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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
27.3 (1986)

A RESULT ABOUT IMBEDDED EIGENVALUES
IN THE OPERATOR VALUED FRIEDRICHS MODEL
S. N. LAKAJEV

Abstract. It is shown that the operator (1) (describing the
operator valued Friedrichs model) has only a finite number of
eigenvalues belonging to the continuous spectrum.

Key words: Fredholm theory, analytic functions, operator va-
lued Fr*earicﬁs model. ’ '

Classification: 45805, 81Cl0

This paper is a continuation of the paper [1]. We use'some
of the notations and results of [1].
Let H be a self-adjoint operator acting on the Hilbert space
Lz([a,b],ﬁe) according to the following formula:
¥ 2
(1) (D CD=uGITC )+ [T K(x,y)1(y)dy, fel,(la,b],3)

Here, ¥ is an n-dimensional complex Hilbert space and the matri-

ces
u;(x) 0...0 0
0 up(x)...0 0
U(X) = | e
0 0...u_;(x)0
0 0 0un(x) /
and
K11(X,y)...K1n(x,y)

K(X,y) = K(y,x) R

are self-adjoint. We shall suppose that uj(x) and st(x,y) =
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= Ksj(x,y), j,s = 1,2,...,n are real-analytic functions on [a,b]
and [a,b]x [a,b), respectively.

The main result is the following.
Theorem 1. The operator (1) has only a finite number of ei-
genvalues belonging to the continuous spectrum.

The rest of the paper is devoted to the proof of this theo-

rem. Denote by M the union of n disjoint copies of the segment

[a,b], i.e.
n
M =5E34 [a,b]j, La,b]j = [a,b), j =1,2,...,n.

Define a measure on M such that its restriction to each [a,b_]j =
=[la,b), 3 =1,2,...,n coincides with the Lebesgue measure. We de-
fine the function u(A) on M as

() - uj(x), A= x e[a,blj, j=1,2,...,n
and also the function (kernel)

KL = Ky (,y), A= xelably, @=yela,b) , 3,5:1,2,...,n.

Proposition 1. The operator H is unitarily equivalent to so-

me operator ﬁ, acting on L2(M,C1) according to the formula
A a A 1
HO M=)+ [ KWt (@de, felyM, €)

Here L2(M, Gl) is the Hilbert space of all square integrable com-
plex functions defined-on M.
Proof. It is clear that the operator (1) is unitarily equi-

valent to the operator
rl(x)

H:
£,(0)

fug (O () L:'Kll(x,Y)fl(y)dy+...+ j:fkln(x,y)fn(y)dy

u OOt (x)+ if’Knl(x.y)fll(y)dy+...+ l:bknn(x,y)fn(y)dy
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acting on L2([a,b], €™, where ¢" = clx »cl.
e
n

The mapping

W:l,(Ta,b), €M —> LM, €1)
defined by the formula

W:(t,(x), .., (x) —> F(A),
where £(a) = £(x), for A= x eta,b)j, j =1,2,...,n has a bounded
inverse w‘l, defined on L,(M, Gl) by
A

E) — (£,0x), ..., £ (x)),
where fj(x) is the restriction of £(A), A & M on the segment

N-I:

[a,b]j, j=1,2,...,n.

Obviously, W is a unitary operator and WH = fiw.

Theorem 2. The resolvent Rz(H) of H exists. It can be ex-

pressed by the formula

-1 -1 o ¥ D(x,y;2)
(R, (0= [u0-26171 200 Luta-ze17 7 2802 (y)ay

for all z ¢ (Dl, Im z<%0. Here

Dy, 0y52) 000 Dy (x,y52)

Ky (x,y)2) 1,
D (x,y;2) = 822 08y v,
is u(y)-z  v=1w 7

a{38) (x,y;2) =
st(x,y)ijl(x,tl)...ijv(x,t’)

- flr 4 Kjls(tl,y)KJljl(xl,tl) .kjljv(tl,tv)
= P T T PP x
ih g o | oriiiiiiiiiiiiiiiiiiiiiiiiioioiiiioon
(BB R Kjgs(t"’y)KjvJ'l(t"”tl)'"ijﬂ;,(t”’t"’)

dt, dt,...dt

< 1 %% »

(us(y)—z)(ujl(tl)—z)...(ujv(tv)—z)
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[--J
() B =1+Z Lrd(

- N B TE IR S S TS )
d (Z)= . Y ol B R
v }105"-‘:1,’1 L L K ................... (tt) =
3,3 (ty,t)) Kj,J Py
dtl dtZ"'dty

(”jl(tl)'Z)'"(ujv(tv)'Z)
A more general version of this theorem is proved in [1].
From Proposition 1 of [1)and from Lemma 1 it follows that the
continuous spectra of H and ﬁ are the same. They equal to

= t(H) = =

con t(ﬁ) = égzilmin uj(x),max uj(x)J.

con
Let Qj c Cl be some complex neighborhood of the segment [a,b]j =
= [a,b), 3 =1,2,...,n and.0.=égj1 Qj;
borhood of the set M. We define C(£ ) as the collection of all ho-

i.e. let £l be some neigh-

lomorphic ("reghlar") functions on £l which are continuous on 2.
Taking the norm flg | ="max |@(A)|, C(L) is a Banach space.

For any z e Cl\ zf;::i(H) we define the operator R(z) accor-
ding to the formula
[R(z)q] (©)) =f M?(ﬂ)dy, geCl).

m u(u)-z
Obviously, the operator K(z), z e cl\ = cont(H) acts in the space
c(a).

Definition. A point A’ X . ,(H) is called a singular
point of the continuous spectrum of an operator H if it is a value
of some function uj(x),‘j =1,2,...,n in some of its critical
point.

Let ™ be the set of all singular points of the continuous
spectrum of H, and uIl(A")cra,b) be the pre-image of A° with res-

J
pect to the mapping “j'

Lemma 1. For any A'e & (H)\T and ¢ e C(Q) there ex-

cont
ists a limit
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[K(A £1i0) gl (A) = lin [R(A'+ ie)g) )
[ 24
e=>0
which determines some operator K(A ¥ i0).
Proof. Let us denote by u. (Q) and K, (gl,gz) the analytic
continuations of u.(x) and K. (xy,%5) 1nto Qc c and Q=Q ¢ C?,
J 313, X2

respectively. Let A" = ____(H)\ ™ and let ul 1(A ) = §x

cont jr 32""

,X:o }. It follows from the definition of [ that u (x. )*0
iP5 3w

for any » = 1,2,...,Pj. Because uj(§) is regular in x = xjv’ p =

= 1,2,...,Pj, there are some € > 0 and J > 0 (in the following

we shall assume that these numbers are sufficiently small) such
that for each zeV (A") = 4z e lelz—A'|< £ § the equation

uj(g ) - z = 0 has a unique solution in the disc %;(va)' This so-

lution is regular in V (A') and can be expanded into the series

S = Wﬁv(Z) = Xyt (z AT) + C o(z-A 32 .
where
1
C D ——
il .
Uj(xjy)

From (5) and from the smallness of ¢ > 0 and &> 0 it follows that
¢ = \ij(z)e{ge Clzl§-xj),|<d', Im§ > 03for any zeVg(A),
Im z>0 and
-1 . P5
uy (Ve(A)) ¢ L4 Vi(xjv)'
Using this and also the "residuum theorem" we can represent the

function [Q(Z)lq (A), Im z>0 in the following way:

(Rl () = f %—;@?(M)UM -
. W-z

o K.(a,8) P K.,y (2))
. ,24 80 g.(§)d¢ F & ATt
=1 v Gj(g)—z J 31 ¥4 uj(wjv(z))

= <. (y. (2)) + n f M (s)d
3 ¥y» gsq%u(g) EAN A

Here
[ -
KJ(A,Q) = Ksj(x,§), A= x ela,bl,, §e [a,bJj:
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qj(x) = @A), x = Ae [a.bJj. J,8s =1,2,...,n,
and [ is the contour, coincidino with [{a,b) outside of all in-
tervals
(le -d, Xy +d'),...,(ijJ -d, x-’Pj +d)
and containing all the half-circles
1, - “ o5
ig s C :lg xJ,I ¥ d, Imzz0}.
Since § « [} , we conclude that uj(g)t Ve(A"). Therefore, the
' : K, (2,9
function ,L —J—-s—-dg
é uj($)—z
is regular in Ve(A'). Putting z = A" + ie and taking the limit
¢ —> 0 we obtain
L[K(A" + 10)@1 (A) = dim [K(A'+ 16 09I (A) =

= lim % Ry, (v i0
€0 3=1 »=1

" - @. (y(A '+ 1€)) +

uy(wy,(A'+ de) J
Ry,

‘+ lim ¥ —l-———-( L2 df =

1
5% 1 ‘
EFOFTT Ty uy(p) -A-te

m B R.Ax,) R.(a9)
-2 £ SR R |8 @y(x5,)+ b L -—-l—-s— dg .
BV ul(xg,) PUATIR u(@)-a-10

Because the right hand side of this relation does not depend on
d" > 0, we can take the limit J—> 0:

e K., x..)
A P = ’ »
R+ i g1 = 2 £ —L_J_Uj<x3,,) Py(xp,) +

R.(a,y)
+ fb—-l-—,—— 9j(y)dy .
o uj(y)-A -10

This integral can be understood in the sense of the principal
(Cauchy) value.
It is obvious that [R(A'+10) @] (A) e C(N) for @(A)eC(N).

Lemma 2. Let @& C(fl) be a solution of the homogeneous

equation
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6) @) + K(z2) 9(A) = 0

for z = A+ i0 or z = A'- i0, where A" ¢ = ¢(H)N T . Then the

con
following relation holds:

o(w) 0.

T I
“"‘5&’4 UJ (A7)

We call (see [2)) a point A"¢ = ()N T a singular point

con
of the operator ﬁ(z), if the equation (6) has a nonzero solution

from C(QL).

Lemma 3. A point A'e = ¢(W\ " is a singular point of

con
the operator K(z) iff it belongs to the discrete spectrum of an

operator ﬁ.
- These lemmas can be proved in the same way as Lemmas 3.7 and
3.8 of [2).
It follows from (2) that the continuous spectrum of the ope-
rator H consists of a finite number of nonintersecting segments
[AI’BIJ’ [AZ,BZ),...,[Am,Bm], m£n.

Let A. = Ajl< Aj2< ...<:Ajm = Bj be singular points of continu-

3
ous spectrum, belonging to the segments [Aj,Bj], j=1,2,...,m

and let vE(Ajs'Ajs+1) cclbea complex €-neighborhood of seg-

ments [Ajs’ 13, 8 = 1,2,...,m.-1.

J
1) the set

Aj5+
Denote by V;(Ajs,kjs+
iz e@l:Im zzo}n{vg(Ajs,Ajsd)\

. \ (ij,3 -E,Ajs]u[Ajsd,Ajsd +e1)3%

and denote by Vg (A 1) another set

1 35 hyse
{ze C':Im zéo}n{Ve(Ajs,Ajs.,l) \

NCTAy - €Ay JUTAy Ay, +eDE.
Lemma 4. The restriction A(z) (resp. A(z) ) of the
— /¢ 1 / ¢t

function A(z) which is defined by (3), on the upper half-plane

¢1 (resp. lower half-plana ci) has an analytic continuation in
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Ve *(A s+1) (resp. V (Ajs' s+1)) across the interval (A.

js® js’ JS+1)
This continuation A (z) (resp. o (z)) is a regular function in

the region G, u Ve (A J5+1) (resp C: 1o e (A,

js’ js? JS+1))
The proof of this lemma follows from the principle of an
analytical continuation and from the following two lemmas which

are proved in [1].

Lemma 5. Let A"e ™ and uJ ) o= §x31, J?""’ijj}’ j =

= 1,2,...,n. Then there is an g -neighborhood VZ(A') ={z < clioc
<|z-Al<el of z = A" such that the restriction A(za/

of the function has an analytic continuation onto the Vg (A'). This
analytic continuation A"(z) is a multivalued function with the

branching point z = A" and can be in Vé(A') expanded into the se-

ries
oc ..s/p
A*(z) = 2i~ FA‘S(K)(Z - AD) .
Here - -
~ ¥ R. -1
q="P g = N L
4:1 =1 R
Js
and st - 1= R(xjs) - 1 denotes the multiplicity of the root x =
* Xyg of the function uj(x), j=1,2,...,n is the lowest common
multiple of the numbers
iRy, .- Rip ,...,R o . .,R o}
11’ lP1 nl nPn
Lemma 6. Let A cont(H) . Then there is an e-neigh-

borhood V. (A") of z = A" such that the restriction A(za/ p of
- C

the .(z) has an analytic continuation onto V¢ (A"). This analytic
continuation .*(z) is regular in V. (A").

For any g - C({*) denote by

D CRET DR N NI ST IOOL P

Here
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ﬁ(]&,(x.;z) = st(x,y;z), A= xe[a,bJj, = yglfa,bls.
where CDjs(x,y;z), jys =1,2,...,n is defined by (2). It follows
from the definition of C."\D(A,M;z) that for any A e M and ge C(Q)
the function f’l\)(.l,z;g) is regular in d:l \ zcont(H)'

Lemma 7. The function ﬁ(?\,z;g), which is regular in (t}_

(resp. &i), has an analytical continuation in V;(Ajs'Ajsd)

(resp. Vg (A )) across the interval (Ajs'Ajs+1) whenever

js’Ajs+1
AeM, geC(Q2) and 3 = 1,2,...,m, s = 1,2,...,mj.
continuation Q;s(i\.,z;g) (5)55(1\-,2;9)) is regular in the region

clovia ) (resp. €l uvi(a D))

This analytic
js2hyse1 352 M j54
The proof of this lemma is analogous to the proof of Lemma 4,

and therefore will be omitted.

Theorem 2. Let we(A.s,Aj5+1) be an eigenvalue of an opera--

J
tor .H. Then A'j"s(w) = 0 and A_:;s(“’) = 0, whenever j = 1,2,...,m,
s = 1,2,...,mj.
Proof. From Lemma 3 it follows that w e (Ajs’Ajs+1) is a

si‘ngular point of the operator K(z) i.e. for z = ew+ 10 and for
z = w - i0 the equation (6) has a nonzero solution g e C(Q).
What is needed, is the proof of the fact that AEs(w) = 0 and
B7(w) = 0. We will show that Al (w) = 0. The relation
Aas(w) = 0 is proved in an analogous way.

Suppose, on the contrary, that L\Ss(w)#- 0. Then, as it will

be shown below, the nonhomogeneous equation

(N @) + (R(w+ i0) ¢ = g,
has, for any ge C(J)), a unigue solution which is of the type
2. (\ews)
(8) (f(-?\) = g(A) - _J_S__:_____
[\js(u))

where SI;S(,\,m;g) is defined in Lemma 7. But then the homoQene-
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ous equation (6) has only a trivial solution at z =@ + i0. First
we will show that the function defined by the formula (B) is a
solution of the equation (7). Substituting (8) into (7) and col-
lecting all the terms on the left hand side, we obtain

I -RI,(, @ 50)-a [ = R [g(‘a)-Rss((.t,w;u)J du = 0

U(u)-a-10
or
(0 - R Qw0 +
_RAW g RO gt (050000 = 0
M B@)-w-10 0 F fJ'fu()c.am Ris(th @ i0)de

where we denote by
. +
Di.(A,2;0)
(10) R ,z; 9) = ——""""" 3:=1,2,...,m, s = 1,2,...,m,.
8 A5 (2) =
We will show that ?9) really takes place. To this end we will

consider the equation ("first fundamental Fredholm relation")

(a1 Rawz) = K"“‘) LK) g Ju;2)d
SR fmu(“)z W)

where

R(}»yz)-%ﬁ;—)-, Im z>0

We multiply both parts of the equation (11) by ge C(fl) and inte-
grate over & . We obtain

RA,u;2)glWdu = KSﬁ*k-g( )d
fo RApsdolwau = [ 2 0 0o

—--t‘—f« /s 2)d (wd
L Bluz T w]owdu .

Using the formula about the integration by parts in the ‘last in-
tegral and taking z —» @ , we obtain (9), g.e.d.
Now let us show that any solution of (7) has a form (8) for

z =w+ i0. Let ge C(fL) be some solution of (7). Consider the

equation
g@) = g - [ KAt g, In 250
M u(w-z -
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Wultiplying both parts of this equation by R(w',u;z) and integra-
ting over w', we get

~ . P ’
(12) [ R(w',252) @(A)da = o RGe,258)d0 -

-

A
KA, ) ( B0 oa.
wdu | R\ A52)dA .
M[‘[:A ?.I(@A.)-z? J adlide)
Because of the relation ("the second fundamental relation of
Fredholm")

A A
Ko 52) f(?s,#) ﬁ(p’,ﬁ;z)d.ﬁ- , Imz>0.,
i(w-2 M (-2

Rew',@2) =

We conclude from (12)

§ M hd gy = R\ 2;52)g(Q)dA +

~ ’
R w52) @ (@da -f K&l g
o R g @de - [ FE g (@i
or

R Mdg)dd - [ R Lenge = 0.
Jo R 9 n Bz S

Taking: the limit z— w + i0 we get

R Quid) = [ K g (de .

js ot J i(w-w-10 K

Because @(A) is a solution of (7), we conclude that
g = g - RI. (A, @;0).

The theorem is proved.

Proof of Theorem 1. Because of Theorem 2, it suffices to
show that for any j = 1,2,...,m and s = 1,2,...,mj—1 the function
Ajs(z) has only a finite number of zeros in the interval
(Ajs’Ajs+1)' js'Ajs+i)
(see Lemma 4), therefore, for any ¢ > 0, it has only a finite

The function A;s(z) is regular in @iu V;(A

number of zeros in (A._ +€&, A, -€).

Js js+1
We will show that the zeros of ASS(Z) cannot converge to

Ajs and Ajs+1'

V;(Ajs) \(Ajs - a,Ajs) the function A;sxz) can be expressed in

It follows from Lemma 4 that in the region
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the Puisseux series (see Lemma 4)

M = /e . AL
Ajs(Z) =‘:\_:€ FAjs,oC(K)(z'Ajs) , zeVe(Ajs)\(Ajs-z Aye)
Here, F, (K)#0 for some o = -8, -+1,... . In the opposite

is’

case, from the uniqueness theorem, A(z) = 0. Now let

F _a(K) =0,...,F, ~1(K) =0, and F (K)#*0. Then the

Ajs’ js,“o Ajs’ 0
equation ASS(Z) = 0 is equivalent to
) ) ( Ve
F K) + F K z-A. +... = 0.
Ajs"o Ajs’d5+1 Js

It is easy to deduce from this relation that the zeros of the

function cannot converge to Ajs'

In the same way it can be proved that A.

js+1 is not a limit

point of zeros of the function AES(Z)'
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