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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

27,1 (1986) 

TWO EXAMPLES OF PSEUDO-RADIAL SPACES 
Petr SIMON*), Gino TIRONI") 

Abstract: Using an Ostaszewski-type construction , we prove 
in ZFC the existence of 
a) Hausdorff pseudo-radial space of countable tightness which is 
not sequential, 
b) Hausdorff pseudo-radial space in which tightness and quasi-cha­
racter differ. 

Key words and phrases: Pseudo-radial space, sequential space^ 
tightness, quasi-character. 

Classification: Primary 54A25 

Secondary 54G20, 54D55 

Introduction. Pseudo-radial or chain-net spaces were introdu­

ced by H. Herrlich in 1967 C H 3 - They are a natural characterization 

of both linearly ordered and sequential spaces. (See for example 

[A],[MW.I.) Recall that a space X is pseudo-radial, if for each non-

closed M £ X there is some x £ Nf - M and a (countable or transfinite) 

sequence \ x •. «, e ae I Q. M converging to x, i.e. each neighbourhood 
cC 

of x contains all x s beginning from some ex: on. 

If "there is some xe M - M" is replaced by "for each x e TT - M" 

in the above definition, then the space is called radial or Fr^chet 

chain-net. 

x) Supported by an Italian C.N.R. grant as a Visiting Professor. 
xx) This work was developed as a part of the program of the Na­

tional Group "Topology" of the Italian Ministry of Education. 
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When investigating the cardinality properties of pseudo-radial 

and radial spaces, A.V. Arhangel skii, R. Isler and G. Tironi in­

troduced a new cardinal invariant, so-called quasi-character, as 

follows. 

q^CX) = min -f m : ( V A £ X)( V x e A - A) ( 3 '? & $> (A))( | $ \ * r 8c 

&x £ Uf U (VFe '̂ )(x * F))}. 

They also proved that for T, radial spaces, q^(X) = t(X), le­

aving the case of pseudo-radial spaces open. The best result in 

this d i r e c t i o n says that q^(X) = t(X) for a pseudo-radial space X 

provided t(X) is a successor cardinal and GCH is assumed (CAIT.J). 

We shall construct assuming ZFC only a Hausdorff pseudo-radi­

al space Z with CO = qfc(X)<t(X). 

Using essentially the same construction, we shall also dis­

prove the old conjecture that a pseudo-radial Hausdorff space with 

countable tightness is necessarily sequential. Here, of course, a 

plenty of counterexamples was published by various authors befo­

re (10],[JKR] to mention few), but - as far as we know - all of 

them depended on some additional axiom of set-theory. 

The construction. Let ae be a cardinal number, define by in-

duction #n+i = 2 n, ae = sup { ae :n s <*>} . Equip each ae with the 

discrete topology and denote by M the Tychonoff product TT dt . 
,}%, e c*> n 

Then M i s a complete metr ic zero-dimensional space, w(M) = ae , 

| M | = 2**= 9€^ . Fur ther , i f C£M and |C| :> ae , then |*C| = 2™ . 

The l as t asser t ion needs, perhaps, a proof . 
Denote by A„ the set 4 f € ae : I j r " . - i t i J o CI > v \ . Then J n s, n ' n s ' 

C = y ^ t f ^ H ' H , - A l n C u TT A A C. Since fo r each n 6 eo . 

\3t~hd6n - A l ^ C * | *£ * - • < £ = tt , we have I TT A n C i > 'Ot . But n n n n .*. tr c-» n 

t h i s means that fo r each ••£ ^ vz there i s some n e w wi th | A | > 

•y f , otherwise | ]T A„ r \C| <^ dt would con t rad ic t the assumption 
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|C| > 96. So we have proved the following: 

If i, < 98 , and if |C| > 36 , then there is some n e c*> such 

that 

Kg « le^l*-1^*;.. : ; > * } |> tr . 

The standard branching argument works now: for each n € o> and 

for each <y e TT { w : i e n 5 there is a closed C ^ S "C such that 

|C | > 96 , C^2C .- if and only if 9 s f , C o C = 0 if and on­

ly if there is i e dom c£ o dom y such that 9 ( i ) 4 = - y ( i ) . Indeed, if 

<3p e #TT -ae. and C,„ is known (C^ = C of course), then there is so-* t/g>n> 1 9* ^ 

me afc with 

l*f e • V l * U 1 C < § W n c ? |> ae l l > * e n . 

So we can select C n„ , for 7) e 36„ to be a member of the dis-
9 -f^ * n 

joint family 

Since, obviously, for each f € TT 4. 36 :n € co } , f\ CfJk £ 0» we 

have |C| >ae^and, by our choice of 36, ae^ = 2 ^ 

The above are the properties of M which we shall need further. 

Denote by tp the metric topology of M and fix some clopen base CE 

for M, | & | = ae . 

Enumerate all subsets of M of cardinality ge the closure of 

which is of cardinality 2 as -If,: oC <c 2^\ in such a way that 
Cv 

each set is listed 2 ^ times. Then for each T^ select a point 

x e T^ and a convergent sequence S_ , such that lim S- = x,, S,£ 

£ T^ and for ac 4. /& , x > x. . This is clearly possible for, by 

the previous choice, each T has 2 accumulation points, so the­

re is still one among them distinct of all x^ , fi ^L cc • 

Let X = \ x • oC < 2 i and denote again by ̂ > the original 

topology of M restricted to X. 

We shall construct a new topology tr on X in Ostaszewski 
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s t y l e . Let X^ = <£x-: ft < ocf for cC < 2n . Define f^ to be the 

discrete topology on X^. Suppose (X[ t v ) have been defined for 

all ot •< ft where (2<2dt. The inductive assumptions are as fol­

lows: 

(i) For each oO < nr < ft , (X . >tf ) is a subspace of (X^i^). 

(ii) For each oC *c f < ft , X is an open subset of (X̂ , tL-). 

(iii) Each (X\ % tf ) is first-countable, locally compact, locally 

countable. 

(iv) The topology tl is finer than $>rX , for each oc < /3 • 

If (3 is a limit cardinal, let Xn = KJ -f <e : oG -*: /$ } . Ob­

viously (Xfl,*U) again satisfies (i) - (iv). 

If jS = oC + 1, we are to find a neighbourhood basis of x^ . 

There are two possibilities: 

** l*LrAX<jJ< ** » le* xo& D e i s o l a t e d in X^, i.e. a neighbour­

hood basis of x^ is -Cx̂ l . 

If |S.AX \ = CO , select some clopen base of x^ in (M,p ), 

say-CB02 Bj ? . . ,aB n P. ..? such that for each n, S^nX n (Bn -

" ^i+P* 0' a n d s e l e c t yn e Soc n X
o C

n ( Bn " Bn+1
}-

Since, by our assumption, tf̂  is finer than p , BR - B n + 1 

is an open neighbourhood of y , so we can find a countable compact 

neighbourhood of y , say Un, with Upc Bn - Bn+1> Fix this choice 

of U 's and define the neighbourhood base at x^ as 

^ x r f } u U ^ U n : n e k i : k i a>J • ex* n 

It is again clear that (i) - (iv) hold for ( X « , T ^ ) . 

As might be expected, the desired topology % for X is 

Clearly, (X,^) is first-countable, locally compact, locally 

countable. The next property, being crucial, has to be proved: if 

C is closed in the topology t for X, then either |C| j£ # or 
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|C| = 2 * . 

Indeed, suppose |C| > ae . Then |cf-*| = 2 ^ and, since w(M) = 

= * , there is a subset T£ C, |T| = H , such that T** = C? . In 

particular, |Tf| = 2*. 

Since | T | = % , there is some x < 2** such that TSX-.. The 

set T appears 2 times in our list, and in each occurence cc > 3* 

with T^ = I, the point x^ belongs to T* . So IT* | = 2n and sin­

ce C was assumed to be closed in t , CPT^-

Having passed the difficult part of the construction, choose 

a point oo not belonging to X and define Z = X u icol with the 

neighbourhood base at co consisting of all sets -Coolu (X - A), 

where ASX, A is closed in tf , |A| * & . The space Z is Hausdorff 

This is trivial, since each point of X has a countable compact 

neighbourhood. 

The space Z is pseudo-radial. Indeed, let W£ Z, W 4*W. If the­

re is some xeX, xeW - W, then there is a convergent sequence in 

W with x as its limit, by the first-countability of (X,c). Other­

wise WZ - W = \ ool, hence W is closed in (X, x) and oo is its 

accumulation point. According to our definition of topology on 1} 

|W| > ae , hence |W| = 2* and for each neighbourhood U of oo , 

|W - U| -6 ae .So any subset of W of cardinality ae* converges to oo. 

The tightness of Z equals *z . Indeed, if W 9 X and oo e W 

then | WI > -ae . There is a set Tc w, |T| = -ae such that Tf 2 W. 

But this implies that |T-°| = 2* , therefore 11*1 = 2* , too. 

But then o:> s T , therefore t(Z) .£ ®e . (Other points than co are, 

of course, uninteresting.) On the other hand, t(Z) 2r a* for the 

trivial reason that if WcX, if |W| < w then \%$\ < vt , too, so 

\'^olu(X - W^) is a neighbourhood of oo disjoint with W. 

It remains to consider two special cases. 

1. Let t?e.Q = 2. In this case, the starting metric space is 
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nothing else than the Cantor set and the final space Z is pseudo-

radial, Hausdorff and t (Z ) = CAJ • 

Z is not sequen t ial . Consider Y - X. This set contains the 

point oo only, and there is no sequence -fs :n e o>l converging to 

oo : notice that $s :n e co} should be a closed discrete subset n 

of (X, t ) then, but in this case, -too] u (X - -£s :n e &>l ) is a 

neighbourhood of oo disjoint with i t . 

2. Let & = <o .We have at > co in this case, and Z is pseu­

do-radial, Hausdorff and t (Z ) = 0t . 

Yet qj(.(Z) = co . This is clear if one considers points from X 

by the 1st countability of ( X , r ) . 

Let us discuss the case W£X, oo e U . Since t (Z ) = ae , the­

re is some TSW, |T| = ae , oo fi I 1 . Making use of the fact that 

ft is a singular cardinal, find some T £ T such that T = O-fT : 

:n c cal , and for each n, |T | < a* . Then for each n, |T*| < ae, 

too, so oo £ 7*. So q\(l) = co . 

Added in proof. After this paper was completed we learned 

from I. 3uha*sz that he and W. Weiss found independently examples 

of pseudo-radial spaces with similar properties. We do not know any 

details of their proof. 
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