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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26.2 (1965) 

O N THE CENTRAL LIMIT PROBLÉM FOR PROCESSES 
OF ZERO ENTROPY 

Dalibor VOLNÝ 

Abstract: In this paper we show that a strictly stationa­
ry sequence of random variables with zero entropy can belong to 
the domain of partial attraction of a uniform distribution. The 
dynamical system which i s used in the construction Is a rotation. 

Key words and phraseat Central limit problem, strictly 
stationary process of zero entropy, dynamical system. 

Classification* Primary: 60K>5» 60610 
Secondary: 28D20 

Let ( l i , A,T,<u/) be a dynamical system where (SL9A9(uu) i s 

a probability space ( A i s a 6~-algebra of subsets of ft and ^ 

i s a probability measure) and T i s a one-to-one bimeasurable 

and measure preserving transformation of XL onto SX • 
r% .1 

for fell (ft), the sequence (f*f ;1 * Z ) is strictly 

stationary* It is proved in til that there exists an invariant 

©"-algebra Wl C A (i.e. OH c IT1 Hi ) such that f is measurab­

le with respect to the € -algebra G.KJ T^Tlt and the functi­

on f..̂  m B(f \ r\~ f 1 ^ ) is measurable with respect to the *in-
~ * * 4 1 4 

sker flf-algebra. For t± - B(f If"1"1 Wl) - B ( f f l t ) f u 2 , 

i t holds f m t ^ + .£ .» t4 mod M, . In accordance with Hi we 

say that f.^ i s the absolutely undecomposable and £&+ *± i B 

the difference decomposable part of f• According to t i l » the 

decomposition of f into a sum of an absolutely undecompo sable 
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and a difference decomposable part always exists and Is unique 

with respect to the equality mod ^u (note that for each fjt ±e 

€ 2 , the functions i** T % j 6 Z t form a martingale dif­

ference sequence). 

Many interesting results have appeared when investigating 

the central limit problem for strictly stationary sequences of 

random variables (a review of this research can be found e.g. 

in the fifth chapter of f2]). According to H 3 , the achieved 

results concern the case of functions with degenerate differen­

ce decomposable parts (in the sense that their standardized sums 

converge weakly to zero). The aim of this paper is to give exam­

ples of functions f which are measurable with respect to the 

Pinsker tf-algebra (if they are from L ((ou) they are absolute-
1 nv i —1 ly undecomposable) for which the sequences AJU (-—: .2, f « T J)~ 

have nondegenerate limit points. 

Let J2 - <-1f1), & be a & -algebra of Borel sets on £l and 

(U « ̂ ra be a probability measure on (!-,&) where m is the Lebes-

gue measure. 

We define a function y 0#n "the interval <-1,3) such that 

y(co) • c*> for <i>€ <-1,1) and if (a)) - w - 2 for OJ 6 <113)« 

If 0*a*2 we define -?A(<-*>) - Y ^ + * ) • Evidently, T& is a one-

to-one bimeasurable and measure preserving transformation of JQL 

onto itself. According to t3l» the dynamical system (JL tfc ,T ,xi,) 

is of zero entropy and it is ergodic for a irrational. 

For n m 1,2,... and 4> 6 JQL we define rn(a>) =* a> - 1&J&1 

(where [n«»>.l is the integer part of the number no) )• Evident­

ly, for <*> £ SL it is Oi4rn(o)<^ and there is a unique number 

i €{-n,.«* ,n-1j such that CO » *- + rn(«*>). One can easily see 

that whenever a - ~, k€$1....t2n-l}, we have rn(-:*ca) « -rn(<«>). 
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are positive integers, k<2n. Let the greatest common divisor of 

k and 2n be equal to 1. Then for co e .XI it holds , A Ti <*> m 

« m(2n.rn(6>) - 1). 

Proof. For o> * SL 9 T CJ,...,T~V> differ mutually and 

O m T ^ . Therefore, ^2j T^o> » /^J ((-1 + | + rn(o>)) * 

+ (1 .. i±l + rn(o>)) » 2nTn(o>) - 1. Prom d>- T*
n*> we get th«t 

.*2. T<! O> « m • J&A T«| <j which finishes the proof. 

Theorem 1. There exists a real number a, 0 < a < 2 , and an 

increasing sequence (n.,; j « 1,2,...) of positive integers such 

that for j — > o o the distributions of — .2 M 1A oT£ (where I* w n . . ^ m 1 a a * a 

is the identity mapping of XL onto -ft ) converge weakly to the u-

niform distribution on (-1,1). 

Proof. Let k-j and n-j be any two positive integers ouch that 

k-j.£ n.j and the greatest common divisor of k-j and 2.a-j is eoual to 

1. We define a1 • —, n^ • 2k1«n-J' and k 2 • 2k-j*n.| + 1. Thus, it 
k- 1 k9

 1 

is zr + ZT - « • n1 "2 "2 

We can easily convince ourselves that the greatest common 

divisor of k2 and 2ng is equal to 1. 

In the same way as we have derived k2 and a-, from k-j and n.j, we 

derive also k ^ and n.t+-| from k^f n.* and set â +-j • • , J • 

• 2,3,... • In this way we obtain the-number*a. - ̂  • 
k.. i 1 3 

• zr" + .2-L r-"» 3 * 1 .2 , . . . , where the greatest common divisor n.j .-I,* z. *M 

of kj and 2n.« i s equal to 1. 
k-j co 1 

The sum a • ~~ + . £ — i s f i n i t e and a4 • »•-'••> a . By t h e Lemma, 
»1 -0*2. ni Jt^-*» 

for any positive integer j t the sum — IS IQ« T* has the 
J 3 
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uniform distribution on (-1.1). Let L., « io) : •-—y < r (a>) < 
;J a2 n4 

1 1 P 

< J i-.| f j « 1,2,... . Evidently, xtL. « 1 - ~~. lor IT. » 
n,, aq J n j J *J "3 

1 ^ 1 • a - a4 we have a4 • . 2 . — -S T . Assuming k4>2 we get 

that for w e L and 1*6 i.*2n? i t islT* o> - T* O> I & —2 *• . 

2*4 2,*£ J J 

Thus. I ^ A T* a.) - . S 4 T* co I .4 4 - . Therefore, 

1 *"*V ., 1 **V 4 1 
<aAl£~ .S, I ^ T ; - i- .-S, I/, • T!; I > ?rrr-5 i—* <>• 
v nj *«i d &j n.| *« 4 d a» nj *-* £-*«P 

1 l * * » .i 
Hence, we obtain that the measures M*i— * 22 I*• T £ ) ~ con-

verge weakly to the uniform distribution on (-1,1). 

Let us suppose that the number a is not irrational. Then 

for some positive integers n, k, k<2n, we have a » g. Aceord-

5 — * > * * • 

ing to the Lemma, the sum ~~- , S . I* o Tr has the uniform 
^ ' m*n -v«i a a 

distribution on (-m,m) for any positive integer m. This contra-
.. 7.1%f -£ 4 1 

diets the fact that the measures ^(jp .22# I d©T*)~ converge 

weakly to the uniform distribution on (-1,1). This completes the 

proof. 

Let us assign JB.j the fS -algebra of Borel sets on the real 

line E * 

Theorem 2. Let v be a probability measure on (R,Cft<|) 

which is absolutely continuous with respect to the Lebesgue mea­

sure m with density function g. 

If the function g is symmetric and nonincreasing on <0,oe>) then 

there exists a dynamical system (Sl9Jl9T9f*>) of aero entropy, 

an increasing sequence G-u% j • 1,2,...) of positive integers 

and a measurable function f on XI such that the distributions 
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** n -V?1 * • * oonrerge weekly to V . 

Proof. Let (SL\&*9 <u,') be the probability space used in the 

previous sections ( i . e . XL* • < - 1 f l ) f &% i s the 6"-algebra of 

Borel sets on H* and (u/ • ^ a ) . In accordance with the assump­

tions of the theorem g(0) « sup g. For y c<O fg(0)> l e t us de­

fine h(y) • sup i x:g(x) • y h According to the fubini theorem 

we have J***2hly)*j - X « e ( t ) d t " 1 ( t h U B «< 0 )^ 0 ) # L e t 

(Xtf-Af(U) be the product of probability spaces (il*f&'f (U*4) and 

(SL* f &
M , ft/*) where XL11 - <0 fg(0)> f £ * i s the 6*-algebra of Bo­

r e l sets on H" and (A* A • J^ 2h(y)dy for A 6 A" • 

Let a € (0f2) be from Theorem 1. For (xfy) « SL we define 

T(xfy) • (y (x+a)fy)% then (SI 9JL9T9(*) i s a dynamical system. 

Let us define probability measures p* :A H-* (a ' i x: (x fy)e A$f 

y 6 It*1 on the measure space ( A f & ) . I t holds that (CfrA • 

• /^tyA d ^a," (y) f A & 43 f and for each y e i-t" the dynamical 

system (XI f Jt fT f(tty) i s isomorphic to the system used in Theorem 

1 (the measures (W_, y € Jl" f are the ergo die parts of (A, 9 

oompare L43). 

On the set i l l e t us define a function f: (xfy) i—*- x-h(y). for 

a real number z and for y € i l r t l e t us set I (z) * ^y"Cx: 

: f ( x f y ) < z L Acoording to the Pubini theorem, <u,C«J*il:f (*>)< 

< *\ - /*~a.Cy> ^Odjr - j * « \ £^ < _ h ( y ) , h ( x ) > <*>**><* -
r* 1 

- / g ( t )d t . Hence we obtain that » - <u f • 

Let us assign s4 « ^ - , 2 . f o l \ j - 1 ,2 , . . . . By Theo-

1 ^ - t * 4 1 

rem 1f the measures /u. (£- .S. f © r ) " converge weakly to 

the uniform distribution on (-h(y)fh(y))f i.e. to (U-yf
-1 

y 
For y * H " and j € *t1»2f...î let 9 ^ ) De tne characte-
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ristic function of the measure A*, BZ and let <p be the cha­

racteristic function of the measure (A* f"" • It holds that 

cpî  «; > qp̂ , (uniformly on each compact subset of R )• Let 

us denote <f the characteristic function of AM B* and J? 

the characteristic function of (±t~ . Evidently, it is ^p^*
1
*-* 

- f 9 ̂ d ^ (y) and 9 « / y
y
 d

 (
a

,f
 (y). It holds that 

<p v* ^ <p
 #
 Hence we obtain that the measures (̂ sT con­

verge weakly to >> which finishes the proof of the theorem. 

Remark. If b « /g(VTxl)dx < oo then / f 2
d ^ ** / 2h(y) • 

• h
2
(y)dy) - b < oo and f eL2

((to). 
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