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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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NO UPPER BOUND FOR CARDINALITIES OF TYCHONOFF C.C.C.
SPACES WITH A Gy -DIAGONAL EXISTS
(AN ANSWER TO J. GINSBURG AND R. G. WOODS’ QUESTION)
Dmitrii B. SHAKHMATOV

Abstract. It is proved that every ind-zero-dimensional
TychonolT space X with a Gg-diagonal oan be embedded as &
closed subspace in anind-zero-dimensional Tychonoff space Y
with a Gp-diagonal satisfying the countable chain condition.
In particular, for any cardinal T there exisis a Tychonoff
c.c.c. space Z with a G -diagonal such that 12|>T. This set-
tles the question advanced by J.Ginsburg and R.G.Woods and
repeated by A.V.Arhangel’skii as well.

Key words and phrases: Tychonoff lzaco, countable chain
condition ( =c.c.c, ), space with a G iagonal.
Classification: 54425, 54C25.

1. Introduction.

J.Ginsburg and R.G.Woods showed that the cardinality of a
collectionwise Hausdorff topological space with a G&-dilsbnll
satisfying the countable chain condition does not exceed 22
( [1], Corollary 2.3). They also constructed an example of a
Hausdorff non regular space with a G&-diasogrl satisfying the
countable chain condition of cardinality 22 ([1], Example
2.4) and raised the following

Question 1.1 ([1], Question 2.5). Is 1t true that the
cardinality of a regular space with a Gs-dinsonal satisfying

the countable chain condition does not exceed 22 ?
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Question 1.1 was alse mentioned in A.V.Arhangel’skii’s
survey ([2], open problem 16). In this paper we give & comp-
lete answer to Question 1.1 (see Cerollary 3.3).

2. Notatiens and terminelogy.

Notations and terminology follow [3]. A space means tcyo-
logical space. All spaces are assumed to be Tychonoff (= comp-
letely regular + 7,). A space X 1s sero-dimensional 1ff ind X=
=O, 1.0.,X has a bdase consisting of closed-and-open sets. A
space X 1s said to have s G -diagonal 1ff the diagonal /\=
={(oc,x):xEX}c_X"X 1s & Gy-set in X=X . symvors |X|,
’W'(X), %’(X)uﬂ X(X)donoto the cardinality, weight, pseudo-
character and character respectively. A space X is said to sa-
tisfy the countabdble chain condition iff the Souslin mumber
C(X)-’— S“’P { |X' X is a family of pairwise disjoint non-
empty open subsets ofX } of the space X is countable. A spa-
ce X is left-separated i1ff there eoxists a well-order < on X
such that every left interval X_,:f“{géx.: 3< oc} is clos-
ed in X . As usual cardinals are identified with initial or-
dinals. For a set X let exe ’{P: F 1s a subset of X}.

3. Main results.

Theorea 3.1. Every sero-dimensional Tychonoff space X
with a Gs-dugom can be embedded as a closed subspace in a
sero-dimensional Tychonoff space Yuth CG&-dilgoml satisfy-
ing the countable chain condition.

Theorem 3.2. If in addition to the assumptions of Theorem
3.1 the space X 1s left-separated, then so is the space Y .

Corollary 3.3. For any cardinal ‘T there exisis a Tycho-
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neff (left-separated) space Z with a Go-d1isgonal satisfying
the countable chain condition such that lZI?'C.

Corollary 3.3 gives s complete answer to Question 1.1.

Theerem 3.4. Every sero-dimensional Tychonoff space X
can be embedded as a closed subspace in a sero-dimensional

ychonoff space Y such that 51.!( Y)< fb(X ) ana (YY) =&o-

Theorem 3.5. If in addition to the assumptions of Theorem
3.4 the space X is left-separated, then so is the space Y

Corollary 3.6. (M.J.Zeitlin [4]). There exists a Tyoho-
noff space Z with a Gs-d:lngonll without one-to-one continuous
mapping onto a Hausdorff first-countable space.

Corollary 3.6 gives an answer to a question of A.V.Arhan-
gel’skii. It is worth noticimg that our space Z constructed
in Corollary 3.6 satisfies the countable chain condition while
the corresponding space of M.J.Zeitlin doesn’t.

4. Proofs.

The constructions are similar to those desoribed by the
author in [5].
We need the following well-known

Proposition 4.1. ( [6] ). Yor any space X the following
conditions are equivalent:

(1) X bas a Gy-d1agonal,

(11) there exists a sequence {an Wéw} of open covers of
X such that for any distinct points a:,geX one can find an

new with {Uexm: {x,g}c Ul=2.

Proof of Theorem 3.1. For every o(<(.Oab: transfinite in-
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duction we construct the structure E&—- <Xd,9%¢,9?>d,‘it
g’:&a edag > with the properties (1)-(9).

(X, % are seta,% n% —}Z' Jo, % % is a
one-to-one mapping, 9‘ ={F: FCS?) U% F is finite ang
F+23,

(2) Qd:%du g‘%d—’eXP Xo( is a mapping satisfying
the i’ollowmg_condition: i

1t e P, , tmen O, (8)=X MO, (T (8,

(3) %d={8d’m: YLEU.)}; the family éoL mst satisfy
the following conditions:

(3a) goL,n,C 9%& for every fLe W,

(3v) U{Gd(%): te 80"”}:)(“ for any frLe ),

(3c) for every two distinct points L 36)( there
exists an L& W (which depends on X and g ) such that
{68, . {=,43c 0,8} =02,

(34) gd’mﬂ %“’m D as soon as rLF L.

In our further comnstructions the properties (4)-(8) must
hold in case B< A .

) Xp =X, Bec B, %Pc \%
(5) 1 669%, then 9 (8)0)( GP(@
(6) 9 (@)ﬂx gfor each ‘66% \g?)P
(7) 12 xE X \XP’ then there is a @e% %Pwith
xe 6,(8),

@& pn < Oct,n 2nd gd‘rt 8’5"‘;%‘*\%{5 as soon a8

ne .

P

Convention 4.2. From now on we let @;(F)=ﬂ{9d(e)5
te F} for every F& g;

(9) Let A< w2.' Let H ve a family witn XC’:T;L, \ng
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=W, sad 9 ) (F)£ D tor eacn Fe'JC Then one oan find two
astinot elements F),F, & K wimn 9 L(FON 6 (F 2 )# 2

o+
iy
Convention 4.3. Henceforth we fix a symbol H ol for de-
~
noting the structure .__.°L—<X gé % d,@; , Gd, gd

and we will use it only in that meaning.

One can think of each Xd~ as being s piece of our future
space Y, of a family {Q‘(ﬁ): 8&9‘5’,‘U9~5¢_}_§- being a sub-
base for a topology on A . Each gé%U%‘iu a name for
the subbase set 90((6). For every 665%)0(, T, (€)1s a name
for the set XoL\ ed(’g). 80 (2) makes each subbase set Q(Cg)
closed-and-open in X“ . (3¢c) assures T, of Xd_ ;s (3a)=(30)
guarantee the existence of a sequence of open covers of XoL
satisfying the condition (ii) of Proposition 4.1,which pro-
vides & Og-diagonal of X i (6) makes sach X closed in
Y 3 (9) 1s responsible for c.c.c. of Y.

A basis of induction. Let X be an original space and let
{U6: GEB} be a base onX consisting of closed-and-open
sets. Since X has a Gy-diagonal,one can find a family { Yn:
new} satisfying the condition (1i) of Proposition 4.1. Since
X 1s sero-dimensional,we can think of each ). as consisting.
of closed-and-open sets. Let X {VG e GEB 7;,wl:o:.'o
B ﬂ B = whenever NL+~m, .nd Bﬂ(U{B n,ew}) =@

Now define the atmotura .__.. . Let X =X % U{B
newjUB,§, {8 .n,ew} ;12 BB,
then 6,(8)= Us and if geB . then O (8)= V- ve
choose sets 550,9:; and a mapping JU, 1n accordance with
(1) snd define a mapping G on % by letting O ('8) X \
\e (3_ (G)) for every Be% . One can easily verify that
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mrm
the ‘:(-‘O so constructed satisfies the conditions (1)-(3).

Cenvention 4.4. Everywhere below we will identify the

sets X and )(O'

Remark 4.5. By comstruction the family {0, (8): &
ePo,U B Joonsists of closed-and-open subsets of X and the
topology generated by taking it as a subbase,coincides with
the original topology on X .

An inductive step. @ For limit ordinals an inductive

step is carried out by

Lemma 4.6. Let ol be a 1imit ordinal and supposs that
the structures EP with the properties (1)-(8) have already
been defined for every <™ .

Let X¢*=U{Xf.>‘ p<el"}, %d:r-U{%P:pﬂl'},%d.:
=U{R :P<o('}, 9;.=U{$P:P<°( }',éd,'m=U{_§p,m: P<c('},
é n ={ d,‘n:new}. Determine the map JU d,:g%d,—’% ) v bF SEL.(G)=
=TT (8), where f> 1s any ordinsl with F><o1* anda 8 H,.

p oz P
Define the map O ) o0 P w,U ﬂ’od,?exr X = b Lotting 0 ) - (8)=
=U{ GPCQ): F;<o(” ’ ’669%&(-} %P} for each € %d.ug%d..

Then the structure l:*_,d, satisfies the properties (1)-
-(8).

Proof of Lemma 4.6. A verification of the properties (1),

(2), (4)-(8) is trivial and can be omitted. Let us verify (3),

(3a) 1s obvious. .

(3b) Arbitrarily choose :x:e){“, and ew. !l‘heanXP for
some '&<oL*. By (3b) for this fp;one can £ind a 48 L
with & QP(ﬁ) . But ng,mC g.,(",n, wd Bg($) Qd.(g)
mply xe U{0,.(8): 6= & . 1.

(3c) Let Jc,geXd,,xaﬁg. Then :n,gexpfor some p<
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<™. By (3¢) for B, there is an rLEW such that {éégpn
{oe, S}C 6 @)1= Q « The properties (6) and (8) imply

8 LN Xp-ﬁ whenever 'gé% 8?“’ . Now from (6) it
follows that {8e& & e {x,g}ce ,({)}c {éecgpn

{43 6, (8)1=0.

(3d) Let b 9% be chosen arbitrarily. Then 6 E %F
for some P<o( . By (8),'9 have {n,eu.) €e£ } {new
@eg n} provided P<X<o( and therefore {new:
Ge(% LS={rew: €£8 ). But the last set 1s
oither upty or consists of a single element since (3d) holds
for P .

The proof of Lemma 4.6 is complete .

@ Let ol = F;“‘-i. The .step from Ff to oL 1s done with

the help of an auxiliary inductive comstruction.

An auxiliary mducti’:, construction. Let G’ {3{, U'LC
(o 9-?“’ ,QC":'wi and GP*(F)#;Q' for all FEU{}. Emu-

merate elements of by non-limit ordinals not exceeding

some limit ordinal 8\ :

(*) G= {J(d30<o(<g, ol is a non-limit ordinal}

Let X —XP.,% 95»)95 % , 9T, UCP,,g-—
g’,,e 6 ,,g 8 - Stnrting from .___.o,by transfinite
indnction for Pevery A< 8 define the structure :& with
the properties (1)-(8) satisfying also the following condi-
tion: /5 ’6"
(*d) there are Fiané g{&vith dCFL‘)(\ d(Fz)#‘ﬂ

whenever ol is a non-l1imit ordinal.

For 1limit ordinals an inductive step is carried out by

Lemma 4.6. In case of non-limit ordinals we make use of the
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following

Lemma 4.7. Let °(=P+i and suppose that the structure
H,.has the properties (1)-(8). Then there exisis the struec-
ture Ed having not only the properties (1)-(8) but the pro-
perty (alé ) as well.

Proof of Lemma 4.7. Here we must "gro' out" "old" nbhu
sets %PU%P in such a way that some 9 (F) and 9 (F )

with E,F & 9{ would be forced to meet. However, we are

not free on it because of the property (2). Indeed, if €e
EE/" and JU, (B)EF for some '86 g‘ép ’ thonQ (Fi)ﬂ
N 9 (F) E no matter how "growing out" is dome. So to
choose F and F such as in (* )'e mst eliminate the case
described above.

Fow, let us turn to details. Let X “XPU{xﬁ},vhoro
'T'¢XF’ and 1ot PO % Uu{é; new} %= % U
Uge, n,ew} where ({6 mew}U{@ mew})ﬂ( P
U )“ﬁ {8 :newin {5 n/ew}=ﬁmd 8 #—‘6 g‘
#gm_ whenever L+t . Let JU (%) ac, (£) as soon as
be Dy ana I ('5) { in case 4= ‘gn. Put usog‘Zf
={F:Fc &, U 1s tinite ana F#}, & =

8’5 WY {8 "3 ror al new , &, = {gd’n:nec,o}.

Since J(— Cg l:’{ | =W,,applying the standard A\ -sys-
ten lrgu.nents one can find a Je gU {.@'} and a Jf CJ{
with |:’{. | G, and FF\F =J for all pairs F F”
ED{ . Choose an Fe U{oi . Suppose that F {6 yeery
8&,%0(4,(“) 'Jt (£m)} where ‘61,..., 'ém_é %O
and {61,...,8,‘% {%Kﬁ_,...,‘gm}:Q (the last follows
trom (2)). zet P={8,,..., 86,90, (4),..,T0(4,)]. men
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there is a finite set S C U{ such that FNP=J for
every F< J{d\‘ﬂ,{/ . Pick an F Eg{ \JIL . suppose that
F?_={a,i,...,0vs,.’1'«70(as+i), JL oy )} where Q,...,Q E
EEBO and {a,i,...,a,s}r\{a,sﬂ,...,atj = . Then we have
{Q,i,...,at}ﬂ {Bi,..., gm}[=J—/', where J/=¢ 12 J=
=@, ana J'=1{Cy,...,Cp,Cppy>.... Cit 12 T=1Cy,...,Cq,
JLOCC&d) (JC (C.)} (in the 1ast case C; =f=C:{ as soon
as 1#J,t<‘a</<‘z ). Detine a map O : P ——>epr

by letting

ep(ﬁ)u{x*} ir ge{a‘i) °*) )'gj_"""gk})
0, (&)= 9 (8) 1t 6P \{ai, 205, By B3,
{36} 1t 86{6 new}

Extend 6 over %oL by letting 9‘*(6) = Xo(\
<6 (9—-1(6)) for every de 5?)

The atmoture ‘__, is thus completely defined. The pro-
perties (1),(2),and (4)-(8) follow directly from our consiruc-
tions. Besides JC'< @;(Fi)ﬂ’é;(t:a)*/@ and hence (¥)
holds. We need only to verify (3). Items (a), (b) and (d) are
obvious. To verify (c), consider two cases.

(1) {.’I: KSCX . The property (3c¢) for p implies

{6&: gf" MR ENS L GPCﬁ)} = for some NELW. But 8

- {6} ama (8>M}x¢&
Now 1t follows from (5) that {66 éd " e, 33C9 (G)}—
=g.
(11) One of points ¢ and 18 0 , say L= oc*
(3d) forp implies {Q.i, —gi -8 }ﬂéﬁP =
for some N.EW . But (g \gpr\.)n% =& by (8), and
{Q,i, S 81, 5 }C% C@P Therefore {a.i, S
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54_....?8K} n 80(,“:@.. It follows from the definition of
60( and the property (6) for o/ that { & %d: {(X‘f,'g}c_‘_
Ced(é)}‘—‘{ai.---:as» 61»--':€,<} and {éé 80( n’ {a*,
y}CQL(G)} = as required. '

Lemma 4.7 1s completely proved.

The auxiliary inductive construction having been done,
applying Lemma 4.6,we should define the 2momi38 and
should determine Xo(..=X8, %d'ng&; %4'2%8:9_(‘;“:568'
8;, =g-_ , ed, = 98’ éd, =88 « The structure Eoc, is as re-
quired. The properties (1)-(8) hold by Lemma 4.6. Since for
every non-limit ordinal <<J& the property (K, ) holds, ()
implies that the property (9) is fulfilled for the ordinal ,8*
This completes the inductive construction.

The inductive construction having been done, apply Lemma

~
4.6 to obtain ‘M,

Convention 4.8. Let Y=X(_o2 . Henceforth for the sake
of simplicity we omit the index (,02_ in %“’a’ %wz ’ Utwa,
gway ewZ) &wzn‘“d ng- .

Consider the family vz-——{@(é) ‘gE%U%S and the

topology 9' generated by it as a subbase. The space (Y,(J)
is that we need.

Proposition 4.9. The space C\f,g) is zero-dimensional

and Tychonoff.

Proof. All elements of are closed-and-open in CY,CJ')
since (2) and (5) imply that Y\9C€)=9(UC(€)) for
any gé% Since V? is a subbase for the topology Qj the
space (Y,"J') is gero-dimensional. By (3c), the family 7 se-
parates points of Y, so (Y,g_) is a Tychonoff space.
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Proposition 4.10. The set Xo is closed in (Y,g—)
Moreover, this is true for all XF with ,5<L02.

Proof. Snpposo,B<co and £ YN X, . Then xreX \XP
for some < (L)a . Applying (7), one can find a gé% \%
with e 6 (‘6) Now (6) implies 9 (8)0)( =( and hence

9(€)ﬂXP 2 vy (5).

Proposition 4.11. The topology g— induces on X0=X~
the original topology ofX

Proof. If gEJ \% ,then by (2), (5), (6), e(g)ﬂX‘
ana B (TE))N X = (Y\ 9(@))0 X=X . therefore, 9(8)0
NXe {9, X} provided B %U%\(% U%o) Fow suppose
that 86% Uﬂ?) . By (5), 9(€)ﬂX 9 (8), and vy Remark
4.5, the topology, generated on X by taking the rauly{eo(g):
gé 33)0 Ug_%o} as a subbase, coincides with the original
topology of X . So g— induces the original topology of X .

Proposition 4.12. The space (Y g—) has a Gs-d:lagonal

Proof. By our construction, each Xn—-{e(g) {68 }
is an open cover of Y Let ¢ HEY 1137‘-"4 Then OC, EX
for some ol<(Jy. (3¢) implies that {%egom {zylc (8)}=
",@ for some NeW . By (6) and (8), we have 9(€)HX =g
whenever é’eg 8 . From (5) it follows that {66@
{x g}c: e(é)}——ﬁ Therefore, the family {XW I’Lé_(,o}
satisfies the property (ii) of Proposition 4.1 by which we

conclude that the space (Y, 9_) has a Gs—diagonnl.

Proposition 4.13. The space (Y 9-) satisfies c.c.c.
Proof. Put QCF) 0{9(6) @e F} for any FeCEF
The family A= {GCF) Fe?}u a base for the topologg
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gc?\

To prove 4.13,all we need i8 to show that any family
of cardinality (J, fails to be disjoint. Pick a /{G(F):
FEJ{}C 2_ such that :}{CSCIS{I— COi and e(F)f#@
for every FEU{ . Since ':K‘—OJ1<(.O ’ there 1s ap ol <
<(,ozsuoh that JCC gl_ and 6 (F) X N Q(F)%ﬁ

for all Fe XK. Applying (9) to J{ pick F ,F E%'ith
2#8,., (FINB.,,,(RICBEINE(FR,) . mus the

family ; is not disjoint.

Proof of Theorem 3.2. Let < x be & left well-order on
X . Define a left well-order <+, on Y . on X*X <y

coincides with <X . Examining attentively the proof of The-
orem 3.1,one can see that in our auxiliary inductive construc-
tion we add a single point passing from { to o{+4 with the

help of Lemma 4.7. The sequence in which we add new points to

Xo =X gives us the desired left well-order <Y on Y .

Proof of Corollary 3.3. Apply Theorem 3.1 to the discrete

space of cardinality T .

Proofs of Theorems 3.4 and 3.5 are similar to those of

3.1 and 3.2 respectively and will be omitted.

Proof of Corollary 3.6. Conaider a Tychonoff c.c.c. space
Z with a Gs—diagonal and |Z|>2 the existence of which is

guaranteed by Corrollary 3.3. Assume that there exists & one-
to-one continuous mapping of Z onto a Hausdorff first-couni-
able space Y . Then c(YX)=Y, and from the well-knows A.Haj-
nal and I.Juhfsz’s result [7] 1t follows that lYl<€XF(X(Y)

-C(Y)) 2%, put D8oy IY‘“IZ!>2‘° , which iz a

contradiction.
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5. Some positive results and final remarks.

In connection with the negative answer to Question 1.1 it
is worth looking for classes of spaces in the realm of which
Question 1.1 is settled positively. According to J.Ginsburg
and R.G.Woods’ result (see Introduction) in the realm of col-
lectionwise Hausdorff spaces an answer to Question 1.1 is "yes"
The following easy result is of the same kind.

Proposition 5.1. In the realm of Hausdorff spaces of

pointwise-countable type an answer to Question 1.1 is "yes".

Proof. For spaces of pointwise-countable type 6[)()()"—*
==7C()() (see [3], Exercise 3.1.F). Hence a space of point-
wise-countable type with a Gagdiagonal is first-countable. Now
1t suffices to apply A.Ha)nal and I.Juhdsz’s result |X|<

cexp (LX) (0) [1].

Corollary 5.2. The cardinality of a Gech-complete c.c.c.
Hausdorff space with a Gg-dlagonal does not exceed 2%

With the help of a method, different from described above,
the author obtained the following general result:

Theorem 5.3. Let us consider the following properties:

1) having a Gs-diagonal,

2) being 6 -discrete (this 1s to be a sum of count-
able family of its discrete closed subspaces),

3) normality,

4) metacompactness,

5) hereditary metacompactness.

Every Tychonoff space )( can be embedded as a closed
G&-snbapace in a Tychonoff c.c.c. spacewff in such a way that
the space \f. has any of the above properties whenever )( has.
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Corpllary 5.4. For any cardinal ‘U there exists a nor-
mal hereditarily metacompact 6 -discrete c.c.c. space 2?
suwoh that | Z|>T.

Remark 5.5. Every 65 -discrete space has a Gspdiagonal.

Bemark 5.6. This work had already been finished when I
found out from the thesis of Toshiji Terada [8] that he had
also given an answer to Question 1.1. I don't know his proofs,

for his paper submitted to "Canadian Mathematical Journal"
is not published yet. V.V. Uspenskii, after having learned argu-

ments of the present paper, gave his own solution in [9].
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