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COMMENTATIONES MATHEMATCAE UNIVERSfTATtS CAROUNAE 
273(1966) 

A RESULT ABOUT IMBEDDED EIGENVALUES 
IN THE OPERATOR VALUED FR1EDRICHS MODEL 

S. N. LAKAJEV 

Abstract. It is shown that the operator (1) (describing the 
operator valued Friedrichs model) has only a finite number of 
eigenvalues belonging to the continuous spectrum. 

Key words: Fredholm theory, analytic functions, operator va­
lued Friedrichs model. 

Classification: 45B05, 81C10 

This paper is a continuation of the paper [1]. We use some 

of the notations and results of [ 1] . 

Let H be a self-adjoint operator acting on the Hilbert space 

L2(ta,b1,#e) according to the following formula: 

(1) (H(f)(x)=u(x)f( x)+ J^K(x,y)f(y)dy, f e L2( [a,b3,3C) 

Here, 3€ is an n-dimensional complex Hilbert space and the matri­

ces 

0 

u(x) = 

/ u^(x) 0...0 

' 0 u2(x)...0 0 

0 O - . л i ^ Ы O , 

0 0...0 u
п
(x) / 

and 

K(x,y) = K(y,x) = 

K
11
(x,y)...K

ln
(x,y)\ 

K
nl
(x,y)...K

nn
(x,y)/ 

self-adjoint. We shall suppose that u.(x) and K. (x,y) = 
J J

S 
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= K .(x,y), j,s = l,2,...,n are real-analytic functions on [a,b] 

and [a,b3xta,b], respectively. 

The main result is the following. 

Theorem 1. The operator (1) has only a finite number of ei­

genvalues belonging to the continuous spectrum. 

The rest of the paper is devoted to the proof of this theo­

rem. Denote by M the union of n disjoint copies of the segment 

ta,b3, i.e. 

M = .U ta,b}., ta,b3. = ta,b3, j = l , 2 , . . . , n . 
fr = A J J 

Define a measure on M such that its restriction to each t a , b j . = 

= ta,b3, j = l,2,,..,n coincides with the Lebesgue measure. We de­

fine the function u(A) on M as 

u(A) -= Uj(x), A= x e £a,blj, J = l,2,...,n 

and also the function (kernel) 

K(A,£4,) = K. (x,y), A= xeta,b3^, <ot = y c ta ,b3s, j ,s = l ,2, . . . ,n. 

Proposition 1. The operator H is unitarily equivalent to so-

me operator H, acting on L2(M, C ) according to the formula 

(Hf)(A)=u(A)f(A)+ j^K(A,(u)f((u)d(u, fsL2(M, C
1) 

Here L2(M, C ) is the Hilbert space of all square integrable com­

plex functions defined on M. 

Proof. It is clear that the operator (1) is unitarily equi­

valent to the operator 

fx(x) 

н : 
f

n
(x) 

u
1
(x)f

1
(x)

+
 /

g
*'K

u
(x,y)f

1
(y)dy
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...

+
 / ^ ^ ( x ,y)f

 n
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n
(x)

+
/

a
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nl
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Xl
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11
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A
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nn
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acting on L2(ta,bJ, <£
n), where C n = C X x ... *<C*. 

n 

The mapping 

W:L2(ta,b3, C
n)—>L 2(M, C

1) 

defined by the formula 

W:(f1(x),...,fn(x))—>f(A), 

where f(A) = f(x), for ;A = xe[a,b3., j = l,2,...,n has a bounded 

inverse W , defined on L2(M, C ) by 

IT1 :?(*.) ->(f1(x),....,fn(x)), 

where f.(x) is the restriction of f(5l), X%<i M on the segment 

t a ^ , j = 1,2, ...,n. 

Obviously, W is a unitary operator and WH = HW. 

Theorem 2. The resolvent R (H) of H e x i s t s . It can be ex­

pressed by the formula 

(Rzf)(x)= tu(x)-zE3"
1f(x)- [u(x)-zE]'1 / * ^^V?" f ( y ) d y 

for all z t C 1, Im z 4 - 0 . Here 

»(x,y;z) 

' Ю 1 1 ( x , y ; z ) . . . 5 ) l n ( x , y ; z ) s 

(2 

a
nl
(x,y;z)... a

n n
(x,y;z)/ 

1-.. K. (x,y)z) « 1 ,. •> 
>3)i

S
(x,y;z) = -i-L + 21 — d^

s )
(x,y

;
z). 

J S
 u

o
(y)-z *»1 V!

 v 

4 j s ) ( x . y ; 2 > -

. .1 /*••;* 

K,
Q
(x,y)K,, (x,t,)...к,, (x,t ) л

js JJ Jjp 

Vti,y)кWXi'ti)---кWti,v 

dt^ dt
2
...dt

y 

Cu (y)-z)(u, (t
1
)-z)...(u, (t

v
)-z) 

S
 J

l
 1
 Jy

 ҡ 
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ҝзyãi (v ti )--'ҝW t>> , t> ) 

(5) A(z) x !
 +
 f; 1 d (2) 
V*1 v: V 

dy(z)= 1 . /•* .-../* 

dt- dt9...dt 

x 1 2 ^ , 
(u. ( t , ) - z ) . . . ( u , ( t . ) - z ) 

A more general version of this theorem is proved in [1J. 

From Proposition 1 of til and from Lemma 1 it follows that the 

continuous spectra of H and H are the same. They equal to 

Z c o n t ( H ) " -Hont(fi) = » & t m i n -i<-).«x "j*-)- " 

Let Q. c € be some complex neighborhood of the segment [a,bj. = 

• Ca,bJ, j = 1,2, .*.. ,n and SX =. 0 Q*i i.e. let SI be some neigh-
*k * * J 

borhood of the set M. We define C(i2) as the collection of all ho-

lomorphic ("regular") functions on SI which are continuous on SI* 

Taking the norm Il9l=*max \<$(X) |, Cdl) is a Banach space. 

For any z e £ \ X t(H) we define the operator K(z) accor­

ding to the formula 
tK(z)^J (X) « / ^Ut(^> y^dfU,, <ycCCO). 

M u(<a)-z 

Obviously, the operator K(z), z e C \-^COnt^
H> acts in tne s P a c e 

C(il). 

Definition. A point A'6 X c o n t ( H ) is called a singular 

point of the continuous spectrum of an operator H if it is a value 

of some function u.(x), j = l,2,...,n in some of its critical 

point. 

Let P be the set of all singular points of the continuous 

spectrum of H, and u7*(A')c Ca,b] be the pre-image of A' with res­

pect to the mapping u.. 

Lemma 1. For any A'* ̂ c o n t ^ ^ ^ and ^ 6 C(A) there ex­

ists a limit 
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d Q x Q c C 2 , 

[K (A'± iO)qO ( A ) = lim [K.(A'± i e )cp3 (A) 

e>0 

which determines some operator K ( A ' ± i O ) . 

Proof. Let us denote by u. (£) and K. . ($-,£o) the analytic 
J 3 X 3 2

 l l 

continuations of u.(x) and K. . (x,,x9) into Q c C an 
3 . J- J2 .1 

respectively. Let A' e S:_ n n +(H)\ r and let u~ (A') = ix,pXi.,,,. 
conx j ji j *c 

•••I X^P 1- It follows from the definition of p that û (x..,)=J=0 
3"-x 3 J*' 

for any V = 1,2,...,P.. Because u.(£) is regular in x = x. , p = 

= 1,2,...,P., there are some e > 0 and d" > 0 (in the following 

we shall assume that these numbers are sufficiently small) such 

that for each z € Vfc(A') =4z c C :|z-A'|< S \ the equation 

u.(£ ) - z = 0 has a unique solution in the disc V/(x.y). This so­

lution is regular in V£(A') and can be expanded into the series 

% - Yj„(z) = x j v • C^(z-A') + C ^ z - A ' )
2 •... 

where 
jl " u:(x. ) 

J J*' 

From (5) and from the smallness of & > 0 and <? > 0 it follows that 

S = ^jV(
z> e *?-- Cli\ £ -Xjpi^ cT , I m J ? Ojfor any z e Ve(A'), 

Im z > 0 and 

U : 1 ( V & ( A ' ) ) C V 5 1 V,.(xjv). 

Using this and also the "residuum theorem" we can represent the 

function CK(z) ]q (A ) , Im z :> 0 in the following way: 
<\ 

CK(z)93(A) = f K U ^ } 9>((u)d̂ t = 
* u(<u)-z 

*v > K.a,p u R: K.(A,y, (z)) 
= Z" f -J £- cf.(C)dC = £ £ -J -J-- x 
*"* J* u^p-z ^ * ? **-> *•< UjC^/z)) 

^ K-.U/j) 
x c.fAy. (z)) -> .21 f -J <*-,<?>*? • 

^J TJ» a- M"j u.(p-z ^J * * 

Here 

fyM) = K
Sj

(x'r)» A = x 6 C a , b ) s , ^ £ Ca,bJ\, 
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9j(x) * <3pW, x * & « ta.blj, j,s - 1,2,...,n, 

and (J* is the contour, coincidino with ta,b3 outside of all in­

tervals 

(x,t -«**, x,, +flT),...,(x,p -«f, x,p + <T) 
ji • ji ŮP» ' i' J 

and containing all the half-circles 

*? * C X:|$ - x ^ | * <Tf. In z?0}. 

Since ? * f̂- , Me conclude that u*($) c* V€(A'). Therefore, the 

function J -J =- d? 
^ Uj(p-z 

is regular in V e ( A ' ) . Putting z « A' + i e and taking the l im i t 

2, —^ o w e obtain 

tK(A' + 10)93 (A) * lim tt((A'+ i e )<pJ {X) * 
£.-> O 

«, £. ft*U,y*-(A'+ ie) 
a l i r " A £4 ~~ E <=Mr(A + i e ) ) • 

* - > o * « i v -1 u ^ ( y j y ( A ' + i e ) J 

, . w r * * ( * » $ ) d r -
• + lim X f J u f 

e->© * « 1 ^ u ^ ( p . A ' - i e 

*v & ^ ( A , x w ) ,* . &*(*,$) 

**« vxl Uj(x j y) j J* ***1fr U j (p -A' - iO f 

Because the r ight hand side of this relat ion does not depend on 

<f > 0, we can take the l imi t <f—> 0: 

tK(A' • 10)y3W = .% J* -» *'*-»» 9.(x*v) • 
- t -4 -^4 uj<xjx.») 

* i^Oy) 
+ f 0—m 9>*(y)dy . 

* u*(y)-A -10 J 

This integral can be understood in the sense of the principal 

(Cauchy) value. 

It is obvious that tft(A'+i0)g>3 (A) e C(ll) for <y(A)fiC(iX). 

Lemma 2. Let <jf>£ C(Xi) be a solution of the homogeneous 

equation 
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(6) y(%) + K ( z ) 9W> s ° 

for z « A'+ iO or z - A'- iO, where A' * 5 :
c o n t (

H ^ S v p • Then tne 

following relation holds: 

Uu c .vjf u/(A') 

We call (see £23) a point A'« S
C o n t

( H ^ N P a s l n 9 u l a r Point 

of the operator K(z), if the equation (6) has a nonzero solution 

from C(il). 

Lemma 3. A point A' « ^ c o n t ( H ^ P is a singular point of 

the operator K(z) iff it belongs to the discrete spectrum of an 

operator H. 

These lemmas can be proved in the same way as Lemmas 3.7 and 

3.8 of 123. 

It follows from (2) that the continuous spectrum of the ope­

rator H consists of a finite number of nonintersecting segments 

£AlfBj3, U2,B2],...,[Am,Bm3, m £ n . 

Let A. = A.,< A*«< •••< A*m - BA be singular points of continu­

ous spectrum, belonging to the segments £A.,Bi3, j = 1,2,...,m 

and let ve(A-ls»
AAS+i) c C be a complex e-neighborhood of seg­

ments tAjS»
AjS+i3,

 s = 1,2,...,m.-l. 

Denote by v€(Ajs»
AjS.l.i>

 the s^t 

{zc^.-Im z?0)n^V g(A. s,A j s + 1)\ 

N ( l A j s - E' A-js 3 u Ujs+r Ajs+l +*i* 
and denote by V"(A.S,A.a+-,) another set 

tz € C^Im 2-^0}nl^V€(Ajs,Ajs+1) \ 

\(CA.S -e,A. s3u£A j s + 1,A. s + 1 +eJ)J. 

Lemma 4. The restriction *6(z)/ , (resp. A(z)/ ,) of the 
' C + / C . 

function A(z) which is defined by (3), on the upper half-plane 

<£ + (resp. lower half-olarut (t_) has an analytic continuation in 



Ve<Ajs,A.g+1) (resp. V-(Ajs,Ajs+1)) across the interval (A.s>Ajs+1). 

This continuation At (z) (resp. <u "(z)) is a regular function in 
js JS 

the region £* u v£(Ajs,Ajg+1) (resp. € ̂  v;(Ajs,Ajs+1)). 

The proof of this lemma follows from the principle of an 

analytical continuation and from the following two lemmas which 

are proved in 11]. 

Lemma 5. Let A'€ P and uT (*') = A x . 1 , x , 2 , . . . , x . p }, j = 

= l,2,...,n. Then there is an e,-neighborhood Ve'(A') ={z c C :0< 

<|z - A' | <• e I of z = A' such that the restriction _Mz)/ , 

/ C* 

of the function has an analytic continuation onto the V^(A'). This 

analytic continuation lVXz) is a multivalued function with the 

branching point z = A' and can be in V^(A') expanded into the se­

ries 
_y*(z) = _E F.< (K)(z - A ' ) S P. 

**-2 A'5 

Here 
-* ?i R, -1 

5 = P _r _>. , - I s — 
, - « . . - . R . s 

and R. - 1 = R(x.J - 1 denotes the multiplicity of the root x = 

= x. of the function u^(x), j = l,2,...,n is the lowest common 

multiple of the numbers 

\R11,...,R1Pi,...,Rnl,...,RnP^. 

Lemma 6. Let A'e ^ c o n t ^ ^ ̂  ^ • Inen there is an e-neigh-

borhood V-(A') of Z = A' such that the restriction A(z)/ - of 
/ £* 

the .(z) has an analytic continuation onto V£(A'). This analytic 

continuation _*(z) is regular in V C (A' ) . 

For any g -. C(Cl ) denote by 

y(J,7;Q) = ,\ £0,»->z)Q(")6V 

Here 
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i) (A,(̂ ;z) = 2),s(x,y;z), A= xe£a,bJ\, (U= ye£a,bjg, 

where <2l. (x,y;z), j,-s = 1,2,...,n is defined by (2). It follows 
Js 

from the definition of ®(A,(U;z) that for any A e ^ and g s C ( a ) 

the function SD(A,z;g) is regular in C \ s
c o n + / H ) -

Lemma 7. The function 3>(A,z;g), which is regular in £* 

(resp. C * ) , has an analytical continuation in v£(A. ,A. + 1) 

(resp. V.T(A. ,A. , ) ) across the interval (A.,A. .) whenever & js' js+1 js' js+1 

A«M, gcC(.fi) and j = l,2,...,m, s = 1,2, . . . ,m. . This analytic 

continuation Q^AXyZig) ( IDT (A,z;g)) is regular in the region 
JS J5 

C^V*(A j s,A j s + 1) (resp. < ^ u V-(A.s,Ajs+1)). 

The proof of this lemma is analogous to the proof of Lemma 4, 

and therefore will be omitted. 

Theorem 2. Let co c(A. ,A. ,) be an eigenvalue of an opera-' 
' JS J5+1 

torJL Then At (a)) = 0 and AT (co) - 0, whenever j * l,2,...,m, 
js js 

s = 1,2,...,m.. 

Proof. From Lemma 3 it follows that cje(A. ,A. ,) is a 
js js+1 

singular point of the operator K(z) i.e. for z = co + iO and for 

z -co- iO the equation (6) has a nonzero solution 9«C(il). 

What is needed, is the proof of the fact that A:, (co) = 0 and 
js 

AT (o>) = 0. We will show that A"L(o>) = 0. The relation 
J5 js 

Ale^^) = 0 is proved in an analogous way. 
J5 

Suppose, on the contrary, that At (u>)-^0. Then, as it will 
js 

be shown below, the nonhomogeneous equation 
(7) cj (A) + (K(o> + iO)s)(A) = g(A), 

has, for any g€.C(il), a unique solution which is of the type 

Q t (A,a>;g) 
(8) <*(A) » g(.\) i2--

A a ; (uo 

where £P (A,ro;g) is defined in Lemma 7. But then the homogene-
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ous equation (6) has only a trivial solution at z = o> • iO. First 

we will show that the function defined by the formula (8) is a 

solution of the equation (7). Substituting (8) into (7) and col­

lecting all the terms on the left hand side, we obtain 

g(X)-RtsU,a>;g)-g(A)+JT A /
a ^ } [ g ( ( a ) - R t s ( ^ , ^ ; g ) . j c*^ * o 

JS ™ u(ft)-<u-iO ' 3* 
or 

(9) - R^s(A,a>;g) • 

JMOQi)-co-iO r J* ti^-^-iO ^s r r 

where we denote by 

. 2)t«(A,z;g) 
(10) R L a , z ; g) = — f 2 , j = 1,2,...,m, s « l,2,...,rov 

Me will show that C9) really takes place. To this end we will 

consider the equation ("first fundamental Fredholm relation") 

(11) fia,^) = |^ + ; I^D. ̂ >->„^> 
u(^)-z m u(,ti/)-z 

where 

R(A,<u;z) = g ( A ^ z ) , Im z>0 
-6(z) 

We multiply both parts of the equation (11) by gcC(il) and inte­

grate over (U . We obtain 

K(A,<*) 
m » u(jx)-z 

f [ / ^ ' ^ R V > : Z > V ' J gC^dft . JMLJM Q(,>')-z ^ C -J r r~ 

Using the formula about the integration by parts in the last in­

tegral and taking z—.• o) , we obtain (9), q.e.d. 

Now let lis show that any solution of (7) has a form (8) for 

z = co + iO. Let <y s. C(Jl) be some solution of (7). Consider the 

equation 

<$(A) = gtt) -/ *(Aif^ 9(ft)d^ , Im z>0 
M u(,u,)~z 
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Ityltiplying both parts of this equation by R( ̂ / ^ z ) and integra­

ting over (j,' , we get 

(12) f^ (U^Ajz) <y(A)dA =jkR(fA/,A;z)g(A)dA -

-i[4 ^ f ^ ^ ^ ^ J R(e',A;z)dA-
M -» ™ U($A)-Z 

Because of the relation ("the second fundamental relation of 

Fredholm") 

||(M\«SZ) = « (f*W> -/ l i i -- i if if i( . i . ' ,^z)dA, Im z>0. 
r ^ u(̂ )-z M̂ O^-z 

We conclude from (12) 

/ ft(^',A;z)^a)dA = / R(^',A;z)g(A)dA + 

+ / M R(^^z)<y(f.)d(a -/M i i ^ c y ^ d ^ 

or 

f fi(f4
#,^;z)g(A)dA - / K(<M>/t^ cf^d^ - 0. 

M ^ u((*)-z 

Taking.; the l im i t z—•> co + iO we get 

R ; s a ^ Z ) = / ^ - - 9 (^d(« . 
J * u(iu)-a)-i0 

Because o/(A) is a solution of (7), we conclude that 

<?(A) = g(A) - Rjs(A, cj>tg). 

The theorem is proved. 

Proof of Theorem 1. Because of Theoren 2, it suffices to 

show that for any j = l,2,...,m and s - 1,2,... ,m.-l the" function 

A* (z) has only a finite number of zeros in the interval 

(A3s»A3s+l)* T h e f u n c t i o n <&ts(z)
 i s regular in (L + u v £ ( A . . A . s + ^ ) 

(see Lemma 4), therefore, for any e > 0, it has only a finite 

number of zeros in (A. + e,, A. , - £ ) . 
js • js+1 

We will show that the zeros of At (z) cannot converge to 
jS 

A. and A. + j . It follows from Lemma 4 that in the region 

v ^ ^ B ) ^
A A e -e,A. ) the function &tt(z) can be expressed in v Js js js 3s 
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the Puisseux séries (see Lemma 4) 

oc/p 
p - - " ' " л

 9 > -A
J

S

( Z ) -*F-$ F
A

j s ) 0
,

( K ) ( 2
-

A
js> ' - V

e
( A

j s
) x (

V e
, A

j 

Here, F. /K)4-0 for some oc = -q, -q+1 In the opposite 
A
js'* 

case, from the uniqueness theorem, A(z) s 0. Now let 

F. g(K) = 0,...,F. (K) « 0, and F. (K)*0. Then the 
js' ~

q
 js, o" js'^o 

equation At (z) = 0 is equivalent to 
js 

F
A,

s
,«

( K
>

 + I
V
 ) 0

c
+
l

( K
> (z-A

j s
)

1 / f
V.. = 0. 

js' o 3s' o
 J 

It is easy to deduce from this relation that the zeros of the 

function cannot converge to A. . 
js 

In the same way it can be proved that A. , is not a limit 
jS+ i 

point of zeros of the function At (z). 
js 
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