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ON PSEUDO-RADIAL SPACES
A. V. ARHANGEL'SKII, R. ISLER and G. TIRONI*

Abstract. A new cardinal invariant, the quasi-character, is
introduced and some of its interesting properties are studied,
particularly in the class of chain-net or pseudo-radial spaces.
Main results are that the quasi-character coincides with the tight-
ness for pseudo-radial monolithic spaces and, under GCH, for pseu-
do-radial spaces which are Hausdorff and compact or have cardinali- '
ty not greater than x,, . However still open is the problem if qu-
asi-character and tigh%hess are the same in the class of pseudo-
radial spaces. Introducing the notion of tightness with respect to
a family of subsets, upper bounds for the cardinality of the clo-
sure of a set are developed in a general topological space.

Key words and phrases: Cardinal invariant, pseudo-radial spa-
ce, chain-nel space.

Classification: Primary 54A25
Secondary 54055

1. Introduction and basic definitions. Pseudo-radial or chain-

net spaces were first introduced by Herrlich [9] in 1967. The sa-
me class of topological_spaces was then considered by Meyer, Mrow-
ka, Rajagopalan,... [14),[16], and systematically examined by Ar-
hangel “skii {1],[2]. Some questions presented there stimulated the
publication of other papers [111,(17},(81,[101,(18].

In this section andin Section 2 all spaces are supposed to be

(k) This work was developed as a part of the program of the Nati-
onal Group "Topology" of the Italian Ministry of Public Education,

while the first author A.V.A. was a Visiting Professor at the Uni-

versity of Trieste under a C.N.R. grant.
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Tl, if not otherwise stated. We shortly recall the basic equivalent

definitions of a pseudo-radial or chain-net space:

Definition A. A topological space X is called pseudo-radial
or chain-net if, for every non-closed subset A, there are a point
xe A\N'A and a family 4§ of subsets of X, such that the family P
is linearly orc red by inclusion and

(i) PnA%p, for every P in P,

(ii) for every neighbourhood U of x there is P in ¥ such
that Pc U

(ii1) NP = 4xi.

Definition B. X is a chain-net or pseudo-radial space if for
every non-closed subset A of X there are a point x¢€ 3 ¢ and a

(transfinite) A -sequence (xw: o <A ) in A converging to x.

The following theorem furnishes a useful characterization of

pseudo-radial spaces.

Theorem. X is a pseudo-radial space if and only if for any
non-closed set A there exist a point xe AN A and a subset B of A
of regular cardinality, such that for any neighbourhood U of x,

|BNU|< |B| (see L11).

Radial or Fréchet chain-net spaces are topological spaces such
that every point in A satisfies the properties of Definitions A or B
or that one expressed in the theorem (see [21).

We now give the following

Definition 1.1. A subset B of a topological space X is said
to be topologically directed (in X) if |B| is a regular cardinal

number and there exists a point x such that for every neighbourhood
Uof x, |[BNU|<|B]: In this case we also say that every neighbour-

hood U of x contains "almost all" points of B.
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If X is a Hausdorff space, then the point x is unique. In case the
point x is unique it will be called the end of B.
The following definition introduces a new cardinal invariant,

which seems rather interesting.

Definition 1.2. Let X be a topologicul space and x a point
of it. We define the guasi-character of X at x the least cardinal
number ~ such that, if A is any subset of X and x € AN A, then
there is a family o of subsets of A suth that Iyl = T, x¢ B
for any B in » but x eU’r . We denote the quasi-character of X
at x by qx (x,X). gy (X) = sup £g% (x,X):xe X}, is called the guyasi-
character of the space X. )

It can be useful sometimes to think at the quasi-character as

obtained from the following cardinal invariant.

Definition 1.3. Let X be a topological space and xe ANA.

The primitive quasi-character of the point x with respect to the

subset A is the least cardinal number ® such that there exists a
family ¥ of subsets of A with the properties as in Definition
1.2, i.e. |yl <« , x¢P for any P in o but x e Uy

It then follows that ayx (x,X) = sup ¥pgy (x,A):ACX and x& AN A},

2. Fundamental properties of the quasi-character. Before gi-

ving the first simple but important properties of the quasi-charac-

ter we recall one more definition

Definition 2.1. Given a topological space X, a set Ac X and
a point xe X, we call primitive tightness of x with respect to A,
pt(x,A), the least infinite cardinality of a subset B of A, such
that xe B (see [51,[12]).

Proposition 2.1. For any T, space X, gy (x,X)£ t(x,X). More
in general, the inequality paX (x,A)< pt(x,A) holds under the same
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hypothesis. Also the inequality g% (x,X) £ ¥(x,X) should be noted.

Proof. Only the last inequality needs to be proved. Let
U, o <A} be a family of open sets with A = ¥ (x,X), such that
NU, = {x}. Consider K, = (/3@ Uﬁ)\ Ug,p- Then xf—&, for any
&5 UKy = U\ 4x% hence xe UK . In fact for any ye U, \4ix}, the-

re is the least oo such that yel{*\ l;I‘d; then ye K, -

Proposition 2.2. For any T, space X, q (X)£€ s(X).

Proof. Remember that s(X) coincides with the hereditary Sus-
1in number of X. Let x€ A\ A; for any ye A take the family ’Vy of
all open neighbourhoods Vy of y such that xt'\f;. From "If':U{(V’y:
:y ¢ A} extract a maximal disjoint subfamily 3 . Then |y | &s(X),
x&P for an; P in ¥ but x e U}

The strict inequality can hold in the result of Proposition

2.2, as shown by the following

Example 1. Let X = Y, v Y,, where Y; = Ix4i}, i=0,1 and I
is the unit interval. Let Yy be discrete, while the neighbourhoods
V of a point (x,0)e Y  are V = Ux{03u (UNEx}) =< {1}, and U is a
neighbourhood of x in the usual topology of I. Then it is easy to

t

see that X is a T, compact 13" countable space such that gqx (X) is

%o
countable and s(X) = 2 .

In what follows, give'n a set A in a topological space X, we
shall denote by cl,(A) the following
clp(A) = U{B:BcA and |B| & A%-

Theorem 2.3, Let X be a T1 radial space. Then pqx (x,A) =
= pt(x,A) for any subset A of X such that xe A\A,

Proof. Let v = pgx (x,A)< pt(x,A). Then there is a family o
of subsets of A such that |y | £ ¢, x4 P for any P in 3 but
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X € CJ_»;' . Since X is radial, there is C < Uy, with C topological-
ly directed towards x of regular cardinality not less than
pt(x,A). Take P* = Pn C tor any P in ¥y and let y' be the family
of all the P's. We have x& P for any P* in 7' and therefore P’c
¢ C\ U for some neighbourhood U of x. Since C is topologically di-
rected, then |P’|< |C|. From the regularity of |C| since |P | < |C]|
and | ¥'| & v<|C| it follows | U 3y "|< |C|, which contradicts
Uy =C.
As easy corollaries one finds
Corollary 1. Let X be a T, radial space. Then gy (x,X) = t(x,lx)
Corollary 2. If X is a T, radial space then g (X) = t(X).

So for radial spaces q% (X) coincides with t(X). It is not
clear if the same equality holds in general also for pseudo-radial
spaces. The remaining part of this section is dedicated to the in-

vestigation of this problem, and several partial answers are given.

For non pseudo-radial spaces qq (X) can be strictly less than t(X),
as shown by the following

Example 2. Let W) =47 : % € @ } and W =4n: 7€} and
define X = (W \ &wo}\xfwl\ tw1) vit e, axl)} as a subspace of
Wox Wl with the product topology. Then g% (x,X) = #, for any xeX
bljt t(X) = 3‘51. The first claim needs to be verified only for
(@q, @) If such a point is in A\ A for some subset A of X, we

can consider the countable family %4 , whose elements are

Ph= AnUnix W\ dew 1)),

However, the following is an example of a pseudo-radial com-
pact T, space X for which pgx (x,A)< pt(x,A) for some subset A of
X with xe AN A. The example holds under Martin ‘s Axiom and the

negation of the Continuum Hypothesis.
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r
Example 3. Under (MA + - CH) it was shown in [2] that X = D !
is a compact T2 pseudo-radial space. Let A be a = -product cont-
ained in X and x& X\ A. Then pggq (x,A) = 4, since c(A) £ #y (see

(11, paragraph 5), but pt(x,A) = #y, since x¢ A and ﬂx (A) = A.
o

Proposition 2.4. Let X be a T1 pseudo-radial space such that
ax, (X) £ A . Let Ac X be such that y(x,Auv{x}) £ A" for every
x&X and cl,A = A. Then & = A.

Proof. By contradiction, suppose A%A. Then there are z€ A\ A
and Bc A topologically directed towards z. Since {z% = F\{U‘:oc<ﬁ.*}
with U, open in Au{z}, we have B =U{B :a < A%}, with B l<|B].
In fact ¥(x,Buix}) £ w(x,Auix¥)e A"; it is enough to take B.=
= B\ U, . Then cf(|B|)£ A™, since |B| is regular, |B| = cf(|B|)=
& A",

Now g (X) £« A implies the existence of a family %+ of sub-
sets of B such that |2 | £ A , |[P|<|B| for any P in o (since z §
¢F), and z ¢ Up . But from |P|< |B| = A% it follows that |P| £ A
for any P< y and then for C = Uy , |C| &A-A = A | But zeT

gives a contradiction since we supposed z§A = cl_a' A.

So we have proved, under the above conditions, that cla(A) =A.

Definition 2.2. Let X be a topological space. We say that

the pseudo-network weight of X, pnw(X), is not greater than © if

there exists a family 4 of closed subsets of X such that for eve-
ry xe X, {xt = N4iFe P :xcF}, and |P | £ = The family & will
be called a pseudo-network of X.

pnw(X) is the least infinite cardinal number ©* fulfilling the abo-

ve property.

Proposition 2.5, Let X be a Hausdorff topological space. If
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AcX and nw(A) € A (for example |A| £A4 ), then pnw(clc,A)‘.At
) - .
(For T3 spaces nw(cl,rA) & A° )

Proof. Let S be a network -for A such that |S|£ A . For eve-

ry xe cl,A and every Ux, open neighbourhood of x, there is B such
that Bc An Ux, xe B and |Bl £ ¥ . There is also a family E c S,
with |€ | £ v such that Bc Ugc 0 . Then xe Bc Ugc T,. Consider
P - {U? :fcS, Ig | g v#. 2 is then a pseudo-network for

cl,(A) and |®| £ AT . Hence prw(cl A& |P| £ A%.

Proposition 2.6. Let X be a Hausdorff topological space, MC
c X and |M|§2A' . Then pnw(clAM)é 22 .

Proof. Since nw(M) < [M|lg 22 , it follows from Proposition 2.5
that prw(cl,M) 4 (293 = 22 |

Proposition 2.7. Let.X be a T2 pseudo-radial space such that
qx(X) €2 and take a subset Mc X with |M| & A". If we assume the
generalized continuum hypothesis (GCH), then Cl,M = .

Proof. Put A = clL M. Then cl, (A) = cl, (c1, (M) = cl, (M) = A.
For any xe X, Auixlc cly(Muix}). Hence, by Proposition 2.6,
prw(A uix3) £ prwlcl, (Muix})) £ 22,
Since we assume GCH, 2“ = A% holds and we have
vy Auixi) g prw(Avdxt) ¢ A = 22 .

From Proposition ‘2.4 then A = A. But from Mc clA(M) = A and Ac M
it follows M = A = A = cl,(M).

Theorem 2.8. Let X be a pseudo-radial T2 space, such that
t(X) = A*. Under GCH we have

ax (X) = t(X).

Proof. We have gy (X)# t(X) = A*. Let us assume that qx (X)<
< t(X), so that gx (X) & A . As t(X) = A* there must be a set Me X
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S

+

{ —
such that |M| = A" and clh(n)4=M. But this is impossible for Pro-

position 2.7. By contradiction, gz (X) = t(X).

Theorem 2.9. If GCH holds, then g% (X) = t(X) for every pseu-

do-radial compact Hausdorff space X.

Proof. PutT = gx(X) and assume that « <t(X). From the cha-
racterization of the tightness in compact T2 spaces, as the supre-
mum of lengths of free sequences [1],[4], it follows that for any
© & % <t(X) there is in X a free sequence whose length is x+,

S = €x‘
GCH) that |Y|% (C «")7)¥. In Y we then have 2*# t(Y)= 2"

o0 <}, Let Y = 5. Since X is Hausdorff we have (assuming
++
, SO

that t(Y) is one of the following isolated cardinal numbers: s,

++

+4+
k] or 2

Y is obviously pseudo-radial and so, from Theorem
2.8, we have qa (Y) = t(Y), i.e. gqa(Y) = 2*. But obviously we also
have q% (Y)& qx (X) so that qy (Y) £ » £s<®", which is in contra-

diction with the previous result.

Theorem 2.10. If GCH holds and X is a pseudo-radial T2 space

then

t(X) £ maxfqx (x),d(X)¥ »

Proof. If s = max{gx (X),d(X)}, then y(X)& pnw(X)£ 29(X¥) g
£ 2% = o, since we assume GCH. Also q% (X) £ 2¢ . From Proposi-

tion 2.4 it follows that if cl,(A) = A, then A = A. So cl,(A) = A

for any Ac X, which implies t(X) & % .

The following are straightforward consequences

Corollary 1. For a separable pseudo-radial Hausdorff space
X, if GCH holds, we have
t(X) = gx (X).

Corollary 2. For a pseudo-radial T, space, if GCH holds and
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gx (X) < t(X), then t(X)& d(X).

Corollary 3. If X is a T, pseudo-radial space, qy (X) = 2
and ¥ (X) £ %%, then
t(X) = ax (X).

The proof is given by the same argument of Theorem 2.10.

Proposition 2.11. Let X be a pseudo-radial Hausdorff space,

+

and let xe& X, Ac X be such that pt(x,A) = 2" . If GCH holds, then
qx (X) 3 . »

Proof. Without any loss of generality we can assume that |A}
= 2% (otherwise we denote by A the appropriate subset of A). Put
Y = A, so that from the T, axiom and GCH it follows that Y| &

++

— +
£ 2" = w oand &' = pt(x,M)&t(YV)£|R| £ p= 2" Hence t(Y)

is one of the following isolated cardinal numbers: m+, x't or

2. since Y is pseudo-radial, as a closed subspace of the pseu—'
do-radial space X, for Theorem 2.8, we have gg (Y) = t(Y)z ot
Obviously gg (X)Z gx (Y). Thus gx (X) Z 2.

We recall (see (31) that a space X is monolithic if for every
Ac X we have '

w(A) £|A],
Lemma 2.12. For*every monolithic space X and for each Ac X,
nw(A) = nw(A).
Proof. Obviously d(A)< nw(A)€ nw(A). But, since X is mono-

lithic, we also have nw(A) £ d(A). Thus d(A) = nw(A) = nw(R).

Theorem 2.13. Let X be a pseudo-radial Hausdorff, monolith-
ic space. Then

£(X) = gz (X)

Proof. Let X be a pseudo-radial Hausdorff monolithic space
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and * = gqx (X). By contradiction suppose t(X) > ~ . Put < = {AcX:
el (A) = AR Then %% § in our hypothesis. Let a4 = min{nw(A):
:Ae et and fix Ae € such that nw(A) = & . As X is pseudo-ra-
dial and T}sA, there exist ze A and Bc A such that IBI is regular
and B is topologically directed towards z. Since z ¢ clg(A) = A end
ze B, BC A, we have |B] > ¢ . As qx (X) £ © , there exist a fa-
mily o c Exp(B) such that |y | g = , ze Uy and z¢ P for every
P in ¥ . It follows that |P|< |B] for every P ¢ 2 . From the re-
gularity of |B| and « < |B| it follows | U7y | < |B|. But, as was
observed in Proposition 2.4{ from B being topologically directed
towards z and the regularity of |B|, we conclude that y(z,Bu{z})=
Zz|8|. Hence nw(B) = |B|, which implies nw(B) = |B|: In fact, if
the inequality did no; hold, using TZ' one could produce a family
of open sets whose intersection is z, but of cardinality less than
|Bl, which is impossible.

Put M = Uy and L = clf(M). From Lemma 2.12 it follows that
nw(M) = nw(M) = nw(T) = nw(L). As nw(B) = |B|, we have

M) &M< [B] = nw(B)& nu(A) = st
and thus nw(L) = nw(M) < ~ -
On the other hand clp.(L) = clg(clp(M)) = €2 (M) = L; L = cl(M) ¢
ccl (B)ccl,(A) = A, and zeMcL but z¢A. It follows that zeL\L,
i.e. T#L, hence L ¢ £ . But then

@ = minfnw(A):A e €% £ nw(L) < « -

A contradiction.
Theorem 2.14. Let X be a pseudo-radial Hausdorff space such
that [X| &« #, . If GCH holds, then t(X) = gy (X).

Proof. Let © = g (X) and suppose = < t(X). Then there e-
xists a set A< X such that cl.(A) = A%A. Since X is pseudo-radi-

al then there exists Bc A topologically directed towards some
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ze A\ A, with |B| regular. Then |B| < %, . Now z¢clp(B)e cl(A)=
= A, so that pt(z,B) > © ; pt(z,B) is, however, not greater than
|B| and it is then an is.lated cardinal, so that from Proposition
2.11 qx (X)Z pt(z,B). We have then obtained a contradiction = =

=gx(X) >7 .

Theorem 2.15. Under GCH for a Hausdorff pseudo-radial k-spa-
ce X, we have t(X) = gx (X).

Proof. For any compact subspace K of X (K is closed and hen-
ce pseudo-radial) we have t(K) = q« (K), for Theorem 2.9. Hence
t(K)& qx (X) for any compact subspace K of X. From the definition
of a k-space and recalling that the weak tightness and the tight-
ness coincide, it then follows that t(X)&qx(X), i.e. that they

are equal.

3. Tightness with respect to a family of subsets. Let & be

a family of subsets of a topological space X, and let r be a rela-
tion between points and subsets of X, given in such a way that for
any x< X and Ac X it can be decided if x r A is true or not. Con-

sider the following

Definition 3.1. Given the topological space X and a family3"
of subsets of X, we say that the topology of the space is Fréchet
-generated by ¥ ' or that X is Fréchet-tight with respect to ¥,
if for every set Ac X and point xe A there is a subset F¢ ¥ such

that Fc A and x&F.

Definition 3.2. Given the space X and a family ¥ , we say
that the topology of X is gradually generated by & or that X is

tight with respect to T if for every non-closed set A there is

- 147 -



Fed such that FC A and FNA#0.
The preceding definitions can be profitably generalized as

follows.

Definition 3.1. X is said to be Fréchet generated by the fa-

mily & and the relation r or to be Fréchet-tight with respect to
4 and r, if for any Ac X and any xe A there is F € ¥ such that

FCA, xeF and xr F.

Definition 3.2, X is gradually generated by # and r or

tight with respect to ¥ and r if for any non-closed subset A the-
re are F 6 ¥ and x such that Fc A, xe FNAand x ¢ F.

Given two families 4 and 4 of subsets of X we denote by
7o € the family:

FO9 =4F e ¥ :there exists E ¢ € such that Fc E{.
Finally if ¥ is a family of subsets of X and r is a relation bet-
ween points and subsets of X, we put respectively

cl,’. (A) = {xe X:there exists F ¢ & such that Fc A and xeF¢

clg, t(A) = {x&X:there exists F ¢ ¥ such that Fc A,x eF and x r F{.

Lemma 3.1. Let ¥ and ¢ be families of subsets of the topo-
logical space X; if X is Fréchet-tight with respect to ¥ and tight
with respect to ¢ , then it is tight with respect to ¥ O ¢ .

Proof. Let A be a non-closed subset of X; then there is x ¢
SENA, for some E ¢ £ and EcA. As X is Fréchet-tight with res-
pect to ¥ , we can find F ¢ ¥ such that Fc E and xeF. Then F &
e ¥0<4 and, by definition, X is tight with respect to ¥ ¢ 4.

The following proposition is obviously true.

Proposition 3.2. If X is Fréchet-tight with respect to both
families ¥ and ¢ then it is Fréchet-tight with respect to 30 %
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and 4 6% .

Similarly to Lemma 3.1 one can prove

Lemma 3.1, Let r be a relation between points and subsets of
X and let ¥ and 4 be two families of subsets of X such that X is
Fréchet-tight relative to ¥ and r and X is tight with respect to
‘¢ . Then X is tight with respect to F¢0 ¢ and r.

The following result should be considered as well known; at

least it has been proved in many particular cases (see [6],[7] or

t197.

Lemma 3.3. Let r be a relation between points and subsets of .
X, and let P be a family of subsets of X, such that X is tight
~
with respect to ® and r; put 7 = sup {|P|:P ¢ P} . Define A% =

= Cl; r(A) for oo £ ©' by transfinite induction:

o

= A

“L VAR B <at- U{clg J(A): B <w}, if « is a limit ordinal;
k]
at+l _ oC+1
= cly,r(A)

»>> > B>

- - Ak

= Cl@,r(C1;,r(A)) = C¥?,P(A ).
Awdy A+

Then CIm,r(A ) = ATT,

Proof. Assume the contrary and put A* = A** . Then there e-
xist B ¢ P and x e A*\A¥ such that xeB, Bc A*¥ and x r B.
By the construction A* = UiA% < v*} and A’ ¢ %" if oo'< x’<
< ot (we identified 2* with the initial ordinal number having
the same cardinality),

Since cf( ") = «* and |B| £ + , one can find oc* < 2" such
that Be %™ | Then xe¢ Cl@,r(ﬁ“*) = ﬁdﬁlc ATt - ax , which is in

contradiction with the hypothesis x & AXN A% .

Corollary. If X is tight with respect to P and r, then for
any subset A of X,



Remarks. By considering particular families % and relations
r between points and subsets of X, special interesting cases can

be obtained, as shown by the following examples.

(1) If X is a sequential space, let * be the family of coun-
table subsets of X and x r B be the relation: "There is a sequence
(x,) converging to x such that Bc{xn} ". Since s :, sup {|B|:B ¢
€ Pt , we obtain that for any subset A of X, A = Y 1, where A de-
n;Jtes the (non-idempotent) sequential closure (see [7]1,[19]).

(2) Let X be a k-space, # be the family of subsets of X of
cardinality not greater than t(X) and r be the following relation:
"B is a subset of a compact set K in X such that xcmk". Th/en,
if 2\\ ={xe X:xe-l(.F\_/-\K for some compact K in Xt, we have A= ’li’ﬁ,
if v = t(X) (see [61).

(3) Let X be a pseudo-radial space, P be as in example (2)
and r be the relation: "There is a A-sequence converging to x,
such that B €  and Bc{x‘: o« < A}". If ﬁ denotes the chain-net

-— et
closure, then A = A% . Here again v = t(X).

Note that in sequential spaces the tightness is countable so
that, in the three examples that we have examined , it is the first
ordinal of cardinality greater than the tightness which gives an
upper bound for the number of times the pseudo-closure has to be

iterated in order to get’the topological closure.

Proposition 3.4. Let X, ® , r and v be as in the preceding
Lemma 3.3. Assume, in addition, that for some cardinal w Z 2"
the following condition is satisfied:

if AcX and |A| £ & , then Icl?'r(A)l € &

Let X be tight with respect to ® and r. Then |A| & &« implies
IRl & ¢ -
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Proof. By transfinite induction it follows that if |A] & «
+ ot
then IK“I £ m for every o £ Z". Hence Iﬁ"‘ | & @« : Since A =

= A, we have |A] & @~

We recall here some definitions that are needed in the fol-
lowing theorem and remarks. The bitightness bt(X) of a topological
space X is the least cardinal number = such that if A is non-clo-
sed in X there are a point xe ANA and a family £ of subsets of A
tor which |P| & « , for any P in ® , |R| & © and {xt = N{P:Pe
e Pt . The bitightness can be defined for any Hausdorff space;
the definition was given by Arhangel ‘skii in Soviet Math. Dokl.
11(1970), 597-601. The closure character of the space X, denoted
by ke(X), is the least cardinal number « such that a set C is
closed in X if and only if CnK is closed for any closed set K of

X, with |K| & © (see [81).

Theorem 3.5. For any topological space X we have |[X| £

£ @O TX, (ke (x)) XD,

Proof. Put @ = t(X) and A= kc(X). Let F=4B c X:|B| £ v ?
and € ={BcX:B =B and |B| £ A}.

Defingé P=F ¢t ={Fe F :there is E e ¢ with Fc E}.
Clearly P ={BcX:|B] £ v and |B| € A7 . Let A be any subset of
X and put = |A|®. A% . Then M= ez vt Let Mc X be such that
IM| &£ @ . Then cly(M) =U4{B:Be P and Bec M?. Since [B| £ « fo'r
any Be ® , we have |{Be P :Bc M}| & |M|¥& «¥= @« . Besides
IB] = @ so that Icl@(M)l 4 w-@ ¥ @ . Then by Proposition 3.4
it follows that |M| £ w since |M| £ « implies |01:,,(M)| £ « and
X is obviously tight with respect to the family ®,
In particular, since |A| &  , we also have |A| £ « : We have

then shown that for any subset A of X the following holds:
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A2 a1, ket
Taking, in particular, for A a dense subset of X, we get the the-
sis.

The case of the real line with the usual topology shows that
the equality can hold in Theorem 3.5. In fact, for the real line
density, tightness and closure character are countable.

We observe that for 12 spaces the above upper bound for the
cardinality of A is a little sharper than the one given by using

the bitightness: |A| £ [A|PYX) since in this case ke(x)& 200X,

Theorem 3.6. For any topological space X the following con-
ditions are equivalent:

(a) ke(X)z Zt(x)

(b) |Alz |A|t(x), for any subset A containing more than one point.

Proof. ((a) implies (b).) As t(A)£t(X) and kc(A) £kc(X) by
Theorem 3.5 we have

(Bl 2 1A 00 ko0t 00 & | EOO, (800,00 400

if |A]>1.

((b) implies (a).) Put & =4{B:|B|£t(X)?. From the defini-
tion of tightness if A is non-closed in X there is a closed set F
in ® such that AnF is not closed in X. By condition (b) [F| &
é(t(X))t(x) = Zt(x) for évery F in & , and all elements of P
are closed in X. Now the topology of X is generated, in the usual

sense, by # . So kc(X)éZt(x) must hold in X.

4. Some open problems on pseudo-radial spaces. The follow-

ing is a list of some of the more interesting problems and questi-
ons which were raised during this investigation and are still un-

solved, as far as we know.
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(l)X) Can "real" (i.e. without additional assumptions on ZFC
set theory) examples be obtained of a T2 (or T3, T4 or T, compact)
pseudo-radial space with countable tightness which is not sequen-

tial?

(2)X) Find a T1 pseudo-radial space such that the quasi-cha-

racter is strictly less than the tightness.

(3) Find necessary or sufficient (or both) conditions for a

space Y to be a subspace of a pseudo-radial space X.

(4) In particular: is Nu{pt a pseudo-radial space for any

pe ANNN?
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