Throughout this paper, B will denote the family of all sub-
sets of R having the Baire property, I will denote the sigma
ideal of sets of the first category. For ae R and Ac R we denote
a*A= {ax:xe A} and A-a= { x-a:xe A}. Recall [2) that 0 is an I-
density point of a set Ac¢ B if and only-if I

y P . only-if %niant-1,1 o Ls 1,

i.e. if and only if for every increasing sequence -{n"'} meN Of natu-
ral numbers there exists a subsequence -{nm Y‘peN such that
’C"m . A,\[_l,n—f;,,-ggl,except for a set belonging to I. A point x
is gn I-density point of A € ® if and only if 0 is an I-density
point of A-xo. The set of all I-density points of A will be deno-
ted by <€(A). The notions of right-hand, left-hand I-density
points and of I-dispersion points are defined in an obvious man-
ner. The topology J’I is the family of all sets A ¢ B such that
A c €(A).

(o}

Definition 1. Let f be any function defined in some neigh-
bourhood of Xq and having there the Baire property.

I—112 inf £(x)=sup{ec:{x:f(x)<ec} has x_ as an I-dispersion point},
XX, .
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as an I-dispersion.point}.

I-1im sup £(x)=inf{ec:{x:£(x)> oc} has Xg
ArX

We say that f is I-japproximately continuous at Xq if and
only if I-lim inf £(x)=I-lim sup £(x)=f(x,).
XX, X—yxo
Throughout this paper J* will denote the natural topology,
cl(A) (int(A)) will denote closure (interior) of the set A with
respect to T .

Definition 2. For xe R, by P(x) we will define the family
of all closed intervals [a,b) such that x € (a,b) and of all inter-
0 o0
val sets U, Ta_ ,b ] v, ey, d ludxd whezoe for all n, b, ;<
and x e ‘e(m&{1 [an,bn] u

n

<a <b <xand x<c <d<c. ,,

&
UfrbL=J4 [Cn,dn]).
It is obvigus that if P e P(x) then P is perfect with respect
to the natural topology.

Lemma 1 [1]. Let Gc R be an open set with respect to 7
Then 0 is an I-dispersion point of G if and only if for every na-
tural number n, there exist a natural number k and a real number
d" > 0 such that, for each he(0,d") and for each ie {1,...,n%
there exist two natural numbers jr’jle {1,...,k} such that

. j.-1 . 3

6o (At + T oon, &Ly Iom -

and . .
‘i j i _ Jq-1

izl on, - s B

We shall use the above lemma for x eR by translating the
set, if necessary.

Definition 3. Let & be the collection of all subsets U of
R such that

1. Ue 9‘1,

2. if U+# and x €U then there exists the set P ¢ P(x) such
that Pc}nt Uud{x).

Theorem 1. « is a topology on R and F'§ ¢ § 71 .
Progf. Let U;,U, ex. Then Uj,Uye J7 and Unl,e 77 Let

Uln Uz=|=ﬁ andr er’ln U,. Theh there exist the sets F'.l,P2 e P(x)
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such that P, cint Ulu{ﬂ and Pyc int U,u {x} . since there ex-
ists Pc P;n P, such that Pe P(x) and PiOPyc int(uln Uz)u{x},
therefore Uln U2 e T.

Next, suppose that Ute't' for each te T and U=tLe)‘r Ut‘ Then

t¥r Up € Tp and for each xe U there exists Pe P(x),
Pcint Ut u4{ x} such that xcUt . Therefore Pcint U u{x? and UeT.
o o

Since d and R belong to @ , therefore * is a topology on R
and Jcx ¢ :T'I.

Let A be the set of all irrational numbers of R. Then A & :T'I
and A ¢ . Now, let G;= g{ (an,bn)‘, G,= '\va (cn,dn) such that
: n<bp< a,_; and ¢ < d < Che1< 0 for all
ne N and 0 is a right-hand and left-hand I-dispersion point of
G; and G,, respectively (see [3J). Let

P=(R\ (6, v 6,)) nlcy,b))-

lim b _=1i =0,
wilo Pn=kip,, €420, O<a

Then P € P(0). Let 6 ¢ T be such that
2b 2a_+b

+a
n+l n+l 3—) v (- ®,0), then Pc G u{0} and 046. -

} ’

20
6= m,k:)‘}. (

Then 6uf0le v and Gui03 ¢ T . So the proof of Theorem is comp-
leted. .

Theorem 2. If f is any I-approximately continuous function
then f is a continuous function with respect to ¢ .

Proof. In the first part of the proof we shall show that if
Def{v:f(x)>01% then there exists a set P e J°(0) such that
Pcint £x:£(x)>0%u{0}.

By assumption, there exists a natural number p such that
f(0)>% and 0 e‘€(§x:f(x)>%)) . The set {x:f(x)>%}e 7 and the-

refore we have ~5x:f(x)>—1-}‘=FAI'J where F is a closed set in the
natural topology, I eI and O e<€(F). Therefore it is nearly obvi-
ous (by Lemma 2) that, for a natural number n, there exist a natu-
ral number k and a real number ¢ > 0 such that for each he(0,d )
and for each ie {1,...,n}, there exists j(h,i)e {1,...,k} such

that . . . )
[ (i-l)k;_].(:,i)-l .h, (1-1)k.;,].({:,1) .hJcF.

Now, wé shall define the family of sets {P:‘j§where meN,
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Jeq1,...,nY and je {13:..,k3. For each natural number i ¢{l,...,n}
we shall say that heP;J if and only if j is the above described
natural number j(h,i) and m &N such that

((i—})k-’-l;l)m VFEh< ((i-izk.'.%':;)m-l.é*.

Observe that the sets Pll.meN,ie€1,...,n}, jed1,...,k¢
have the following properties:
: & X osil
(1) Y 0, Ppl=(0,0") for all iedl,...,n},

(11) 32 h),hyePLd then
(-Dk+i=l ,  (3-1k+] (i-1)k+j- G-kt
(AR ), MR a0 AT kL )+ 8,

(1ii) if P:‘jéﬂ and ald=int P13, bllasup P1J then

\

(i-1)k+3j-1 (i- 1)k+_] (i-1)k+j-1 ald (G-1)k+j ,iJ
Clghzét - s k/ h, " h]) [ Tk a s, -~ X bm J,

) {c1)kediol i3 Lo1)ked i3 1

(iv) for each xel a n)- %—1 a:'J, (4 n)- ;J D;JJ, f(x)za where
3;3, b;Jare described above. .
The statements (i) and (ii) are obvious. To prove the next

statements let r=(i-1)k+j.

Let xe (?ﬁ%&- mj, n—'R' le) and r=+1, Then there exist h',h &

ij ij - nsk
< Pm3such that a:“]é h'g '"in(f'-T x,bmJ) and max(h ,"—r— x) £

éh”‘b;-]. Therefore xe[ﬁ—_‘é h’, ﬁll? h”J=[§—_'é- h, FEF h'lv
oIEk 7, Lo n’71. If r=1 then there exists hePiJ such that

nkx 2wl by _¢ -1 r r-1 13
< 4héb J and x€l0, —¢ h) =l = h, oo hd. Let x= =—¢ a_

; i _all
Then there exists a sequence {hs}seNc Pm such that '}_1;";; hs'am

and for all seN, h Za;j. Therefore, for each s,

—R-hseUL ,ﬁ-fiR-hJand
e P

%’k‘ m3ecl( ) [—Fn- s 7 M.
Lo i3 r-1 by
In a simillar way we prove that =— b Je¢ cligmi’.f_m h, == hJ)..

’

- 698 -

i



Since it is obvious that cl( U [ﬁ'ﬂ? R Ff"k' h))c[—k- ’n_?R bl;lljj

the proof of (iii) is cumpleted

To prove the statement (iv) we observe that for all he P;j,

[r—:é h, HER' hlc F and IL:-‘IE a;j, ﬁﬁ‘-(- b:]j_)cF, By the above observa-

tiob we have that ['—F all F\£F b;jj\loc FN I°c4x:f(x)>%f.

Thus {x:f(x)< l}nf—-—k- ij —EF bij.]e I. We suppose that there
exists xlelﬁ}k' aij —-F leJ such that f(x;)< —. Then
Xy e €(4x: f(x)<—§) and therefore {x: f(x)<—}n[-—F 13

__k' le\¢I which is impossible and for each xe\.—-R- lj

ye L

_T le] f(x)z So we have proved that L—E :‘J, n—'k' leJc

he)

cix: f(x)z—]c{x f(x)>01.

Let ciJ r_-k_ ;‘J + 3—% aldand le- le '5n_~F le

Then FC;J,d;JJc(%.:k- ;‘J, ﬁ—R' le)Cint{x-f(x)70} and for each
m,m eN, m¥m’, |m-m | %1, lciJ leJniclJ did1 - g. For each

’ ) m
iedl,...,n} and jedil,...,k} let Fij=m"{4 [C;J,d:‘q] and
N T T T O .
P Zd Ui > 71049 :Y, 35’ Fi-)u 0%..

We shall prove that 0 is a right-hand I- density point of p*
Let ne N. We choose k and o > 0 for the set F by Lemma 1. Let
d‘l-mm(ﬁ,d') and k =3k. Then for each h e (0, d’l), ied1,...,nd
and for j=j(h,i) there exists me N such that

(i-1)k+j-1\m (i-1)k+3-1ym-1
Caper ) TEn< G 9
Then heP:‘j and

(1-D)k+j-1 . (i-1)k+] (i-1)k+j-1 _ij (i-Dk+j i)
t neK - hy neK dhle n-K amj’ n-K by 1

ij_ i) ij, i)
wh?re a V= inf Pm and bm = sup Prn . Therefore
C(i-1)k+3-1 ij_ (3-1)3k+33-2 13, (i-1)3k+33-2
GoDkey-l g1y Go1)3ke3)o2 13 (-)aked)2
and
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(i-1)k+j i3, (i-1)3k+33-1 . ij, (i-1)3k+33-1
Ak Pm TR D &~y - h.
Thus

(i-1)3k+33-2 (i-1)3k+33-1 ij 4i3
T A . h, i .h]c[cm ydp ]cFij,

We have shown that for each natural n, there exist d'1>0 and

k,=3k such that, for each h e(O,Jl) and for each ie{l,...,n},
there exists je {1,...,k0} such that
(1-1)k +3-1 (i-l)k0+j .
+h, +hlc P7.
n-ko n-ko

So 0 is a right-hand I-density point of P*.

In a similar way we can find a set P~ such that 0 is a left-
haad I-density point of P™. Let P=P*u P~.
We. shall show that there exists Plc P such that Pleﬂé(o)

o0 i .13

and Py int {x:f(x) >0} u{0} . Since Fiy s Y.ch,dm']] and for

all m, O< c;‘21< d;31< 6;31’ then for every natural number m the
a4 d v

set A= \J, A 594 Fijn [m—ir , %) includes a finite number of

closed ‘intervals. Therefore P is a closed interval or there
exists the natural number n_ such that P'n [0,%—] is a closed

i + .0 * g% ¥< ¥
interval or P =Y Lcs ,051L 40} where 0< c¥< d¥<cf_; for each

s € N. Since the set P~ satisfies a similar property we can define
a set P1 as follows:

1. if P~ and P* are closed intervals, we define Py =P,
eo . S
2. it p* =Y, [c‘;,d’s‘]u&()’s and P = Y La%,0%) 0 {0} where for

each seN, by ;< af<bi<0 we define P,=P,

3. if P” is a closed interval and P* =$§4 Lc%,d%3 ui0y,wer defi-
ne P1=P+u(P'n P*) where P* is an arbitrary set belonging to
P(0),

4. 1f P is an interval and P” =, T, [a%,d510 10} we define

P1=P'u(P+r\ P**) where P** is an arbitrary set belonging to

).
Since PcP therefore P, c int ix:£(x)>0%u {0Y.
Let xocﬁx:f(x)> al where ae R. Then

0 e{x:f(x+x ) - a>0%.
- 700 -
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Since the function h(x)=f(x+x0)-a is I-approximately continuous
at 0 then there exists a set P e P(0) such that Pc int {x:f(x+x )~
-a>03u{0}. It is obvious that the set P+x, & P(x ) and P+x ¢

c int(x:f(x))a}u{xo}. Therefore the proof of the theorem is

completed.

Definition of A(M). Let M be a subset of R. Then x ¢ A(M),
if and only if for every set Pe P(x), B+PnMeix}.

, Lemma 2. Let MCR. If Ue.® and AM)NU=@ then int U
nM*=g.

Proof. Let Xg € U ~ 4(M). Then there exists a set P ¢ 'ﬁ(xo)
such that Pc int U u{‘xo?. Since x_ e« L(M) therefore ﬂ:—-P/WMz{xojﬁ

)
and PN Mc (int Uu{xo’:)ﬁ M=(int Un M) (*'.xo'én M). Thus ini U~ N=g.

Proposition 1. If M is a closed set in the natural topology,
then A(M)c M. .

Proof follows from the fact that for each x <R the family
P(x) includes all closed intervals such that x belongs to their

’

interior.

Theorem 3. Let XcR. Then w-cl X=X ~ £(cl X)c cl X. More-
over, x is a limit point of X in the < -topology if amnd only if
x € A(el X).

Proof.Let Xy € L(cl X) and U e « such.that Xq € U. Then the-
re exists a set P e T(x, ) such that Pcint U u&xo}. By the defi-
nition of A(cl X) we have @+ Pncl Xq;{xoi. Let x; e Pncl X ¢
c(int U u(xoﬂ)ncl X and x4 x . Then there exists x, e int U n
nXcUnX%@ and Xo#* X . Thus x, e v-cl X and X v Alel X) ¢
¢ =-cl(X). Now, we assume that x 0% X and x & A(cl X). We have
that there exists a set P ¢ T’(x ) such that Pn cl X=p or Pacl X=
= -(xO} . If Pncl X=@ then there exists an open set G (in the na-
tural topology) such that PcG and Gnacl X=@. Therefore Gn X=0.
Since x & Pc G and T cx we have X, & v-cl X. Let Pnacl X= {x
and, for each neN, S = {x&aR: mé\x X Ig—-} and 5= 1x=R:

s ix- xolgll Then for each neN, S aP is the closed set in the
natural topology and Snn Pncl X=@. Let Gn, for each ne N, be an
open set such that S nPcG_, x 4 G, and G ncl X=@. Then for
U= &J» Gnu{xo}, Pc U. Therefore Uc « and Uncl X={x.} . Hence
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X, & X implies UnX=@. We have shown that X, & T-cl X and the first
part of the theorem is proved.

If x & R\ A(cl X) then (R\ cl X)ufx ¥ e and Xa((Rycl X)u
U{xok)c {x,%. Hence each point of R\ A(cl X) is not a limit
point of X in the « -topology. Let x & A(cl X). Then, by the
first part of the proof, we know that Xq is a limit point in the
* -topology.

Corollary. If XcR then T-cl X is a perfect set in the -
topology if and only if X c A(el X).

Proof. If « -cl X is perfect in the ~ -topology, then by
Theorem 3 we have A : '

X cw-cl X= Alcl(x-cl X)) c¢ Alellel X))= ACel X).
If X ¢ A(cl X) -then by Theorem 3 we have
w-cl X=X u A(cl X)= A(cl X) ¢ A(cl( r-cl X)).

Since «x-cl X is a closed set in the 7 -topology, the proof of
the corollary is completed.

Let Z = {AcR: A(cl A)=@%¢. . -
Proposition 2. The family Z_  is an ideal and ZOS I.

Proposition 3. There exists a sequence {xnineN such that

for all n, O< Xne1 < Xp» ”lximw x,=0 and {xn‘neN u«‘ﬁlo}‘;JZ_o

Proof. Let W= {wl,w2,..."9 be a set of all rational numbers
from (7,1). For every natural n we define a seguence {zS}DZl

such that for each peN, zg= -1—5 L Then we-observe that for each
2
1 n_1 R
peN and for each neN, W< zp<;-5. Let A=, U { zpip,l Since

the set A is countable, we can define {xn?’neN such that A= {x EneN’

It is obvious that lim x_=0.
m>yo N

Now, we suppose that &xn}neNU{m’.ezo' Then, by definition of
we have A({x 3 u{0})=#. Therefore there exists a set

vi{0})= $0}. Let {t }mzl be an

Zo’ neN
P e P(0) such that Pn (4x }neN
arbitrary subsequence of the sequence it }k>1 where, for each

keN, t,=25 and G=R\ P. We shall show that for each meN,
- 702 - .



bp (t . Gn(-z-,l)) is a residual set in (-2-,1) Let (a b)f\(-z-,l)#ﬂ

Then there exists reN such that WL € (a b)n(f,l) Therefore,for each

r_1
zZr, zp— ;ﬁ wre{xn}neN Let sO;m be a natural number such that

ksi r. Then zﬁ = —‘17— wre-ixnl nENCG and —F'I_TT< zi < -‘1;-— "
o ¢ s s s s _ s
o o o o o
2 2 2 \
kso r kso 1 1
Thus w =2 zks € 2 'Gn(7’1)=tks . Gn(-z-,l) and
o )

a0 .
(a,b) n L_J () -Gn(i-,l))#ﬂ. Since G is open, the set
ks
o

00
a (t -Gn(-z,l)) is residual in (7_-,1) Then, by defini-

m=A4 bsﬂ'\

tion of I-dispersion point of an open set we know that O is not .
I-dispersion point of the set G. Therefore O is not I-density
point of the set P, which is a contradiction.

Theoren 4. ~ =4{U eTI:U=GuM where G € T , M n A(R\ 6)=0).

Proof. Let U e (T‘I and U=GuM where G e 7 and MnA(R\G)=0.
We suppose that there exists X € M such that x0¢ v-int U. Then,
for each P e P(x,), P ¢ int Uu-(xo}. Therefore P & G uix 3. Thus
BEP A(RNG)+4x,¥ and x A(RN\G), which is a contradiction.

Now, let U e ~ , G=int U and M=U\int U. We suppose that
there exists x_eM ~ A(R\G). Since x, € T-int U then there ex-
ists P ¢ (P(xo) such, that P cint U U{xo“ Therefore PA(R\ G)=
= {xo}, which is a contradiction.

.
Theorem 5. < is a completely regular Hausdorff topology

f

on R.

Proof. Since ¥ ¢ v , ¥ is a Hausdorff topology. Let F
be a closed set in the «-topology and x°¢ F. Since R\ F e ®
then there exists the set Pe?(xo) such that Pc int(R\F) v
u{xol . Let G=int(R\ F) and

1 ' X = X
f(x) = .
d(x,R\ G) X 2 X

g% RN B)+d(x,P)
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where d(x,A) is the distance from x to the set A. It is easily
seen that f is continuous at each x=l=xo and I-approximately con-
tinuous at x=x . Also £(x,)=1 and £(x)=0 for all xeF. Therefore
the proof of the theorem is completed.
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