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1COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27.4 (1986) 

THE COARSEST TOPOLOGY FOR .-APPROXIMATELY 
CONTINUOUS FUNCTIONS 

E.IAZAROW 

Abstract: In this paper we examine functions f:R -> R which 
are I-approximately continuous on R. The topology, labelled the 

I-density topology T-r has been presented in [23- There has been 
shown that with respect to Vj the I-approximately continuous 

functions are continuous . We shall define a completely regular 
topology t c (TT making all I-approximately continuous functions 
continuous. 

Key words: I-density topology, I-approximately continuous 
funct ions . 

Classification: 26A21 

Throughout this paper, JJ will denote the family of all sub­

sets of R having the Baire property, I will denote the sigma 

ideal of sets of the first catego ry . For ae R and Ac R we denote 

a»A= Aax - .xeA] and A-a=-i x-a-.x e Ax. Recall 123 that 0 is an I-
density point of a set A c 3 if and only if %n A r , ,, I , 

tn-Ar.C-1,1] ̂ -^> 1, 

i . e . if and only if for every increasing sequence 4 r V * m € N of natu­

ral numbers there exists a subsequence {n i-,^ such that 
% * A^l-1 uT+wl ,exceP* for a set belonging to I . A point xQ 

P 
is an I-density point of A e % if and only if 0 is an I-density 

point of A-x , The set of all I-density points of A will be deno­

ted by ^ ( A ) . The notions of right-hand, left-hand I-density 

points and of I-dispersion points are defined in an obvious man­

ner . The topology (f-r is the family of all sets A € -B such that 

A c <€(A). 

Definition 1. Let f be any function defined in some neigh­

bourhood of x and having there the Baire property. 

I-lim inf f (x)=sup-£oc :{x:f (x><ec} has x as an I-dispersion point}, 
0 - 695 -



I - l im sup f (x)=inf -iaC;ix;i(x)> ocj has x_ as an I-dispersion po in t } . 
o 
We say that f is I-japproximately continuous at x i f and 

only i f I - l im inf f ( x )_ I - l im sup f (x )= f (x ). 
*Vxô *-*.x

л 
o 

Throughout this paper (T will denote the natural topology, 

cl(A) (int(A)) will denote closure (interior) of the set A with 

respect to _T . 

Definition 2. For xe R, by <P(x) we will define the family 

of all closed intervals [a,b_ such that x e ( a , b ) and of all inter-

v a l sets LL l"a .b_;j i_» U \ i c • , d _ 3 u-Cx \ where f o r a l l n > b_ , < (tizzA n* n ^ = i n' n * n - l 
CO 

< a
n
< b

n
< x and « < c . « l

n
< c..., and x - _*(_U

4
 ta_,b

n
J u 

It is obvious that if P e (P(x) then P is perfect with respect 

to the natural topology. 

Lemma 1 [1J. Let G c R be an open set with respect to T . 
Then 0 is an I-dispersion point of G if and only if for every na­

tural number n, there exist a natural number k and a real number 

of ;> o
 s u c r i

 that, for each h & ( 0 , c f ) and for each i6 {.1,. . . ,n} 

there exist two natural numbers j , j-. 6 {1, . . . ,k} such that 

G^(¥ + ̂ h . (¥L + feh) = -

We shall use the above lemma for x 6 R by translating trje 

set, if necessary . 

Definition 3. Let tr be the collection of all subsets U of 

R such that 

,1. u € ITj, 

2. if U ^ 0 and x e U then there exists the set P e tP(x) such 
that P c i n t U u < x > . / 

Theorem 1. ft is a topology on R and Cff t $ ̂ j • 
Proof,. Let U p U - f c . ^ . Then U-^U- _ CT-. and U j r M J - e C ^ Let 

U,ftU,4Jl andf X € U,n U 2. Then there exist the sets P , » P 2 € ^ P ( x ) 
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such t ha t P j C i n t U^u ix\ and P 2 c i n t U2uAxl . Since there ex­

i s t s ?c ?ln ?2 such tha t P £ .P(x) and ?ln ?2c i n t d ^ n U2) u < x > , 

t he re fo re I L n U2 e t . 

Next, suppose t ha t U t e t f o r each t e T and U - ^ U U t > Then 

t V T U t £ ^ 1 a n d f o r e a c h x £ U t h e r e exists p ^ CP(x), 
P c i n t U+ u - ( x l such tha t x & U+ . Therefore P c i n t U u{x? and Ufet . 

xo xo 

Since 0 and R belong to f , t he re fo re f i s a topology on R 

and & c t c CTj . 

Let A be the set of a l l i r r a t i o n a l numbers of R. Then A e ZT-. 

and A ̂  t . Now, l e t G,= U ( a
n ' b r A » G 2 = ^ ^ c n ' ° V s u c h t h a t 

J ^ V J & U V 0 ' ° " an< bn< an- l ano* cn< d n < ̂ ^ ° f o r a 1 1 

n«.N and 0 i s a ' r i g h t - h a n d and l e f t - h a n d I - d i s p e r s i o n po in t of -
G1 and G2, r e s p e c t i v e l y (see T33) . Let 

P = ( R \ ( G 1 u G 2 ) ) n f c p b - l • 

Then P e 'P(O). Let G €. T be such tha t 

00 2b ,+a , 2aл+b n+1 n+1 G= \J^ ( — 0 1 ^ — Q ± i , n ' n ) u ( - o o , 0 ) , then P c G v t t l and O ^ G . 

Then G u * . 0 W f and G u 4 0 ^ T . So the proof of Theorem is comp­
leted. 

Theorem 2. If f is any I-approximately continuous function 

then f is a continuous function with respect to t . 

Proof. In the first part of the proof we shall show that if 

Q cJ \:f (x) > 0} then there exists a set ?e £P(0) such that 
? c int <x:f(x)>0iu{0J. 

By assumption, there exists a natural number p such that 

f(0)>i and 0 ece(^x:f(x)>i>) . The set <x:f(x)>i>€ 3 and the­

refore we have lx:f (x) > ~ V = F & IQ where F is a closed set in the 

natural topology, IQc I and 0 e<€(F). Therefore it is nearly obvi­

ous (by Lemma Z\ that, for a natural number n, there exist a natu­
ral number k and a real number cT > 0 such that for each he(0,cf) 
and for each ie-U,...,nl , there exists j(h,i) €. {1,. .. ,k J such 

that 

r (i-l)k+j(h,i)-l . (i-l)k+j(h,i) h - r p 

I nTTT2 h> rt. k 1 'h*C*' 
Now, we shall define the family of sets i?l^lwhere tt€N, 
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i € 41,...,n} and j e {l,...,k!. For each natural number i 6{1,...,nj 
>ij 
m 

natural number j(h,i) and m € N such that 
we shall say that h t P ' J if and only if j is the above described 

/(i-l)k+j-l Nm ^ u ^ ,(i-l)k+j-l Nm-l ,r 

Observe that the sets P*J>(ti€ N, i € •( 1 ,\ . . ,nr, j c <{l, . . . ,kl 

have the following properties 
00 
u* •' <*> Љ>л iV« p

m
J
=(°.^) for all ie •[!,...,nï, 

90. *> -4J 
m 

( i i ) i f b1,h2ePm;J then 

t i L ^ h i . ^ ^ h i ^ i i ^ ^ 

( i i i ) i f P i J s t 0 and a*J=. inf P*J, b ^ = sup P*3 then m m m ' m ^ m 

c i ( u . ^ C l - D ^ j - l ( i - l ) k - f j h j > , - C l - i > k f j - l ,13 Q - l ) k + j biU 
\ p-C-j- n~T< "> n • k J J n ~ k m ' n • k m J ' 

•TO 

(Iv) for each x e I ('i^).k^"1 a i j , " " ^ J bijJ, f (x)i I where 

aiJ b x^are described above. « 

m ' m 

The statements (i) and (ii) are obvious. To prove the next 
statements let r=(i-l)k+j. 

Let X 6 (--TV- am,3» TTTT b i J ) and r4-l. Then there exist h' h " e n*K in n*K ni 

c P ^ s u c h that affl
J* h '4 m i n ( ^ ; r

k - x , b m
J ) and m a x ( h ' , ^ x) .{= 

* h " * b m
J . Therefore x c l ^ h ' , - ^ h "J - t £f£ h', -?-h'J« 

ul—k h", TTTT h"3. If r=l then there exists h t P ^ such that n* k ' n»k m 

- £ ^ h £ b m
J andxeCO, _£,. h3 -[ ̂  h, ̂ .hJ. Let x- ̂  a*J . 

Then there exists a sequence 4h„l „.,, c Pi^ such that lim h„=af^ M s seN m .$-»co s m 

and fo£ all s « N , n
s ^

a m J - Therefore, for each £, 

£*hs e ^ i £ r h . n7Fh:la"d 

J^am
J
6cl(^U,.[Iflh, j^hJ). 

In a similar way we prove that -*£•- b ^ c cl( U .,C-£*--i h f ---V h 3 ) . 
n • K m &,&Pt^r n*K n • K 

/ ^v 
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Since it is obvious that c l ^ U ^ ^ h , - ^ hJ>etI=jL a ^ , ^ b^-J 

the proof of (iii) is completed. 

To prove the statement (iv) we observe that for all h c P 1 J j 
m 7 

LnTk" h ' rTTR* h J c F a n d lnTk" a m 3 ' riTK b m J j C F * By t h e a b o v e o b s e r v a -

t i o b we have tha t t ^ a 1 ^ - ^ b l j J M 0 c F M Q c \ x : f ( x ) > I * 

Thus - [ x : f ( x ) ^ i } n r ~ | - a 1 J , -—^ b1 JJ <=. I . We suppose tha t there 

e x i s t s X j C l j n ? a i j , J ^ . b i j J such tha t f (x^< i Then 

x, e ^ U x : f ( x ) < 1$) and the re fo re 4x : f ( x ) < - J n £ £ X a l j \ x p p n * K m 

-~4- b1J3 4 I which i s impossib le and f o r each x e l ~ ^ a l j \ -

£_i
 я
iJ ,--i -fa b*

J
3, f(x)2 i. So we have proved that Lf~£ am

J, -fa b ^ ] c 

c(x:f(x)5 -j3c C x:f(x) > 0 *. 

Let cij = 1 4 aij + - X . a^and dij= -i- b1^- J X b ^ -m ridk am 3n*k m m nd< m Jrvk m 

Then Cclj" ,dlj"3 c ( ^ alj*, ̂  b1^) c int4x:f (x) ̂  0} and for each 

m .m'cN, m*m', |m-m'|4=l, Ic1^ ,dij]r. id) ,d1J3 = 0. For each ' ' ' ' ' ' m ' m m' ' m 

ii^l nl and je4l,...,k} let F. ,= Q. I c^.d^D and 
-" j "&i •> • m ffl 

p+= U , (i 1 , i j n U .U .U F^u-CO*.-mt»i m+1 ' m *t=t 1,- i i.-j'i ij 

We shall prove that 0 is a right-hand I-density point of P+ 

Let r\e N. We choose k and d* >> 0 for the set F by Lemma 1. Let 
cf1=min(i,d

J ) and kQ=3k. Then for each h€(0,cf'1), i e «{1, . . . ,n3 

and for j = j(h,i) there exists itieN such that 

Дi-l)k+j-l
ћ
m, л* u ̂  Дi-l)k+j-l

%
m-l ы 

{ (i-ÍІk+j } , ď y h < ( (ł-ÍІk+j } , c Г 

Then h t P 1 J
 and m 

f
 (i-l)k+j-l

 u
, (i-l)k+j ^

 r
 (i-l)k+j-l „ij (i-l)k+j „lj, 

1
 n.k

W
 *

 h
' n-k

 J
 *

 h l c l
 n r T -

 a
m ' n-k

 J b
m -

1 

ij where a
1J
= inf P

iJ
and b

1 J
= sup P^

J
. Therefore 

m m m r m 
(i-Пk+.l-l Qi,1,(i-l)Зk+3,i-2 l.y (i-Щk+ЗJ-2 h 

ГR °m Зn • k am - Зn • k 
and 
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Thus 

We have shown that for each natural n, there exist oT >0 and 

k =3k such that, for each h e(0, ô n) and for each i £ il, . . . ,n)\ 

there exists jeU,...,k "r such that 

(i-Dk0+i-l (i-Dk +j 
1 — *k r ' h >—ff^r - h 3 c P • 

o o 
So 0 is a right-hand I-density point of P+. 

In a similar way we can find a set P~ such that 0 is a left-

hand I-density point of P~. Let P=P+u P~. 

Wec shall show that there exists P^c P such that P-^e^CO) 

and P, c int \x:£(x) >0} u-CO* . Since F. .= U, Ic^,d^3 and for 
1 13 mta-i m ' m 

all m, 0< c^i < dm+i < cm-i» ^en for every natural number m the 

set A= JUA „U .O Pî nl-r-rr » -z^ includes a finite number of 
^ 5 1 Asz^ Jfr-z A 1 3 m + l ' m 

closed intervals . Therefore P+ is a closed interval or there 

exists the natural number n such that PV. tO,i—3 is a closed 
o 

interval or P = U L c* ,d*3u40^ where 0< c*< d*< c* , for ea &~ A s ' s J s s s-1 

s€.N. Since the set P" satisfies a similar property we can defi 
a set P, as follows: 

1. if P~ and P are closed intervals, we define P,=P, 

2. if P+ = U tc* dJlu^Oi and P" = U La*b*3u<0} where for 

each seN, b* •JL< a*< b*< 0 we define P-,=P, 

3 . if P~ is a closed interval and P+ ^U,, L c*,dg3 u^Oy,we'defi­

ne P,=P u(P"n P*) where P* is an arbitrary set belonging to 

<P(0), 

4 . if P is an interval and P" = h\JA la^,d^3oi0} we define 

P,=P"U(P +A P**) where P** is an arbitrary set belonging to 

f(0). ( 

Since P̂ c P therefore Pxcint \x:f (x) > Olu <0>. 

Let x tU:f(x)>al where aeR. Then 

0 6{x:f(x+xQ) - a?0i 

- 700 -
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Since the function h (x )=f (x+x )-a is I-approximately continuous 

at 0 then there exists a set P e P(0) such that Pc int {x . f(x+xQ)-

-a > Ol u {0}. It is obvious that the set P+xQ e P(x ) and P+x c 

c int<x:f(x)> a } u i x } . Therefore the proof of the theorem is 

completed. 

Definition of A(M). Let M be a subset of R. Then x € A(M), 

if and only if for every set P e ^ ( x ) , 0 4-Pn M<* \x \ . 

Lemma 2. Let MCR. If U e.f and A(M)nU*0 then int U n 

h M40. 

' Proof. Let x e U ^A(M). Then there exists a set P € ^( x
0) 

such that PC int U i/{x ., Since x € /.(M) therefore 0-*-P/i M ̂ -.xQf 

and PnMc(int U u ixQ\) r, M=(int U n M) -J (l xQl n M). Thus int U.^1^0. 

Proposition 1. If M is a closed set in the natural topology, 

then A(M)cM. 

Proof follows from the fact that for each x € R the family 

(P(x) includes all closed intervals such that x belongs to their 

interior. 

Theorem 3. Let XcR. Then t-cl X=X^Z(cl X)c cl X. More­

over, x is a limit point of X in the nc -topology if and only if 

x e A(cl X). 

Proof.Let xQ e £(cl X) and U € ~ such, that x « U. Then the­

re exists a set PetP(x ) such that P c int i) u^xl . By the defi-
o o J 

nition of A(cl X) we have 0^-Pncl X^-Cx i . Let x 1£Pncl X c 

c (int Uu-(xo^)ncl X and x,4^ x . Then there exists x2 E int U o 

n X c U n X # 0 and x 2 *
x
0 -

 T n u s x
0 e r-cl X and Xu/.(cl X) c 

ct-cl(X). Now, we assume that xQ# X and xQ $ M e l X). We have 

that there exists a set P & 3*(x ) such that Pn cl X = 0 or Pncl X = 

= ix\ . If Pncl X = 0 then there exists an open set G (in the na­

tural topology) such that PcG and Gncl X = 0. Therefore GnX=0. 

Since x_6. PcG and f c t we have xn «| or -cl X. Let P n cl X = -fx \ 

and, for each n&N, S ,= ix &R:J^J &\x-xQ\& ~} and S^= -fxeR: 

:tx-x
0.2.H- Iben for each ne.N, S nnP is the closed set in the 

natural topology and S n Pncl X = 0. Let Gn, for each ncN, be an 

open set such that S nnPc Gn, xQ4 GR and GRn cl X=0. Then for 

U= U Gnu4x0^, Pc U. Therefore U s -r and Unci X= ixj . Hence 
- 701 - . 



x Q4X implies UoX=0. We have shown that x 4 t-cl X and the first 
part of the theorem is proved. 

If x Q6 R \ A(cl X) then (R\ cl X) u4x Ql e or and X n((R s cl X)u 

u{xJ)c*CxJ. Hence each point of R \ A(cl X) is not a limit 

point of X in the t-topology. Let xQ 6 A(cl X). Then, by the 

first part of the proof, we know that x is a limit point in the 

f-topology. 

Corollary. If Xc R then a-cl X is a perfect set in the -t -
topology if and only if X c A(cl X). 

Proof. If t^-cVX is perfect in ttie t-topology, then by 
Theorem 3 we have 

X c t-cl X= A(cl(t-cl X)) c A(cl(cl X))= A(cl X). 

If X c A(cl X) then by Theorem 3 we have 

T-cl X=X u A(cl X)= A(cl X) c A(cl( r-cl X)). 

Since t-cl X is a closed set in the r-topology, the proof of 
the corollary is completed. 

Let ZQ= -fAcR: A(cl A)=0*. 

Proposition 2. The family Z is an ideal and Z % I. 

Proposition 3. There exists a sequence (xJ N such that 

for all n, 0 < x n + x < x n , 1 1 ^ xn=0 and UJneN u - j o . ^ . 

Proof. Let W= i w , ^ , . . .} be a set of all rational numbers 

from (-*•,!). For every natural n we define a sequence {zj} 2, 

such that for each p€ N, z"= —> w„. Then we observe that for each 
P 9P n ^ 
1 n 1 i 

p € N and for each n £N, ~~ij< z" < -=- . Let A=^U^ { *r£n>i- S i n c e 

the set A is countable, we can define -lxjsnt.kt such that A= -Cx ) ... ' n n6N n ntN 
It is obvious that lim x =0 . 

r̂ -sr co n 

Now, we suppose that 4x 1 N uiOl e 1 . Then, by definition of 
Z , we have A « x 1 N u«£o$)=0. Therefore there exists a set 

P e :P(0) such that P A (*xnln N u40l)= 40}. Let -Uk I ^ be an 
m ~ 

arbitrary subsequence of the sequence -̂.t. 1 k^l w^ere» *or each 
k£N, tk-=2

k and G=R\ P. We shall show that for each meN, 
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U ( t . . G r . ( 4 , D ) is a residual set in (4,1) .Let (a, b) A (4,1)4*0. 
1 

Then there exists r c N such that w eCa- tOn^D.There fo re , fo r each 
p £ r , zr= — w c^x^K^M.Let s j m be a natural number such that r ' p «P r n ncN o 
k 5 r Then z£ = - L - w r ^ x ^ n 6 N c G and - R i — r < zjj < - i - -

0 v so 2
 so 2

 so so 2
 so 

ks ks 
Thus wr = 2 ° z£ 6 2 °.Gn(|,l)-tk «Gn(|,l) and 

o o 
oo -I 

(a,b) n U (t. • Gn (i,D) -N0. Since G is open, the set 

.mOl *Kiv(tk * 60(^,1)) is residual in (i,l). Then, by defini-

s 

tion of I-dispersion point of an open set we know that 0 is not % 

I-dispersion point of the set G. Therefore 0 is not I-density 

point of the set P, which is a contradiction. 

Theoren 4. t = { U e ^ : U = G u M where G c CT , M n A(R\ G) = 0). 

Proof. Let U e CT-- and U-GuM where G e T and M nA(R \ G) = 0. 
We suppose that there exists x € M such that x 4 v-int U. Then, 

for each P€.^P(xQ), Pet int U u { x Q K Therefore P 4- G u<xQ^ . Thus 

0 + P n(R \ G)4=-Cx^ and xQ e A ( R \ G ) , which is a con t rad i c t ion . 

Now, let U <s a* , G = int U and M=U \ int U. We suppose that 
there exists x e M c \ A ( R \ G ) . Since x e t-int U then there ex­
ists P £ (P(xQ) such that P c int U u ( x ^ . Therefore P o ( R \ G ) = 
= $ x0?i which is a c o n t r a d i c t i o n . 

i 

Theorem 5, x is a completely regular Hausdorff topology 

on R. 

Proof. Since T c ? , t is a Hausdorff topology. Let P 
be a closed set in the t-topology and x ̂  F. Since RN F e rc 
then there exists the set P €. tP(xQ) such that Pc int(R\F) u 

u{xo*\ . Let G=int(R\F) and 

d(x.RN G) v . v 
d(x,K\ 6)+cUx,P) x * x o 
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where d(x,A) is the distance from x to the set A. It is easily 

seen that f is continuous at each x*M 0 and I-approximately con­

tinuous at x=x . Also f(xQ)=l and f(x)=0 for all xeF. Therefore 

the proof of the theorem is completed. 
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