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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26,3 (1885) 

1 -PERFECT CODES OVER SELF-COMPLEMENTARY GRAPHS 
J. KRATOCHVIL 

Abstract: We discuss the existence of 1-perfect codes in 
second powers of graphs. We show a simple lower bound on the 
cardinality of such a code and we prove that exactly self-com­
plementary graphs satisfy the equality in this bound. 

Key words: Graph, perfect code. 

Classification: 05C99, 94B25 

1. Introduction. All graphs considered are undirected, 

without loops and multiple edges. We use a notation G « (V,E) 

for a graph G with a vertex set V and edge set E. 

By a product of graphs we mean the cartesian product,!.e. 

the graph on the cartesian product of vertex sets, whose dis­

tance function 3 is the sum of distances in coordinates. 

The product of n copies of the same graph G is denoted Gn and 

called an n-th power of G. 

Given a graph G * (V,E), any subset C of V is called a 

code in G. Such a code is called t-perfect iff the closed 

neighbourhoods of radii t with centres in code-vertices form 

a partition of V. In particular, C is a 1-perfect code iff 

i) d(u,v)>3 for any pair of distinct code-vertices u, v 

and ii) each vertex not in C is adjacent to at least one co­

de-vertex. 
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A graph G is called self-complementary iff it is isomorph­

ic with its complement £f, i.e. when a permutation ar* of V ex­

ists, such that for any pair of distinct vertices u, v £u tv$ 

is an edge iff 4 # (u)t af (v)$ is not. It is well known that 

there exists a self-complementary graph with n vertices iff n * 

- 4k or 4k+l. 

A maximal possible distance of two vertices in G is denot­

ed d(G) and called a diameter of G. 

Biggs showed in t3J a strong necessary condition for the 

existence of a perfect code in a distance-transitive graph. This 

was used by Smith t6J to prove the nonexistence of certain per­

fect codes. NesetHl suggested another generalization of the 

classical notion of perfect codes - perfect codes over graphs, 

i.e. in powers of graphs which correspond to codes over struc­

tured alphabets* In this sense the Hamming- and Lee-error cor­

recting codes are codes in powers of complete graphs and cycles, 

respectively. For known results on the existence of perfect Ham­

ming- and Lee-error correcting codes see tl3,t23§153 $C73• Though 

in the case of general graphs one can hardly use the algebraic 

background of powers of graphs as Biggs did, the structure of 

the product of graphs is sometimes strong enough to forbid the 

existence of certain perfect codes. For example it is shown in 

C4] that there are no nontrivial 1-perfect codes in powers of 

complete bipartite graphs with at least three vertices. 

In the following we shall discuss the special case of the 

existence of 1-perfect codes in second powers of graphs. 

2» Known 1-perfect codes. The following two results are 

easy to obtain: 
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Proposition 1. A 1-perfect code in the second power of a 

path exists iff the length of this path is three. Such a code 

has four code-vertices. 

Proposi t ion 2. A 1-perfect code in the second power of a 

cycle with n v e r t i c e s e x i s t s i f f n i s d iv i s i b l e by 5. Such a 
2 code has n /5 v e r t i c e s . 

Proposi t ion 2 shows an i n f i n i t e family of graphs whose se­

cond powers contain 1-perfect codes. Another i n f i n i t e family of 

such graphs i s introduced in £41: 

Proposi t ion 3* If G i s a self-complementary graph with n 
2 

v e r t i c e s , then G contains a 1-perfect code of s ize n. 

Proof. Let tf be the self-complementary permutation of 

the ver tex se t of G » (V fE). Then C * {(u, jr (u)) !u<£ V? i s a 
p 

1-perfect code of s ize n in the graph G . O 

The self-complementary graphs are i n t e r e s t i n g because the 

c a r d i n a l i t i e s of 1-perfect codes in t h e i r second powers reach 

the lower bound given by the following 

Proposit ion 4» Let C be a 1-perfect code in the second po­

wer of a graph G with n v e r t i c e s . Then card C>:n. 

Proof* ^Suppose a ver tex u e V e x i s t s , such tha t for a l l 

z c V (u fz) 4- C# But any ver tex (u fz) of G must be adjacent to 

some code-vertex. So for each z€V there i s v z e V such that 

(v f z )6 Cf and card C> card V « n. 

In the opposite case for any u e V a ver tex vU*V e x i s t s 

such tha t ( u t v u ) € C f and once again card C>n . O 

Viewing the previous i t i s qui te na tura l to ask: Does the ­

re ex i s t a non-self-complementary graph G whose second power a l ­

so contains a 1-perfect code of the same s ize as the ver tex se t 
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of G ? The negative answer to this question is proved in the 

following paragraph. 

3. Minimal 1-perfect codes 

p 
Definition. A code C in G i s cal led permutational i f f 

for every vertex v of G exactly one vertex u and one vertex w 

exist such that (v,u)c C and (w,v) e C , respectively. 

Remark. In the usual chess-board-like drawing of cartes i­

an products of graphs a permutational code i s a code which 

p icks exactly one vertex from each row and column. In the figure 

( l e f t ) , there i s shown a 1-perfect permutational code in the se­

cond power of the path of length three, while in the right the­

re i s a code which i s permutational, but not 1-perfect. 

Ф-

<*>-

Ф-

Ф 

Ф-

Ф-
Ф 

Lemma. If a permutational 1-perfect code e x i s t s in G f 

then G i s a self-complementary graph. 

Proof. As the code should be permutational, a permutation 

*T of ver t ices of G e x i s t s , such that C » { ( u , w (u)) | ue V?. 

Take a pair of d ist inct vert ices u, v of G. As C i s 1-perfect 

we have 

3 £ -6 ( (u for(u)) , (v f3r (v)) ) » a (u,v ) + d ( j r ( u ) t j r ( v ) ) f 

which means 4u,vjc E implies i # (u) , .7T(v)} ^ E. On the other 

hand ( u , # ( v ) ) i s not in C and so i t must be adjacent to some 

code-vertex (z,sr ( z ) ) . But then either u • z and "C 3T (v) f ar (u) |c 

6 E, or f? (v) = tn* ( z ) , i . e . v » z, and {u fv?€ E. This means 
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that fu fv}4- B implies [jf (u) f ar (v)J € B. Thus # i s a se l f -

complementary permutation for <£. D 

Theorem 1. If a 1-perfect code e x i s t s in G , where d(G)» 

m 2, then G i s a self-complementary graph. 

Proof. Suppose a 1-perfect code ex i s t s in G . As d(G) « 2 f 

o 

no row or column of the chess-hoard-like drawing of G may con­

tain more than one code-vertex, otherwise we would have two co­

de-vertices at the distance at most two. But Proposition 4 g i ­

ves card C>card V, and so each row and column contains exaot-

ly one code-vertex. So C i s a permutational 1-perfect code and 

G i s self-complementary according to Lemma. O 

Remark. Notice that in the case of graphs of diameter 2 we 

did not need the assumption card C » card V. 

Now we are prepared to prove the main resul t . 

Theorem 2. I f a 1-perfect code of s ize card V ex i s t s in 
o 

the graph G f then G i s a self-complementary graph. 
2 Proof. Let C be a 1-perfect code of s i ze card V in G . 

1) Suppose there i s a vertex v € V such that for every 
P 

u€V (v fu) i s not in C. Every vertex (v fu) of G must be ad­
jacent to some code-vertex, and so for every u£V at l eas t one 

vertex v u e x i s t s , such that (vu ,u) € C. But as card C » card Vf 

i t follows that each such v u i s unique. Denote A » •£ v (u € V£ f 

obviously A i s non-empty, but vQ 4» A. 

Now for any v ^ A and u e V we have (v fu) ^ C (otherwise 

v » v
u

e A >) a n d a code-vertex ( z f t ) e x i s t s , such that &((v ,u) , 

( z , t ) ) » 1. As ( v , t ) 4- C, we have z-4»vf and so u • t f z • v 

and tv fvu^ * E. While u runs through Vf v u runs throughout Af 

and so for any v 4 A and we A we have {vfw\ € E. As A-f0 and 
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A4-V, i t follows that d(G) • 2, which case was already treated 

in Theorem 1. 

The situation is analogous if there i s a vertex vQ such that 

for any ueV (u,v0) 4 C. 

2) In the opposite case each row and column of the cheas-
o 

board-like drawing of G contains at least one code-vertex. But 

since card C « card V, i t follows that each row and column con­

tains exactly one code-vertex, and C i s a permutational code. 

Then G i s a self-complementary graph according to Lemma. O 

Remark. Notice that the path of length 3 mentioned in Pro­

position 1 i s a self-complementary graph, too. 

*• Sinai remark. We presented a simple lower hound on the 

cardinality of a 1-perfect code in a second power of a graph 

with n vertices and we completely characterised the infinite 

class of 1-perfect codes which meet the equality In this hound. 

The similar pro hi em for the upper hound remains open. The 
o 

simplest upper bound is card C .6n /3 (as each neighbourhood of 
2 

radius 1 in Q contains at least 3 vertices) , but we only know 

an infinite class of 1-perfect codes satisfying card C • n /5* 

It Is still possible that finer methods will enable to prove 
o 

the sharpest possible bound card C<&n /5» a^5. 
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