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ON THE CENTRAL LIMIT PROBLEM FOR PROCESSES
OF ZERO ENTROPY
Dalibor VOLNY

Abstract: In this paper we show that a strictly stationa-
Ty sequence of random variables with zero entropy can belong to
the domain of partial attraction of a uniform distribution. The
dynamical system which is used in the construction is a rotation.
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Let (., A,T,w) be a dynamical system where (2 ,R,w) is
a probability space ( A is a O-algebra of subsets of . and
is a probability measure) and T is a one-to-one bimeasurable
and measure preserving tranasformation of £ onto .

Por fth((u.), the sequence (fe 11;1 e Z ) is strictly
stationary. It is proved in [1] that there exists an invariant
&-algebra M ¢ A (i.e. Mc T M) such that £ is measurab-
le with respect to the & -algebra G&Ler .M and the functi-
on f_, = B(£1/), 7 M) is measurable with respect to the Pin-
sker @-algebra. Por f, = E(zlr™i'm) - se rim), 1€ 2,
it holds £ = f__ + .=, f; mod w . In accordance with 1) we
say that £ . 1s the absolutely undecomposable and &%l f; is
the difference decomposable part of f. According to [11, the

decomposition of £ into a sum of en absolutely undecomposable
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and a difference decomposable part always exists and is unique
with respect to the equality mod w (note that for each fi' ie
e Z , the functions e TJ, j€ Z , form a martingale dif-
ference sequence).

Many interesting results have appeared when investigating
the central limit problem for strictly stationary sequences of
. random variables (a review of this research can be found e.g.
in the fifth chapter of [2]). According to [1], the achieved
results concern the case of functions with degenerate differen-
ce decomposable parts (in the sense that their standardized sums
converge weakly to zero). The aim of this paper is to give exam-
ples of functions f which are measurable with respect to the
Pinsker 6-algebra (if they are from I.a((w) they are absolute-
ly undecomposable) for which the sequences (w(—"}_—a '}%‘ fo Td)-1
have nondegenerate limit points.

Let 2 =4(-1,1), 5 be a 6-algebra of Borel sets on SL and
o« = %m be a probaebility measure on (Q,%) where m is the Lebes-
gue measure.

We define a function y on the interval {-1,3) such that
y(w) =w for we{-1,1) and y(w) =w - 2 for w &<1,3).
If 04 a<?2 we define TB(Q) = y(w+ 8). Bvidently, T, is & one-
to-one bimeasurable and measure preserving transformation of L
onto itself. According to [3], the dynamical system (Q.,B sTgse)
is of zero entropy and it is ergodic for a irrational.

Forn = 1,2,... and @ € £ we define r(w) = w- ul;:"—l
(where [nwl is the integer part of the number nw ). Evident-
ly, for w € Q 1t is 04 I‘n((d)<;{ and there is a unique number
jef-n,...,n-1} such that @ = % + r (w). One can easily see

that whenever a = %, k&f1,...,2n-1}, we have rn(T:w) = rn(w).
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Lemma. Let m be a positive integer and a = % where k, n
are positive integers, k< ?2n. Let the greatest common divisor of
k and 2n be equal to 1. Then for w € dL it holds i?'.‘:u!iw -
= m(2n.rn(a>) -1).

Proof, For w e , T o-)....,'.l‘ w differ nutually and
2y
@ = 'rinoo . Therefore, ‘5’§1 Tgw = Zo ((-1 + .14. r (w)) +

+ (1 - J;_‘ + r(w)) = 2n-ry(w) - 1, Prom 0= Tinw we get that

2omemy 1m

5"21 Tgw =m -,3'?4 Tgw which finishes the proof.

Theorem 1, There exists a real number a, O<a<2, and an
increasing sequence (nj, J=1,2,...) of posigive integers such
that for j —>co the distributions of i- ; Y
is the identity mapping of £ onto L) converge weakly to the u-
niform distribution on (-1,1).

Id°Ta (where Id

Proof. Let kq and n; be any iwo positive integers such that
k% n, and the greatest common divisor of k, and 2n, is equal to

k
1. We define &y = —, n, = 2kqe n1 and k, = 2kq° n1 + 1, Thus, it
is l—(l + -1—- = k—2 .
m TR T H
We can easily convince ourselves that the greatest common
divisor of k, and 2n, is equel %o 1.
In the same way as we have derived ls:2 and n, from k1 ;nd ng, we

L1 R
derive also kj.y and ny,q from ky, ny and set ajﬂk- Ty’ =
= 2,3,0.+ » In this way we obtain the m.unl::e:ua.;l = E;l =

k 2 1
=14+ 5 —, J=1,2,..., where the greatest common divisor
n1 Az 2 nd

of k.‘! and 2nj is equal %o 1,

k 1
1 —
The sum & = ;1-1- + ng o is finite and :3 e a. By the Lemma,
1 o i
for any positive integer J, the sum = 1 {‘21 Ido Ta’d has the
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1
uniform distribution on (-1.1). Let Iy = {w : =< rnj(w) <

J
1 1 2
— - = 1 eee o = - R e
< ay ?3} s 3 02, Evidently, (“'LJ 1 o Por 'E'j =
4
=a-aywe have Ed '%-EM g
r ni kj.nj
that for we I, and 1éi£2n§ sl w-lwle 22—,
2 2, J ks ny
ln; 2n'g
Thus, l%f;‘,, Tijw -2, Ttw | & ﬁ;. Therefore,

« Assuming kj>2 we get

2 m2:

1 i1 2 i 1

(ua‘“n—J' 4?1 Id'Taj -'i\'; ;-24 IdoTa|> h;:ES} i‘_"’—: 0.
1§’;
P |

verge weakly to the uniform distribution on (-1,1).

Hence, we obtain that the measures (“'(Jﬁ- Ize Tg)'1 con-

Let us suppose that the number a is not irrational. Then

for some positive integers n, k, k <2n, we have a = 1—‘-. Accord-~

n
1 Zlnwa;ﬂ'bz i

ing to the Lemma, the sum ——- . I.0 T has the uniform
. 21 d a

distridbution on (-m,m) for any positive integer m. This contre-
2,"}-

dicts the fact that the measure (J- E? 1,0 ™)1 converge
8 sures wilp, ¢t “a°‘a (3
weakly to the uniform distribution on (-1,1). This completes the
proof.

Let us assgign 331 the & -algebra of Borel sets on the real

line R

Theorem 2, Let v be a probability measure on (R,®R,)
which is absolutely continuous with respect to the Lebesgue mea-
sure m with density function g.

If the function g is symmetric and nonincreasing on {0O,00) then
there exists a dynamical system (XL,A ,T,&) of zero emtropy,
an increasing sequence (nj:, j =1,2,...) of positive integers

and a measurable function f on £ such that the distributions
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of %j ;?1 tenl converge weekly to ¥ .

Proof. Let (N',B', ') be the probability space used in the
previous sections (i.e. 2'= { -1,1), B' is the &-algebra of
Borel sets on f)' and ‘w' = %m). In acocordance with the assump-
tions of the theorem g(0) = sup g. For y €£0,g(0)7 1let us de-
fine h(y) = sup { x:g(x) = y}.Acoording to the Fubini theorem
we have fo’wzh(y)dy - [;’g(t)dt = 1 (thus g(0)> 0). Let
(Q,A,u) be the prodquct of probebility spaces (0',B', ') and
(2", 5%, w") where Q" =¢0,g(0)>, B* is the 6-algebra of Bo-
rel sets on Q" and W"A = fA 2h(y)dy for A ¢ R". .
Let a ¢ (0,2) be from Theorem 1. For (x,y) & XL we define
?(x,y) = (y(x+a),y); then (2 ,A,T,4) is a dynamical system.
Let us define probability messures (wy:.& — &' {x:(x,y)6 A3,

y 6 0" on the measure space (f1,B), It holds that @A =

- f(“yA da"(y), AeB , and for each y € 22" the dynamical
system (Q .JL,T,(u.y) is isomorphic to the system used in Theorem
1 (the measures oy ¥ € 1" , are the ergodic parts of & ,
compare L41).

On the set . let us define a function f:(x,y) +> x-h(y). Por
a real number z and for y & Q" let us set !y(z) = @-y{x:
:2(x,y)< z¥. According to the Pubini theorem, mfwel:f(w)<

)
<z} = ];9’ 2n(y) B, (2)dy = foﬁw’( ,[:Z,<_h(y),h(x)> (x)ax)dy =

z
= f g(t)at. Hence we obtain that » = © 1,
- 00 2

¥
Let us assign 8y = L =" tonl, j-1,2,... . By Theo-

na Y= 1
2@1‘;
rem 1, the measures y(%-d- 4.‘E’: , Lo Ti)'1 converge weakly to

the uniform distribution on (-h(y),h(y)), i.e. to (wyf"1.

Por y ¢ 2" and § € £1,2,...} let g {3 be tne characte-
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ristic function of the measure .. 5'1 and let @  be the cha~

racteristic function of the measure (a,y 1. It holds that

(3N __,
7y j5= Ty

us denote (4 () the characteristic function of (u. 8

(uniformly on each compact subset of R ). Let

=1 and [4

the characteristic function of (uf +» Evidently, it is 9’(3)
3

= [ 9au ) mag=f @, au” (7). It nolds that

‘j’——q ® . Hence we obtain that the measures (-Ls -1 con=-

verge weakly to » which finishes the proof of the theorem.

Remark. If b = [ g(VTxl)dx < © then [f2aw £ [ 2n(y) -
.ha(y)dy) = b <00 and reLz((h).
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