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DISCRETE SPECTRUM OF OPERATOR VALUED
FRIEDRICHS MODELS
S. N. LAKAJEV

Abatract: The operator valued Friedrichs model is studied.
It is proved that there is only a finite number of eigenvalues
outside the continuous spectrum.
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Classification: 45805, 81C10

Severa]l problems of mathematical physics lead to the study
of a spectrum of a self-adjoint operator (operator valued Fried-
richs models) acting on the Hilbert space L2(59,ﬁe) according to
the following formula
(1) (HE)(x) = u(x)f(x)+ 1&,K(x,y)t(y)dy, fe Lz(sv’ae)

Here S” is a ¥ -dimensional torus, ¥ is an n-dimensional comp-
lex Hilbert space, and the matrices

U (x). g (x)

u(x) = [...........
U (X)L up (x)
and
Kll(x'y) a(x,y
K(x,y) =] .. ..o ueeoenv...
Knl(x,y)...Khn(x,y)

are self-adjoint. We shell suppose that u“(x) = “Ji(") and Kij(x,y) =
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= Kji(x,y) = K“(x,y), i, = 1,2,...,n are real-analytic functions
on ¥ and §Vx 59 , i'espectively.

A spectrum of operator of the form (1) was first investigat-
ed by Friedrichs [1] for u(x) = x, and in [ 2] for an arbitrary
real-snalytic function u(x).

Here we shall give a more detailed description of the spect-
rum of operator (1), namely, we shall prove that there is only a
tin#te number of eigenvalues outside the continuous spectrum.

Let us denote by zcont(H) the continuous * spectrum of the
operator H, and by [, the set

P ={ze cl: g(x,2) = 03,
where cl is the complex plane, J(x,z) is a determinant of u(x)-
-zE.

It is well known that the self-adjointness of u(x), xes”
implies that " cR’, where R! is the real line.

Proposition 1. It is

(2 Zeont(H) = % b)s" my

Proof. Let z e’\‘.)svl" i.e. d(x,z) = 0 for some xe5” .

x)
Then the operator u(x)-zE, where E is the identity operator in '2!'8,
is not invertible . Therefore, the operator

[(Hy-zD)23(x) = (u(x)-zE)L(x), teL,(5”,30)

where 1 is the identity operator in L2(S",3€), is not invertible

v
in the space of bounded operators on L,(5”,3) i.e. z ezcont(Ho).
Since
2
(3 HK(x,y)N“dx dy < 00
L e

we infer that the operator

[(H-HOEI(x) = [y KOx,y)2(y)dy, feL,(5”,3e)
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belongs to the class of Hilbert-Schmidt operators. Using the well
known theorem of H. Weyl (see [3]) we conclyde. that the continu-
ous spectra of both H and H, coincide. Thus z eZ ont().

Now let z ezcont(m' Using again the mentioned theorem of
1. Weyl we have also z eZ’cont(Ho), and thus z € [, for some x €

v s
eSY |, i.e. z ex:.)svr‘x.

Theorem 1. The resolvent Rz(H) of H exists. It can be ex-’

pressed by the formula

(sz(x)= [u(x)-zE]_lf(x)+ [u(z)-zE]'1 f;% £(y)dy

for all 2z ecl, Im z40 where A(z), and D(x,y;z) are defined
below (in (11),(13)).

Proof. We shall find an explicit formula for RZ(N) = the
inverse of H-zI. Let for some chz(Sv,“),
(4) [(H-zI)£J(x)=Cu(x)-zE)L(x)+ ‘[S" K(x,y)t(y)dy=g(x), fe L2(S”‘,3¢)
Since u(x) is self-adjoint in ¥ , the determinant o(x,z) of the
matrix u(x)-zE is nonvanishing ‘for all z e ¢1, Im z =0, and

hence the inverse operator
'\9'11()(,2)...17'“1()(,1)

woo-207 e gty |
"9‘1n(x,z)... ﬁnn(x,z)

exists. Here #ji(x,z) denotes the signed minor of the element

uij(x,z) of the matrix u(x)-zE. Introducing the :.notation

(5) 0= [u(x)-2E)£(x), fel,(s”,%)
we can write (4) as

fx)+ fs), K(x,y)[u(y)-zE]'lf(y)dy = g(x), fe L2(S",3e)

which can be formulated as a system
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6) il(’()* _gvKu(x:YiZ)?l(Y)d)’*- . ""_gy Kln(X,y;z)fn(y)dy=gl(x)

'fn(x)+ '(s,Knl(x,y;z)fl(y)dyt . .+‘£, Knn(x,y;z)?n(y)dy=gn(x)

of integral equations. Here
A A ”~ -~
FO)=(2,00, .., T, 0), 9(0=(g,(x),...,8,(x)), T,,9,€1,(s”,€"
i=12,...,n,
and L2(S’, Cl) is the .Hilbert space of all square integrable com

plex functions defined on the y -dimensional torus s¥ , and

.1 <
(M Ky300y32)= grysy Zq Kis (oY) B ly,2).

We shall now rewrite (6) as an integral equation equivalent
to the system (6). To this end we denote by ‘M the union of dis-
joint copies of s? , i.e.

M =?.§54 (s")j. (s")j =8, 3=1,2,...,n.

Define now a measure on M such that its restriction to each
(S")j =S , j3=1,2,...,n coincides with the Lebesgue measure.

For each z e (‘,1, Im z=0 we define the function (kernel)

K(XA,;2z) on MxM as

K(A, @;2) = Kij(x,y;z), A= xc(S”)i, “= ye(S")j.

Finally we define the following functions on M:

f(A) = £;(x), g(A) = g;(x), A= xe(s¥);, 1 =1,2,...,n.
Then the system of integral equations (6) is equivalent with
1A+ [ K(A, @32 E(w)d @ = g(A), f,96L,M, €1,

where LZ(M’ Cl) is the Hilbert space of all square integrable

complex valued functiona on M.

Proposition 2. lAny zZe (Ll\ Econt(H) is an eigenvalue of
H if and only if the homogeneous equation

(8) f1(A) +fMK(.A,M;Z)f(u)d(.L= 0
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has a nonzero solution fe LZ(M’ ¢}).

Proof. Any z ¢ (}\\Eicont(ﬂ) is an eigenvalue of H iff.for

some feLz(S"’,ae) the following relation holds true:
(9 (u(x)—zE)f(x)+~ﬁwK(x,y)f(y)dy = 0.

By the same argument as before it is possible to show that (9)

is equivalent to the system of homogeneous integral equations

(10) fl(x)+‘£vKll(x,y;z)fl(y)dy+...+.gVK1n(x,y;z)!n(y)dy=0

fn(x)+.gvKnl(x,y;z)fl(y)dy+...+J;vKnn(x,y;z)fn(x)dy=0.

~Further, from the definition of L2(M, Cl) and the kernel K(A,,p»;z)

it follows that for any z e Cl\ = ont(H), the system (10) has a

con
nonzero solution iff the homogeneous integral equation (8) has a

1
nonzero solution from L2$M, Cc).

To finish the proof of Theorem 1 we use the self-adjointness
of H to infer from Proposition 2 that for each z € cl, Im z40
the homogeneous equation

() +fMK(?t,f»;z)f((u Jdw = 0,

has no nonzero solution. Besides, since

[ Ik, w5120 du= = [ [k (x,y;2) | %dx dy < oo
MxM wi=1 ghgv 1

it follows that the operator
KA = LKA, w3 (@dw , telyM, €

is of Hilbert-Schmidt type. Therefore, it follows from Fredholm
theorem (see [4]) that the equation (7) has a unique solution
fe LZ(M’ @1), for any ge.Lz(M, (}). This solution can be expres-

sed as

1
£(A) = g - T{—:—-—A,@(?\,,M;z)g(c;)dey,
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where A(z), and 3(.7\,(3',1) denote the Fredholm determinant,
and minor, respectively. Considering the restriction of f on
(S")i, i= 1,2,...,n, we obtain the solution of the system (6)

in the following form:
D, (x,m;2)
?i(x) = gy (x) +fm-—1mﬂ(u— g(pldu =
(
i

o D;.(x,y;2)
: 91()() +'3‘£4 '[59.—_%(7)_ gi(y)dy, i= 1,2,...,n.

Here' ‘.'Dij(x,y;z) and A(z) are gqiven by the following formulas:

-%— 0533 (x,y;2),

(<]
mij(x:YiZ) = Kij(x,Y§Z) + b%, s

m
d(;j)(x»y;z) = =

3,350 03,01

Kij(x,y;i)Kijl(x,tl;z).. .Kijs(x,t's;z)

[

[, Kjlj(tl,y;z)Kjljl(tl,tl;z)...Kjljs(tl,ts;z) x

: _ 2 1
(1 H(z) = 1 + R dg(z),
- m
(12) d (2) = jl’g'jsﬂ
Kle (t),t52) .KJljs(tl,ts;z)
f ) f e e e e e e e e dt)...dt_ .
SV S"

Therefore it follows from the formula (11) and (5) that the resol-
vent of H acts on L2(S’,ae) according to the formula

-1
IR, 2100 = LuCo)-z€)"1e00- Leoazl — f) 90x,y;2)20y)ay

where
mu(x,y;z)... fbln(x,y;z)
.. I R

(13) Bayiz) =
9, /(x,yin)... D (x,y52)
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The boundedness of Rz follows from the explicit formula (13).

Thus, the theorem 1 is proved.

Theorem 2. The operator (1) has only a finite number of ei-

genvalues not belonging to the continuous spectrum.

We shall restrict ourselves to the case v = 1 and uij(x)=0
for i4+3j to avoid certain technical difficulties of the general
case. In addition, without loss of generality we can assume
that uj(x) = ujj(x) and Kjljz(x,y), 3,3103, = 1,2,...,n are 2ar
periodical functions defined on [0,2x] and [0,2sr]) = [0,25], res- -
pectively. We notice that in this special case the continuous
spectrum of H consists of

where Aj = 121 uj(x), Bj(x) = sgp uj(x),

cont

and the function dq(z) , q=1,2,... from (12) can be written as

~n
= = =
% 7 5, Tt By, 04 T 0 T
K. . (t,,t;)...K (t,t.)
o Iy T3 e gt L at
LT | ey
331 tatr? Ky 5 tarta ! 4

The following lemma plays a crucial role in the proof of The-

orem 2.

Lemma 1. Let A'¢ ECDH‘ (H) and USI(")= -{X jlyszv---:xjmj}t

J =1,2,...,n. Then there is an g -neighborhood V,(A") =
={zetl:0<|z-A"|< e} of z = A" such that the restriction
A(z)/ci of the A(z), where ci ={z e(,lzlm z>0% is the half-
plane, has an analytic continuation onfn V;(A'). This analytic

continuation A¥(z), is a multivalued function with the branching
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point z = A" and can be in V,(A") expanded into the series

8/ ae
A2) = = Fp (K(z-A) P, zavg(A).

bt-i

Here
m - Mg R. -1
- S
a- R;E% £%; '&3;' ’

and st -1=R (xjs) - 1 denote the multiplicity of the root x =
=xjs of the function uj(x), j - 1,2,...,mj, P is the lowest common

multiple of the numbers
{Ru,...,lel,...,Rnl,....,nn'mnz.

The proof of this lemma is based on Lemma 2 which we shall

prove first.

Lemma 2. Llet A'c Efcont(H). Then for any q = 1,2,... there
is a neighborhood Vé(A') of z = A", and a function d;(z) defined

on it, such that

* P = P

dq(Z)/Vs(A )AC}_ = dq(Z)/Ve(A )nci ’
where Ci =4z ¢ cl:Im 2> 0%}. The function d:(z) is a multivalued
function with the branching point z = A".

B mn
Proof of Lemma 2. For any A'e = .(H) =5§)4 [Aj,Bj]

-1

we denote by uy (A)ef0,223, 3 = 1,2,...,d its pre-image with

respect to the mapping uj. It is obviously finite , i.e. we can
’l Ty o ._
write uy (A”) = {le’xjm 3. Let -us denote by uj(s ) and Kjljz(sl,gz)
the analytic continuations of uj(x), and Kj j (xlaxz), into nczcl,
192
and A= Q c Cz, respectively, where Q ¢ €~ is some complex neigh-
borhood of the segment [0,2x].

Because uj(g ), 3=1,2,...,n is regular in x = Xy o, »=

e '1,1,”.,n5 there are some ¢ > 0 and d > 0 (in the following we

shall assume that these numbers are sufficiently small) such that
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for each ze Vg (A") the equation

uj((s‘.) -2=0
has exactly ij , V= 1,2,....mj solutions in the disc
|xj>’ -¢l<d . These solutions are branches of some ij -valued

analytical functions, whose branching point z = A’ has an order

ij and can be in VE'(A') expanded into the series
1/R Z/R »
> _ v A b} » a’ 3
(14) yj(z) = Xyt cjl(z A") + Cjz(z A") + ,
where 1/R
5 Rip j»
(15) [ , Y= 1,2,...,m,.
31 ; J
u. PUx.)
J Jv

This statement follows from the theorem about jnverse functi-

on of an analytic function (see [5]).

We put
/g Vg, i }
(z—A')S P o z-a7] I expii arg%;—A ), 2: 1. s}
j» »
s = 0'1""’ij - 1 and call this value the s-th value of the root
/g
. j»
(z-A") 37 . Correspondingly we call the
1/ 1/
R. R. 2
v _ » A’ v » a’ J\"]
Yis(2) = xgp + ©51(z-AT) 7w e, 1(z-AT) R S

the s-th value of the multivalued function 'qf};(z).

Proposition 3. For any d > 0 there exists e > 0 such that
for each che:(A'), Im z>0 the number of values Vgﬂ(z), 1(31(2),
v Yy ; 1, _
. I'rjpj,.-'l of ‘vj(z) which belong to {§e C:Im§> 0, |E xj>'<

< d %}, equals to Pjv' Here, P.  is the integer part of

j»
(R..) R.
1 hld »4{.
‘Z"iij + [sgn uy (xjv)) $
/g
Proof. Since Im z>0 we observe that Pj'v values of (z-A") 3%
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where PSV is the integer part of %(ij + 1), belong to the upper
half-plane. From this fact and from (15) it follows that Pyw
values
1/ 1/ 1/
R. R. R.

» A’ J)’ » . J)’ » ’ »

531(2 AT , cj1(z-A /N ,...,cjl(z—A )Pj)’_1
belong to the upper half-plane. The smallness of &€ > 0 then imp-

lies that Pjv values

'14’;0(2)’ 1(3?1(2),..., y‘;Pj oy of 1('3(2)
belong to {§ e €l.Im¢ > o0, g - "jv“‘”'

Proposition 4. The function [uj(1vg)l'l can be in Vo (A")
expressed in the form

K/
(R.,- 1)! (23 R.
Lusy”) "L - L 14,2, & (z-A7) 1
h] L) LI &= Sk
uy (xjv)(cﬁ)—&'"

and the function K ( L4 31,1(3 2y in the form

3,3, 1":‘1'1«3 2. Kj132(x31’1’x32 2) *
S1/ S2/
S A ®31%) R32%,
+ = C_ _ (z-A") (z-A") .

b11A2=1 5152

Proof. Since §= x » = 1,2,...,mj is a zero point of the

»
order Rjy' 1 of the function uj( ¢ ), we can expand this function

into the following series:
R'V+1)

)
» uy I (x ) R
. u (X ) R -1 ] jz - Jy
(16) u3(§ ) —fg—pyr = j-.v(S"‘jv’.jv Y (§-x59) T

Substituting (14) into (16) we obtain
(RJ,‘) (R,

S T (x4) »”
an u(¥)= (s x, _.L__,,_,_.L_ [y}(2)-A"] "
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R.,-1
(RJ)’)(XJ I Vg Ro1 g
1 [(z-a) P19 [1482z-a") P,

R - 1)
(ij DA
For a sufficiently small € > 0 and z &V, (A") we have an inequality
I/R-v
> o e 3
Icﬂ(z AT) +...l<«l.

This inequality, together with (17), implies the statement of Pro-
position 4 for the function [uj(‘V”)J'l. The second assertion of

Proposition 4 is proved in an analogous way.

Coming back to the proof of Lemma 2 let € > 0 and Jd >0 be
such that the segments

(le-d',xj1+d"),...,(xjmj—d', xjmj

+d), 3 =1,2,...,n
do not intersect and

[ A m 1, .

I ) e UsS e €hilgox gl < 8
Investigate the function

PUNIES
A 2=
dj(Z) —j.: —ai-rs—)—.‘z d? , J=1,2,...,n

which is regular in Ve'(A')r\ Ci. We can write the function dj(z)

in terms of its residua as follows:

oy K (8.8)
(18) d.(z)=25r1’§.: =, ’u'rg—y— fré.“u'rp—uj = ¢

m, ‘ (g2 ) K..(¢,8)
=231 & 1{1 R Jj’vjsijs of =l 5 d§,ze V,(A)n (‘1
wjlyhy) B -z .
/L /N -
0 Xy sz xjmj

Here, [» is the contour, coinciding with [0,2%] outside of all
intervals

(le-d" ,xj1+d'),---,(xjmj'd"xjmj+d')

.and containing all the half-circles
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1§ e €hil§- x| =9, In§z ok
Since § & [y we conclude that

- . 1 ,
uj(g YEV (AT ={ze¢':|z-A"|< &% -

K..(§,8) i
Therefore, the function ,&} UJ%§777— dfis regular in Ve (A7), Using
the representation (18) of djgz), j=1,2,...,n, the existence
of an analytical continuation of dj(z) into the region Vg (A")
through the interval (A'- ¢,A’) and also through (A",A"+¢g) fol-
lows. Both these analytical continuations coincide. We denote by
d;(z) the analytical continuation of dj(z). From the proposition
4 it follows that dg(z) is a multivalued function with the bran-
ching point z = A", expressed in the Puiseux series in the powers
of z - A’
Consider now the function
an| €013, F0E0Kg 5, B1082) df, d4f,
J1Jz f - (?zrfl)"j j (5.5, (ujl(Sl)—z)(uj2(¥2>-z) .
291 292

Using the "theorem about residua" to the function dj 3 (z) seve-
1Y2

ral times, we obtain:
(19) djljz(z) = ,
P:1K (%,,8)K. . (8, ,9w2_)
=f1" 1 {2 . z,_ ‘12 33, Sl sl 313, £1 szsZ N
o ".‘h[;l"z B0 5,=0 v, 5
K3031 ¥a55,7827%3,3, %355, ¥ip5,’
1
ujz(vjzsz)
) d
+ fp Kjljl(slvfl)lejz(h’?z mgg._.i} ds, -
JK. = ( )K s ( jZ 2
)2)1 22’.?1 3232 S)_a$2
o1

P,
= 2ni)? z” T Y %’

%=1 ‘t'f 03’0 ¢,-0
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K. . ¢ 1. M I e 41
3132 ¥ays1 08170313, Vs Ve, ) 1 +

PR BV
“3.%31543, ¥y,

3y » ¥ v
, 2 1 2 2 )
K. . Gp.%. w.l K. . (.l .
J231(1‘,3252 Y3151 J232(%252 ‘3252

X s A
L ) %,v1
+ 2% X J‘X
V24 b4z 0 o

| % 141
K. . (v 2 .. (v
3131(W5151,Y3151) J132(75151’S 2| =

V.
1
KJ'251(“:2"'3151)'(323262}2)

P -1
d 2 3%
x ) 5 i 92‘.:’-4 b,i:()
"31(*5151)(“32(¥2)'2)
Y2
Kjljl(gl’51)K31j2($1'*3253 of
) » . 1 +-

)
n 2 ™ i 2
& szjl(wbzsz'$1)Kj232(‘5252’”3252) (ujl(sl) Z)ujz(“3252)

Kjljl(¥1'§1)Kj1j2(?1'52) df, df,

+ [ [ (uy (§))-2)Cuy (§,)-2)
B (K, B2 80Ky 5 o | I2

Using analogical considerations as in the case of dj(z), j=1,
2,...,n it follows from the representation (19) that the function
djle(Z) which is regular on the upper half-plane, has an analyti-
cal continuation into V/(A"), through the segments (A'-g,A")
and (A",A"+ ¢£). Both these analytical continuations coincide.
From Proposition 4 it follows that this continuation is a multi-
valued function with the branching point z = A”".

Now we investigate the function djljz...jq(z), defined by the

formula
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d =[RS Re x
-3
K309, k) Ky 5 (Borfg)
df,...9f,
(ujl(Sl)-z)...)ujq(sq)-z)

(which is regular on the upper half-plane). Finally, using the
mentioned "theorem about residua" repeatedly many times we can

write down the following expression:

m. ,m ...m, P. -1 P. -1
37y J 3y 37
(200 dy 5 (D)=(2r )" 12 e L1 B
1°°"Yq vl,vz,...,yq=1 ‘sl=0 sq=0
. v ¥. », >.
1 1 1 2 1 . ”q
K ( KA K. . (¥, R ). KL L (. YA
PR PR A TEPRRA A PEPRAR PR PALS TE PR PEDY 313q Yi18 qusq))

2 Y1 2 2 Y2 g
ATEIAS APEAS (PN )K3232(75252’”5252)'"szjq(yazsz’yﬁqsq)

Ky o 0 K, L )k,
. A - . R Ky
jqjl Jqsq 315 Jqu Jqsq stq Jqu

1

» + ... +

© W >2
ujl(yjlsl)ujz(-\yjzsz) .. .ujq('\yquq

m m P. - P. -1 A—
-a’ J Jaq’ 31? Jaon’ ®
RIS L T AL N
gq-9’ =0 ’ d
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Y > o} "q' v
KJIJI(YJlsl ""Jlsl) 33y (‘*'Jlsl"’std)Kleqgl('Glsl § qQ’ oY

)

Ve
K. . (v. ) ¥ K. . (y q 1 $aray)- -
ad¢ Jq’Sq’ Jq%q Jgdqr+1  Jg3q 9 *1

.......................................... g%
qu‘+1jl(gq'*1’yjisl)”'qu’+1jq'(£q'+1’yj:sd)qu'+1jq'¢1
Garensfor K, Gy, 8D
Ko s ( 1 o
s Fa iy Ky Sa¥ids Kacs, ,, Sarf )
...qujq(gq,gq)
x 5 1 e
ujl(yjisl)...ujq‘(lrj:sq‘)(ujq’+1(§q,+1)-z)...(ujq(gq)—z)
, K300, G080 Ky 3 B1gy)
T e 8D Ky 1 G5 | <g?si)d§3 §)-2)
3gd; tartl Jgig fa’ca 383 Jg*a

Using the same arguments as above we infer from (20) that the
function has an analytical continuation into the g€-neighborhood
Ve'(A') of z = A" through the intervals (A'-¢,A") and (A",A"+€).

We denote by dg 3 (z) the analytical continuation of
1+ 3q

dj 3 (z)/,.1 into the region Vé(A'). From the proposition 4 it
1+ 3q .

follows that the function is, generally speaking, a multivalued
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’

function with the branching point z = A .
Let us denote by d; (z), q = 1,2,... the function

(21) d%(z) = a¥ . (2), V(A"
a _%jz,...,j‘fl J13z-- g zelelhD)

which is again a multivalued one on Vg(A'), with a branching point
z = A°. From the Puiseux theorem and the expression (20) it fol-
lows that the function d:(z), ze€ WQ(A') expands into the following

seriés:

. € . S/p L.
dq(z) = E_ﬂ FS'A.(K)(Z—A ) ’ ZQVe(A )

Thus the proof of Lemma 2 is completed.

Proof of Lemma 1. Denote by
(<-4

(22) M) = Z —dy d¥(2), ze W (AD)-
g=1
Then from (21) for d:(z), q =1,2,... and from the Hadamard ine-

quality for determinants (see [4]) it follows that the series (22)
converges absolutely in V;(A’) and defines a multivalued analyti-

cal function with a unique branching point z = A", Therefore, from
the Puiseux theorem (see [6]) and the expansion (22) used for

da(z), g = 1,2,... we obtain the statement of Lemma 1.

Proof of Theorem 2. Following Proposition 2 and the Fred-
holm theorem a point z e (,1\2':
A(z) = 0.

Because of the self-adjointness of H, it is sufficient to

cont(H) is an eigenvalue of H iff

show that the function A(z) has only a finite number of real ze-
ros not belonging to the continuous spectrum. We shall only show
that D(z) may have a finite number of real zeros greater than A,

= sup A . The remaining intervals of the complement of the
A‘Efont(ﬂ)

continuous spectrum may be investigated in an analogous way. It
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follows from Lemma 1 that the function A(z) can be expressed in
the e-neighborhood Vg(A")\ (-,A] of

z = A" by the following series:

A~

< s/p S
O(z) = Z F_ (K)(z-AS ", ze Vg (AN (-o,Ad.
s=-9 '

Therefore, A cannot be a limit point for the set
fze R': A(z) = 0,z>A%. On the other hand, the function A(z) is

regular in €\ Z ont(H) and A(z) —> 1 for |z|] > , Imz =0,

and thus it has only a finite number of zeros belonging to

(A +e,00) for any € > 0.
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