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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26,1 (1985)

ON THE EXISTENCE OF WEAK S@QLUTIONS OF A NON LINEAR
MIXED PROBLEM FOR NON HOMOGENEOUS FLUIDS IN A TIME
DEPENDENT DOMAIN
Rodolfo SALVI

Abstract: We consider the flow of a viscous incompressib-
le non-homogeneous fluid in a tube with time dependent boundary
where we give physicelly expressive conditions. We prove the
existence of a weak solution of the problem via the Rothe met-
hod and an elliptic approximation. '

Key words: Non-homogeneous fluid, weak solution, time de-
pendent domain, Rothe method, elliptic epproximation, compact
set, boundary strip.

Clagsification: 35Q10

1. Introduction. In this paper we study & non linear mix-
ed problem for non homogeneous fluids in a non cylindrical do-
main in R3>< (0,T). We deal with the flow of a fluid in a tube
with time dependent initial and final sections where we give
physically expressive boundary conditions.

In [9] we considered this problem for the Navier-Stokes
equations.

We shall prove the existence of a weak solution vie the
Rothe method and an elliptic approximation. It has to be poin-
ted out that many authors considered problems of this type (see
011,021, (41,151,1(81) but our approach is new and works well %o .

This paper was presented in written form on the Intermational
Spring School on Evolution Equetions, Dob¥ichovice by Prague,
May 21-25, 1984,
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study more general non linear mixed problems.

The essential point of our proof is the estimate of a time
difference quotient. The paper is composed of two sections. In
§ 2 we describe the problem introduce particular functional spa-
ces and give the definition of weak solutions.

2, Statement of the problem and notations. Let (L(t) be an

open set of R> depending on t €(0,%), T is a finite positive num-
ber. As t increases over (0,T), fL(%) generates an (x,t)-domain
& end the boundary T'(t) of f2(t) generates an (x,t)-hypersur-
tace © . We assume that {* is a 03-hypersurtaco end T'(t) =
= M) UT (D) U T"3 (!"3 is independent of %) with mes. r'3=i=o.
Then we can represent f by X4 = y(x ,xz,t) in terms of C°-funo-
tions ¥ (in each path of & finite covering of f ).

The motion of an inhomogeneous incompressible fluid of vis-
cosity 1 subject to the externel force f = f(x,t) = {£,(x,t),
2,(x, %) .Ia(x,t)} is governed by the equations

;o-%-%— Au+ pu.Vu+ Vp = p?

2.1 [¢)
( ) —a%+u~Vga=0
YV .eus=0

where u = u(t) = u(x,t) = {u;(x,t),u(x,t) ,u3(x,t)} denotes the
velocity, @ = @ () = @(x,t) the density and p = p(x,t) the
pressure. In the first relation of (2.1) @eu.-Vu =X @ uiaulazi
and the second is the equation of continuity.

Denoting by v, the outside normel to "(t), we shall consi-
der the boundary and iwitial conditions defined by the relations
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Foll® v fou v poy - S8 a o on (M (0T, 0)
(2.2) u=0 on \"'3 » (0,T)
g)(x,o) = P u(x,0) = u, in 0.(0).

The first relation in (2.2) determines the value of the demsi-
ty of the energy flux of the fluid on l"1(t) V] F‘z(t). The ot-
her conditions are standard.

We shall give the weak formulation of the problem (2.1),
(2.2). Let us begin by giving some definitions and basic note-
tions. '

Let . be a bounded open set in R3 with boundary =
= MU F‘2 U P3. We will need the following function spaces.

Q) = {Q\cge(c‘”(ﬁ))B. g=0on M, V.¢= 0}
H(D) = {the completion of D(fL ) under the (LZ(.Q))3-norm§
V(L) = {the completion of D(f.) under the (111(.0.))3 -norm}

We let
(vl = X [o vy axy 1wl = (uu)y
((uyv))g = X f_Q Vug-Vvy dx \lull_g = ((u,u))g
(4, v)p = = j;_, ugv, dx; luly = nom in £ .

Let ﬁ be the (x,t)-domain (£L(t),t). For functions u defined

in § we define 3(u) by
T
fu) = _fo llulh%t) at

whenever the integral makes sense. Then we introduce

() = {glgec™f)3, g=0on My V.g = 0%
V(&) = {the completion of D(D ) under the nomm B ()}
By U(&) we mean the set of all u€ V(3 ) such that

szp l“‘n(t) over (0,T) is finite. We set the definition of

weak solutionsg,
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(u,’) will be a weak solution of the problem (2.1),(2.2)

if one has ,

1) ueu(d), @e o)
11) Yo e D(4) with @(T) =0

@3 [Tepu Gh_ o+ (euusTgle +

| +7 (pue g)r(t) + Bplul? vy, @)ngy + (0 ®Imee)?
+efig)yy) = (L@ (y) - (Pu2pm-Bgy} ot =
= (@ouo,cy(o))n(o)
iii)

(2.4) %g +ueV@P = 0 (in the distribution sense).

(2.3) is obtained from the first part of (2.1) multiplying
it by a test function Q@ integrating over .ﬁ. and bearing in
mind the equation of continuity and the three conditions of
(2.2).

The following theorem holds:

Theorem 1., We assume
u € H(D.(0))5 £617(0,1H(Q(1))3 D<Ry & @ 4R,

(Ry, R, are positive constants)
Then there exists a weak solution (u,so) of the problem (2.1),

(2.2) such that 0<Ry £ P.é R,.

3. Proof of the theorem 1. Let us begin by considering

the following approximating problem.
3.1 Auxiliary problem, We look for um, @m such that
N
Vo e(H ()30 E()
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,
can [ (B, %—?}mt) (@) 4y +

+ (?mum.Vum.?)ﬂ(t) + (um . VPm,um? )ﬂ(t) -

3
("™ 3 ooy - 7 (Bp ™" )y -

m‘2

1 ) 1
- E(S"m“m"? > )r(t) =z % 24 079y -

= (L @dpeyy = (@™ 59y} 4t = (o5 ug, 90y =

- (q)m('f) um(T)o?(T))ﬂ(E)l
(3.12) %gf-f-um -Vgem--;;AQm in O

(3.13) we (B(A))3nE(Q); o"e 1%0)n B (A)n12(0,1)
B2 (0 ()
with
1 2 o™
PoeC (03 OF — @, 1a 120D 55 = 0 on (M'(®),1)

0<R, £pM<Ry; [V@glzn_ (0yems ul —>ug in 12(8).

Assuming u™ to be known and applying the Rothe method one has
a solution gom of (3.12) in 8 (as to details see [31). The
following uniform estimates for gom hold.

By the maximum principle we have
(3.14) 0<R1ésam_4_R2

Then multiplying (3.12) by Sbm and integrating over ) (t) one

obtains

1

3L, Bem? ax + Llom )2

1 2
ey = 7 S V™2
or

1\ m|2 1 ft“ mp2 e - liom|?
1@ a(t) *m Jp ' )t = TP ¥
AR +%¥.(@m)2)r(t) at
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hence T

1 mi2
Now multiplying (3.12) by Agom and integrating over Q.(t), and
after the integration by parts one gets

ave™ 1 2

(%= . Vo ™hcw + 3180 2 = - (Vo™ Tum,¥p™) )
Using the estimates (3.14),(3.15) and the interpolation inequa-
lity (see [7]1)

my 2 £2clhe®l . leml
VO™ Laacyy = °1 00 e "€ Y ag gy,
one gets

] 2 1 (7 2 1

- J;T(V§’m- ngm %%)P(t) at + ¢

From (3.15) one has

%‘5 J;rl A@m\g_(t)dt Lo \Vgog’\a +c
hence

T 2 2
(3.16) fo lAgo“‘lmt)thc m°.

Next we consider the existence of the solution of (3.11). We set
m . m Te1(ou®

ae™ g = ({5 (% A

+ Q" Vuligly gy + (- VO g 4 - FE"IE v yg) -
1 m, O m 3 1
- 2lenhe 3¥) | ) - @ B - Be™ e ¢
+ (™90 4y} at + (@ (MM ,g(M)g
1o

(Lgy = [ {6" 2295 (1) * (s@ppat + (o] 4Gig(0)g (o),

By the following well known theorem one obtains the existence
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of & solution in (H' (£))3 ot the equation
(3.17) a(gbm um,um.g) ={1,9?

(for convenience we denote different constants by the seme sym-
bol c)o

Theorem 2., If

1) there exists a constant ¢ >0 aich that

a(somum,um,um) Zec " I\ 2 ' B2

ii) the form w"— a(?mum,u ») is weskly continuous in
() 1.e
u® > u™ weekly in (H'(£))> implies

3.':1_.’mco a(@mum,u:;,qa) = a(samum,um.ga).

Then (3.17) has & solution in (H1 (fL))Bn H(R).

The condition 1ii) is obvious. The condition i) can be ea-
sily proved; in fact

T au®|
a(go“\xm,um,um) = J; '{E \rﬁ—\ + hu® “.(l(t)]} at +
+ 3 [Vommu™(m| 2y + & l\/?ﬁ,’um(o)lfz(o)?- o 1"y g

Then there exists a solution in (H1 (ﬁ))"’r\ H(ﬁ) of (3.17).
To passing to the limit in (3.11) we will need a priori
estimates of the approximations um.

3.2, Standard a priori estimates. We can replace in (3.11)

9 by um, it comes

1 2 u®

+ ((lomum-Vum.um)n(t) + (um-V@m.um,um)_Q_(t) -
- %'(?ml“m\a"’t'“m)[‘(t) - %(umsom,um g%’r(t) - (eo,um)p(t) -
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- %f-' (A?%mpum)n‘t) - (?lﬂ f’?).n(t)}dt = l \/;;%:‘%(o) -
- | VoRmumm|3q,

Bearing in mind (3.12), after some calculetions, one has
T m T
Jy 218 Beeer + Jo 102 e+ IVERmutm |2, +

+ l\fgﬂ(o) tum(o)li(o) <L c,
hence
1T au®| 2 T, mn?
- _fo‘g'r‘n(t)dt<o; Io [1E% “.Q.(t)dt‘c
(3.21) » A
™I py<es  u™0) 130y <o

By virtue of (3.14),(3.21) one gets

1im u® u :
I P V?{) in the weak topology

im o"

Ml..’_)w Ls——z'm @ in the weak ¥ topology

To passing to the 1imit in the non linear terms of (3.11), we
need the convergence of u.'? in a suitable strong topology for
example in ],2(_6_), To do this we will prove appropriate esti-

. mates,

3.3. Time difference quotients. We denote by T (x ,t) the
extension to R3 of u™ for every te (0,T); moreover, we put U =
= 0 for t<0, t>T, We let

up = § [, x,e0a8 (n>0)

We can replace in (3.11) @ by uﬁ and get

-m - T _
f:%(%‘éﬂo B () = B7(=h) )mt)dt - % J, ™06 3w -
- W(t=h))g(yydt + J’: {C®ufg by = @™"u™ « Vudg gy +

+ (@M e vy ueu) ey - Qw12 - vy R pegy =
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1 1
- (ot uipgey = FONR Ty - Behe™ ey (4 -
- @™ f,ul)gc)}at + @TUNT) ,ul(T)) gy = O

By virtue of (3.14),(3.21), Jensen inequality and the smoothness
of f one has

Tlaul 304y o oB(4
1 [ (%%_’ am(t) - u(t h”ﬂ.(t)dt\ P
- - 2
<1 j':l%%in-\n(t) l-—‘-%‘—)-“mt =u(t=h lﬂ(t) 2f l,&f‘ NI

\f:((u“‘.l‘; Lt_&ﬁm(x,a)ds))n‘(t)dt £

t
(3-31) ‘CJ‘:‘ u\lm “&).(t) “% L’hﬁm(x,s)ds ll (t)d: r'4

&c foT ™ “.ﬂ.(t)' \1[_5, (f: m(s) “2 ds é.dt —v:

t
\ fT (9mum’um . V% f;_hﬁm(x.s)ds)mt)dt\ &
1 toaomy 2 1/2
<c J. fium .Q.(t) L™ “I‘.(t). T—i ( ft-"llumlllgds) / dté%/—_ﬂ

Analogously one obtains

\f (™™D p(ryat €0/ VB | f) (6, 8pcyyat | & o/ VR
(3.32) U‘o FBe™ o et ée/ VEy | [ (972,60t 4

&c/Vh
lf:(?mlum\za ")t'“ﬁ)f‘(t) ‘01 m& lf: (y%mc),t,umo
ouh)"l(t)dt) 146/ \[;1..

Finelly we will estimate

- J @HUR(),8(8) - F(5-h))g 4 abe
First we integrate (3.12) from t - h to t and obtain
AoPas - [y, V(g™ as

(3.33) @(t) -p(t-n) =1 fu»
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obviously x €C(t) = fh\fl(s) with s & (t-h,t). Multiplying (3.33)

by W™ W"/2 and integrating, ome obtains

3 Iy (QP(8) - PCe-nla",u) g at =
(3.38) = 5= [T ((f7, B s u)g yyat +
+ 3 TS T (M as)u® u) gy at a0 VE

" Next setting AQ(t) = Q(t) \ Q(t~h); AD(t+h) = QLt+h) ~\ Q(t)
and bearing in mind the smoothness of i"\‘ one has

- %i .f:((gm(t)um(t).'ﬁm(t) - “m(t"h)_o_(t)dt -

- %J:lm)um(t)lgit)dt + %Ef:‘m)u‘“(t)\i(t)dt .
®h Ve (DT (-m1 3, at -

f:\ B() (u™(+) -'f;“‘(t_h)lg(t)dt e

I VETB™(8)12 4yt -

2
(3.35) W™ () qceem)at *

N
T

5

J‘; | \/go M t-h)@( t-h) \i a(pit*
-

I

1
a2
1
2h
1
2k
1
2R
25 [y, Wem(tan) w(4-n) )uB( t-h) 12 (4)nn(t-0)
1

Zh

[ (QP(8) = @P(e-n)u™(t-n) ,uP(t-1))g(4)dt +
éﬁj;((?‘“(t) = @"(+-0))TW"(t-h) ,8(t-h))g (t)nc (1) 2F =

ﬁ-f:,\u‘“(t)- wi(t-n)12 pat &

O T

B %Kf: N QIR
1 T-Av, m 2 e _
mJo W W™\ (pamaa(edt * Vo
S (T u®s)- 2 [
= f, 1w tf"(t-h)ln(t)dt -=

B J':, () - um(t-h)‘g_(t)dt.
From (3.32),(3.32),(3.35) we conclude

- 194 =



(3.36) Jo L) = we-m|2

(pydt€evn,

By the classicel characterization of . Riesz end A. Kolmogorov
of compact sets in I2(8) (see [6]) we can prove that the set
{u™} of u™ satisfying (3.21),(3.36) is relatively compact in
13(8).

Prom (3.21) and the relative compactness of fu™} in La(ﬁ) we

can choose & subsequence sgain denoted by u” such that

T T
g [y (™" Vg )y pyat = [y (puu-Tg)g(yat
Vg e D(l).
Now it remains to prove
T T
Um fotp™™e vy u@)nyydt = [ (gu e vy u-gipy)al

(3.37)

Pirst we will need the following compactness theorem (see [101).

Theorem 3. Let Boc B1 ch be three reflexive Banach spaces
and the injection of B, into By is compact. For given h>0 we
define the space -

2 1 T-b, .
Vai{glg(t)el(0, 3B))s s}sz -ﬁ Jo Ly (t+h) -

- g(t)U2 at < 00}«
¢ (t) B, <

Then the injection of W into Lz(o,T;B.,) is compact,
Now geometric notions are needed below.

Coi(t,d') means the interior boundary strip of S (t) with width
d' that is
wi(t,d') = {xlx e Q(t),dist.(x, P () < ¢ .

Then let {tj} be a countable dense subset of (0,T). For positi-
= I
ve integers j, k, £ we put G.‘i,k,z (tj’tk) x QU (tj) where
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Lty = QltP\ @y (£5,1/2) = ixlx 6 (ty), st (x, M(1) >
>1/8% .

We denote by S the totality of GJ k,2 such that GJ k,b is non-
void open set of .0.1. An element G of S is called a slab of ty-
pe S. For Ge S the following lemma is an immediate consequence
of (3+21),(3.37) mad Theorem 3.

Lemma 1, 1. LuBy is relatively compact 4n
12 (tj.tkaﬂ .o."(t )) Ve > 0. Hence {u®} is relatively com-

pact in 12 (tj,tk; 8.0. (tj)). Moreover, one has (see [11)

Lemma 2. Let G = (,f3) < £L be a slab of type S and let
d’ be e small positive number. Suppose that the lateral boun-
dery (<, 3) % 80 of G lies in the interior boundary strip
wg¢ (x,d"). Then for any ueV(L)) we have

[Pz aece [Prudia v o (0 1anGan

Now we are in condition to prove the strong convergence of
u® in 12( ). Suppose &> O is given. If Jd,>0 is sufficient-
1y smell, then for each d' in 0 < d'<d" we can choose & finite
number of slabs Gg‘n (j = 1,2,...,“;) of type S with the fol-
lowing properties:

i) by K we denote the union of G§d.) , then 3N K ¢
c G)i(x,d');

ii) overlapping of G(J) 8 is such that any point of K is
contained in at most two of G(J)
The smoothness assumptions of \" make this choice possible, We
suppose the ng‘) is expressed as (ecj, (53) = Ilj (understanding

the dependence on d’ ). We put w = u™ - u” and attempt to show

f:lw\\?.(t)qt—éo as m,n — O

Now
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Ny
s
1

T, 2 Ny 8 p
Io v yyat € 51:5 Ju "‘anj“ +d f l\wIn dt.

Re-choosing d 1f noconary, we get
f \wlp(t)dt & 7_ f lw\ nﬂdt +6 .
From Lemma 1 one has

Bi (2
Iwl dt—>0 as myn —> CO
'&5 any '
consequently
[Tiwl2 , at<2e
° r(t)

provided that m, n are large enough,
Prom (3.21) one obtains (3.37).
Now paseing to the limit m —» 00 4in (3.11) all terms con-
verge to the respective terms in (2.3).
Finally we prove

sup \“\,Q(t)< c

0et<T
We let
m
(t)
uB(£) .{u 04t4%
t 0 t>%.

We replace in (3.11) ¢ by u;'(t) and after some calculations ob-
tain

2
Ve B (B(B25)¢ & N l%—lm)

m { —
+3 (@‘é‘)""m‘”)nm 3 Wegwo g, +

+c f: “um\\g_(t)dt + c.

By virtue of (3.21) and the compactness of {u™} in 12(8) one

obtains
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1 e T
1m”|3 (Qg—é-l.um(t))nml <
meg _
& lim —.1_[; l a—ug%-)-[ua) \’m‘um(t)lh-t') =0

m~»e0
hence

l u(%‘)\n(%) <ce.

Pinally in a standard way one has @ satisfies (2.4) in the dis-
tribution sense. The proof is completed.
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