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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25,4 (1984) 

NO UPPER BOUND FOR CARDINALITIES OF TYCHONOFF CCC . 
SPACES WITH A %-DIAGONAL EXISTS 

(AN ANSWER TO J. GINSBURG AND R. G. WOODS' QUESTION) 
Dmitm B. SHAKHMATOV 

Abstract. It is proved that every lnd-*ero-dimensional 
Tyohonoff spaoe X with a G^-diagonal oan be embedded aa a 
olosed subspaoe in saind-eero-dimensional Tyohonoff »paoe X 
with a G^-diagonal satisfying the countable chain condition. 
In particular, for any cardinal T there exists a Tyohonoff 
o.c.o. space Z with a G^-diagonal such that IZ|»f. This aet~ 
tles the question advanced by J.Ginsburg and R.G.Woods and 
repeated by A.V.Arhangel'skii aa well. 

Key words and phrases: Tyohonoff apace, countable chain 
condition ( 3c.cc. ), space with a G~-diagonal. 

Classification: 54A25, 54025. 

1. Introduction. 

J.Ginsburg and E.G.Woods showed that the cardinality of a 

collectionwise Hausdorff topological spaoe with a G^-diagonal 
0 c/ 

_ 

( [lj • Corollary 2.3)* They also constructed an example of a 

Hausdorff non regular space with a G,.-diagonal satisfying the 

countable chain condition of cardinality 2. ( [1] , Example 

2.4) and raised the following 

Question 1.1 ([1], Question 2.5). la it true that the 

cardinality of a regular spaoe with a G^-diagonal satisfying 

2 <% 
? 
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QAostioA 1.1 mrna Al*e Aontioned in A.T.ArhAngel'flxli'fl 

surrey ( [2] , open problem 16). In this poper wo give A coap-

le te answer to Question 1.1 (••• GerollAry 3*3)* 

2. lotAtlAAA And toralaology-

lotAtions And teralnology follow [3] • A spsoe AOAAS tcpo­

l o gioal spaoe. All apAoefl Are assuAed to bo Tychonoff (» comp­

lete ly regular • T.,). A spaoe X is aero-dimensional i f f indX* 

= 0 , i . e . , X hss A bAse consisting of olosed-and-open sets . A 

•pace X is said to hATO A G_-diagonal i f f the dlAgoaAl ^ - = 

^ { ( o C ^ r X e X l c i X ^ X !• • V 8 t t **XXX. Symbol. \X\, 

V ( X ) , d)(X)mnA pC(X)^«Aoto the cardinality, weight, paeado-

ohArAOtor And chArAoter respeotiToly. A spsoe X i s said to sa­

t isfy the ooAAtAblo ohAlA condition i f f the Souslin auaber 

C(X)=SCCp [ I ^J: V 1A A family of pairwiae disjoint non-

oapty opoa flubfletfl of X ) of the flpaoe X i s countable. A apa-

ot A i s left-separated i f f there exists A well-order < on X 

suoh that every loft interral X ^ x i M e X : ^ < x 3 ! • olos-

•d la X «A« usual cardinals Are identified with iaitlAl or­

dinals. For A aet X lo t CXpX "-{F: F i n flubflet of X ] . 

3. Main roflultfl. 

Theorea 3.1. Brery sero-diAensional Tyohoaoff flpaoe X 

with • Gg.-diagonal oaa be oaboddod ae a clofled subapaoo in a 

soro-dlaoasloaal Tychonoff spaoe 1 with aG^-diagonal sstiafy-

ing the countable ohaln condition. 

Thoorea 3.2. If la addition to the asauaptionfl of Theorea 

3.1 the space X is left-separated, then so la the spaoe 1 . 

Oorollary 3.3. For Any cardinal IT there exists A Tycho-
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neff (left-aeparated) apaoe Z with a O^-diagonal satisfying 

the countable chain oondition auoh that |z*|^TT. 

Corollary 3.3 gives a complete anawer to Queation 1.1. 

Theereai 3*4. Ivory sero-dlnenalonal Tyohonoff apaoe X 

can ho embedded as a oloaed aubapaoe 1A a sero-dlmenslonal 

Tyohonoff space Ysuoh that <p(Y)^d)(X)*a* C(Y)**c>V 

Theorea 3»5« If In addition to the assumptions of Theorem 

3.4 the apaoe X It left-separated,then so Is the apaoe 1 . 

Corollary 3>6. (M.J.Zeitlin £4]). there exists a Tyoho­

noff space 2 . with a G^-diagonal without one-to-one continuous 

.mapping onto a Hauadorff first-countable space* 

Corollary 3*6 gives an answer to a question of A.Y.Arhan-

gel'sxll. It Is worth noticing that our spaoe 2L cona true ted 

In Corollary 3*6 satisfies the oountable chain oondition while 

the corresponding spaoe of M.J.Zeitlin doesn't. 

4. Proofs. 

The oonstruotlons are similar to those desoribed by the 

author In £5] • 

We need the following well-known 

Proposition 4.1. ( [6j ). For any spaoe X the following 

conditions are equivalent: 

(I) X has a Gg-dlagonal. 

(II) there exists a sequence [j^-rv^U)] of open covers of 

X 8*eh that for any distinct points X , ^ 6 A one can find an 

ruEXOwith {Ue^rv- {x>^}cz\J}*~0. 

Proof of Theorem 3.1. For every <*<60^by transflnlte In-
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auction we construct the structure 3 ^ = * <XdJ3&d£vbdLy5Z 

9^,9^,6^> with the properties (1)-(9). 

(IjX^^J^mr. sets, ̂ n i f o ^ , ^ % ^ 9%c i» a 
one-to-one mapping, £ F , = { F : F o ^ i ^ ^ F i s finite and 

_ o** cat est 

F*#}, _ 
(2) 9^ : 0 ^ U S ^ - ^ eXP X ^ 1» a mapping satisfying 

the following condition: 

if « e ^ , then e^c^^x^e^c^c^)), 
(3) S ^ ^ C ^ ^ H^eco}; the family ( o ^ awist satisfy 

the following conditions: 
(3a) (o^ ^CZ 9 $ for every rue CO » 
(3b> U f O ^ G * ) : "€e ^ ^ } = ^ o c f o r «V K^CC), 

(3c) for every two distinct points X ^ E A ^ there 

exists an rreCO (which depends on X and U ) such that 

(3d) 6 . „ 0 <o , ^^/ZJ as soon as rvi=nv. 

In our further constructions the properties (4)-(8) must 

hold in case 6 < cL . 
(4) X ^ c i X ^ , ^ ^ , ^ ^ ^ , ^ ! =SfC r 

(5) If 4(Z0bp, then ( 9 , ( 1 ) 0 X ^ - 6 ^ ) . 
(6) Qj.%) 0 K^0tor ..oh -g e s ^ ^ , 
(7) If X e X ^ X g , then there is a € e $ ^ 32>„with 

txeto. 

Convention 4 .2 . *roii now on we l e t £ ^ 0 ^ ) —H l ^ v ^ ' 

- 6 e F j for every F & 3^. -

(9) Let o(<C02 . Let 3(.be a family with .XcS^, l-tH= 
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^(x)4 and B A F V ^ J . ? for each F e * . % . fhen one can find two 

distinct eleaents F ^ F ^ e C J C with O ^ C F J H ^ ^ ( f ^ V ^ . 

_ 

ConTention 4*3* Henceforth we fix a symbol o , for de­

noting the atrmotnre 2 ^ = < X a ( , % f 0 ^ , ^ , 3 ^ , 6^, l^> 
and we will nee it only in that weaning. 

One can think of each X ^ aa being a piece of our future 

apaoe Y , of a faadly { 6^(4)•' &&3<)otU3c)Jl *« being a aub-

baae for a topology on X ^ . Each &€z(3b\) 3$)^%* a name for 

the aubbaae aet 9^06)* 'or every -£€.S^t 3E* (/£)*» * *•*• 

for the aet *^Q^(£)f •© (2) wakes eaoh aubbaae aet QJ&) 

cloeed-and-open in X ^ • (3o) assures I1 of X ^ ; (3»)-(3o) 

guarantee the exietenoe of a sequence of open coTers of X ^ 

aatisfying the condition (ii) of Proposition 4.1, which pro-

Tides a G^-diagonal of X ^ S (6) amkes each X , closed in 

1 ; (9) is responsible for o.o.o. of Y . 

A baals of Induction. Let X be an original apaoe and let 

1 Up : €G 0 J be a base on X consisting of olosed-and-open 

a eta. Sinoe X has a O^-diagonal, one can find a family { ̂ n,: 

rXCCO} satisfying the condition (11) of Proposition 4.1. Since 

X la lero-dlmensional, we can think of eaoh Y^ aa consisting 

of olosed-and-open sets. Let Vnu55* { V > Kt
: " & ^ B J.wherc 

B^O 6 ^ 0 wheucTer a*m.,and Bn(U {&,,,- rveCO})-0. 

low define the structure S 0 . Let X Q — X , 0 & *=U { B,J 

n-acoWS.g^-B^. ^-l&^.ruzto} ; if k B , 
then 6 0 ( € ) = U < u « i f ^ £ B a > thea © 0 ( ^ ) = V ^ ^ . We 

ohoose sets &>0,W0 *nd a aapplag 3U0 in accordance with 

(1) and define a sapping QQ oa &bQ by lett ing 0 o ( * ) ! - , ^ : > 

\9 0 (3 to 4 (€) ) for .Tory £ e l § 0 • On. oan easily rerify that 
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the I!1J0 ao constructed satisfies the conditions (1)-(3)-

CenTtntion 4.4. Everywhere below we will Identify the 

aeta X and /X 0. 

Bernark 4.5* By construction the family l^0\^): && 

e$bQ{J 9iiioonsists of closod-and-open subsets of X and the 

topology generated by taking it as a subbase,coincides with 

the original topology on X . 

An induotiTe step, (f) For limit ordinals an induottre 

step is oarried out by 

Lemmm 4.6. Let a7* be a limit ordinal and suppose that 

the structures iili.a, with the properties (1)-(8) hare already 
•K-

been defined for oTery B><oL . 
M XU*-U{X*•?«**}, % . = Uf^:/b<=^},%.-= 

l „ = { s . : l W - D.ter«i-.. th. aap 3U,„: 5%..-*J?S.. \>j3C (€}* 
<o(, c*. t rL ' ov. ov O f c <-*• 

^XftC-g), "»•*• £> i s any ordinal with £><c*i* and € e 9 ^ p . 

Define the map © ^ : S b ^ U ^ ^ e x p X by lett ing 0 ^ ( € ) = 

AJ{OjX)ip<cLm , 4 e S f L U 35ftl *>* each ^ C ^ U ^ . 

Then the structure t t L ^ satisf ies the properties (1)-

• ( 8 ) . 

.Proof of Lemma 4.6. A Terlfloatlon of the properties (1), 

(2 ) , (4)-(8) la triTial and can be omitted. Let us Terify (3) . 

(3a) i s obrlous. 

(3b) Arbitrarily choose XeX^#and rL<-=a). Then X ^ X R for 

some p><ol*. By (3b) for this ft, one oan find a ^ e ^ * ^ 

with X 6 . 0 * / * ) . But S p ^ ^ ^ - r t ** GpC&cQ^C*) 

i«piy ct^ U { 9^ ( « : 4& &^fJ. 
(3c) Let X->U^XU*9X-+H. fhen ^MetX*for some^x 

- 737 -



<d* . By (30) for 6 , there i s an rueCO such that { ^ O a > r u -

{ x , £ j } c z Q»(£)\ = 0 . The properties (6) and (8) imtpiy 

6oL+C&)ftXp=0 wheneTer -&&%>, * v § p > f v * * o w f p o * ^ xt 

foxxows that { ^ e ^ ^ : {*,y}'cz Qj(4)}cz {^e<g^ a : 

(3d) Let ^<S S% # b e chosen arbitrariXy. then ^ ^ $ 3 * 

for some & < o ( * . By (8) , we haTe ( r t ^ O ) : ^ ^ ^ . ^ ^ { r t e C O : 

^ e L Kt} proTided 6 < y < o < * and therefore { r v e 6 0 : 

^ 6 ( S # \={rLe60: -€e^„ M } . But the Xast s e t i s 

e i ther empty or cons i s t s of a singXe element since (3d) hoXds 

for £> . 

The proof of Lemma 4*6 i s compiete . 

Let oL '"•fc+.i. The step from E> to oi i s done with 

the heip of an auxil iary induetiTe construction. 

An auxil iary Induct I T e construction. Let O ** \ <Ju • 0\XZ 

C $F f t ~, 12CI =*<->! *** ^ C F ) ^ j 2 f for aiX F&Vi). Bau-

merate elements of O by non-limit ordinaXs not exceeding 

some Ximit ordinal 6 : 

( l A r ) C ^ { ^ C o C - 0 < o < < 0 , oC i s i non-limit ordinax}. 

*•* x 0 «x r , ^ 0 -® r ^^ 
= &«>>0sa9&,&<r%Br ' Starting from H0,by transfinite 

p 0 p 0 p ,—, 
induction for eTery oC< 6 define the structure tizL , with 

the properties (1)-(3) satisfying aXso the foXXowlng condi­

tion: 

there are F^,F^= 3 Q with ̂ C F ^ H OjF^i-0 

**' wheneTer o( is a non-ilmit ordinal. 

For limit ordinaXs an induetiTe step is carried out by 

Lemma 4*6. In case of non-limit ordinals we make use of the 
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fo l iowiag 

LoMMa 4.7 . Let d~E>+l and suppose that the structure 

J l^ahas the properties ( 1 ) - ( 8 ) . Then there e x i s t s the atrue-

ture i±L^ having aot oaly the properties (1 ) - (8 ) hut the pro­

perty C*^) *» wel l . 

Proof of Lemma 4 .7 . Here we Must "grow out" "old* subbase 

s e t s Sb&USba i a auch a way that some C ^ C F , ) aad C 7 , ( F > ) 

with r^ti^EE. J% would be forced to Meet. However, we are 

aot free oa i t because of the property ( 2 ) . Iadeed, i f ^ £ 

£ • R aad SUp^)^ Fz *or SOMO %& $hp , thea ^ ( F j O 

f l G i C f b ) ^ ^ n o Matter how "growing out" i s done. So to 

choose V, and K such as in ( ^ j j i e Must eliminate the ease 

described above. 

How, l e t us turn to d e t a i l s . Let A ^ A n U ( X |,where 

x V X . and i.t % = ^ U ( ^ : i ^ e a > } , % = ^ U 
U_£_<:ne6o},-*.r. C { < L n ' e c 0 > U i C : ^e^})H(^LU 
U^)=A{C-^^}H {<:rtea)l-i2f«i C ^ C - O 
¥:orrv whenever r t ^ r r t . Let ^ ^ C ^ ^ S ^ & C " ^ ) * 8 S00J: | aa 

*o€E SJ&A aad J ^ L C ^ ) = = ' o ^ i n °ase ^O=!^'of% • Put a l so §£=* 

- { F : F c ghjMj,, F i . f i n i t e and F * 0 } , <go() | V = 
= ^ P „ ^ U i ^ H -"-*•--• ^ e u ) , 5 A - { g d i t t : f t e c D } . 

Siace ^ ^ ^ C Z ^ J ^ L ^ I ^ W ^ a p p l y i a g the staadard Z\ - e y e -

teM arguments,one caa f iad a cJ€E * ^ U ( 0 3 aad a ^ ^ ^ ^ S 

with |CKfat|
a=sCO:t and F H F *=J for a l l pairs F ' , F " e 

S JL . Choose an r ^ E i A . Suppose that F ^ ~ J ^ 4 > . . . , 

^^oC^+i), . . - , -SC^)},--*" 4X,..., ^ e & 0 

and {-61,...,€(Cjn('g(c+1,...,^rVL}=0 (the last follow, 

from (2)). let P = {&„..., 4^, ULQ (4J,...,&„(€„)]. »>•» 
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there i s a f inite set Jit CI *K, such that F A P —J for 

every F^ZK^Jlt • * i c k ** F ^ ^ f ^ J l £ -• Suppose that 

e£0oand iO.1,...,a^]n{(Xs^,...)a^3==-(0' . Then we have 
{ C t ± , . . . , a j 0 U ^ . - ^ ^ l - J ^ where J ' - 0 if J -
«#and J /={C1 , . . . ,C^C^,. .vC^}if J - { C A , . . . , C e , 
J t 0 C C e + 1 ) , . . . , 3 t 0 ( C ^ (in the last case C^Cj as soon 

as ^ ^ j - i ^ ^ J ^ ^ ) . Define a aap 6 ^ : 0 5 ^ - ^ e x p X ^ 

hy lett ing 

[ { W } if r 3 e { ^ * :rL€=a>V 

Extend Q^ over £^*>y letting ^ o C C€) s s s X o C N 

^ ( ^ ( g ) ) for every ^ e % . 

The structure £L, , i s thus coapletely defined. The pro-

perties (1),(2), and (4)-(8) follow directly froa our construc-

tions. Besides ^ ^ 0 ^ ( ^ ) 0 8 ^ ^ ) - # , 0 and hence 0 * v ) 

holds. We need only to verify (3). Iteas (a), (b) and (d) are 

obvious. To verify (c), consider two cases. 

( i ) { x , t A d X g . The property (3o) for & iaplies 

{ & = <£L ^ : { O E ^ C 6A®)~0 for soae K 6 0 ) . But <§< ^ 
v £/*.£- CO — e*cO-M, X^X .̂ ' 

How i t follows froa (5) that {4>& ^ ^ : { x . ^ C l G ^ C ^ ) ) -

-0 . 
( i i ) One of points X and U i s X** , say 3L= OC* 

(3d) f o r ^ iaplies {O^, . . . , CLS , 4±9...,4K I A < § ^ ^ = 0 

for soae rVGO) . But ( ^ ^ x ^ A ̂ ) H 0 k « 0 by (8), and 

{ ^ L , . , . , - ^ , ^ , . . . , ^K}cZ0boCZ0L. Therefore { a ^ , . . . , ^ , 
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^±>-•?&„} fl §., *,—#•• It follows, from the definition of 
•*• e K.' <x,rt 

C?^ and the property (6) for oL that { £<aSh^: {&*fH\ci 

d^C^^^Ca^.-.A^^^^land {^eg^: {**; 
^ } C 0^ ($)} = 0 as required. 

Lemma 4.7 is completely proTed. 

The auxiliary induetiTe construction haTing been done, 

applying Lemma 4.6, we should define the structure tiii> and 

shouid determine X ^ « ^ X ^ , ̂ ^• = 0^ ^ ^ ^ » ^ 9 % ^ ; 5 l ^ # = J U g , 

^*^9^, ̂ of^^S* ^IOL'^^S * The 8tru0tttre r ^ ^ ^ *8 re­
quired. The properties (1)-(8) hoXd by Lemma 4.6. Since for 

erery non-limit ordinal o<<SN the property 0#oc) holds, (Wj 

implies that the property (9) ia fulfilled for the ordinal B . 

This completes the induetiTe construction. 

The indue tiTe construction haTing been done, apply Lemma 

4.6 to obtain ciL 
' ш г 

Y=X OonTention 4.8. Let I ^ A M • Henceforth for the sake 60 
г 

of s impl ic i ty we omit the index 0 0 ~ in 9c) ^ , <3hCX) t ^cd > 

^ 2 > ® c a , > ^cogn*nd &coz- _ 

Consider the family n^{B(G): £ e £ & ( J c J % l and the 

topology §/ generated by i t as a subbase. The space (±9&) 

i s that we need. 

Proposition 4»9- The space ( I , * 3 y i s sero-dimensional 

and Tyohonoff. 

Proof. All elements of H are closed-and-open in C±y
<W) 

s ince (2) and (5) iapXy that Y ^ 0 C € ) - 0 (^(4)) for 

any 46zJd* Since K? i s a subbase for the topoiogy ^ 7 *n® 

space (ifv) i s zero-dimensionai. By (3c) , the family JO 

parates points o f Y , s o C7X,*JO i s a Tychonoff space. 
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Proposition 4.10. The set X0 is closed in ( l,2T). 

Moreorer, this is true for all X ^ with fr^^d^-

Proof. Suppose//3<602 and X e Y ^ X ^ . Then X.«EX ,SXA 

for some oL< 60^ . Applying (7), one can find a S^Zfb^^fc)* 

with X e QjJ>) • »°* (6) implies 0 ^ ( ^ ) 0 X ^ 0 and hence 

9(€)()Xfi-0 by (5). 

Proposition 4.11. The topology £/ induces on X ^ ^ X 

the original topology of X . 

Proof. If ̂ G ^ ^ 0 , t h e n by (2), (5), (6), 9(€)fiX=0 

and 6 (X(4))n X - (T^ e(^))QX-X . therefore, 0(3)0 
nXe{0,X)jproTided^^C/^)VC%^^o)- H°W 8tlpp08e 

that ̂ e0?)oUS?)o. By (5),6C4)nX0~G0(£), and by Remark 

4.5, the topology, generated on X oy taking the family{Q0(£>): 

&€.Sh0U
<3x)0\ a» a subbase, coincides with the original 

topology of X .So &/ induces the original topology of X . 

Proposition 4.12. The space ( i ,*T) has a Gk-diagonal. 

Proof. By our construction, each V ^ ^ i O C ^ ) - ^>^<§ J 

is an open cover of Y . Let X,¥eY-3C^JJ. Then ^ W ^ X ^ 

for someoC<6c)2. (3c) implies that { ^ e ^ ^'\^>^<^BjJ>)}~ 

— 0 for some ae60 . By (6) and (8), we have 9(£)f)X = 0 

whenever ^£=.0, x<b , • From (5) it follows that {{>&& : 
ot oC, tV v fV 

{X,^]ci0(^)}-==0. Therefore, the family { ^ : a<E.do} 

satisfies the property (ii) of Proposition 4*1 by which we 

conclude that the space ( 1, u ) has a GL-dia«onal. 
Proposition 4.13* Ihe space (Y,£T) satisfies c.c.c. 

proof, put ecn=r\i6(4>):4>eF) *« a-, R=<£: 

The family /\ ={ 0(F) ' Fe2F]is a base for the topology^T 
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Ok 

To prove 4.13*all we need i s to show that any family 5/S" 

of cardinality U)± fa i l s to be disjoint. Pick a |==^{^C^/ : 

F e X ] c Z X such that 3idWy\3i\- C0± and dCft*** 

for every F ^ C-KT . Since l ^ | = t O ^ C 0 p , there i s an o£< 

< 0 ) 2 s u c h that J C d ST a n d ^ p ^ X ^ O §QF) + 0 

for a l l F € £ 3 £ . Applying (9) to 2f£9 piok F^, F ^ C ^ with 

^ ^ ^ C F j n ^ c ^ c & C F ^ n S c F ^ . **• *• 
family ^ is not disjoint. 

Proof of Theorem 3*2. Let <̂  ̂  be a left well-order on 

X • Define a left well-order < -^ on 1 . On X X X < y 

coincides with < ^ • Examining attentively the proof of The­

orem 3.1, one can see that in our auxiliary inductive construc­

tion we add a single point passing from c/ to o(+l with the 

help of Lemma 4.7. The sequence in which we add new points to 

X 0 ~ X gives us the desired left well-order *^v oa Y . 

Proof of Corollary 3*3- Apply Theorem 3.1 to the discrete 

space of cardinality IT . 

Proofs of Theorems 3*4 and 3»5 are similar to those of 

3.1 and 3.2 respectively and will be omitted. 

Proof of Corollary 3*6. Consider a Tychonoff o.o.o. space 

2. with a Gjv-diagonal and |z?|><2 °the existence of which is 

guaranteed by Corrollary 3-3- Assume that there exists a one-

to-one continuous mapping of z£ onto a Hausdorff first-count­

able space Y . Then c O O ^ S ^ and from the well-known A.Haj-

nal and I. Junius's result £7] it follows that (Yj^eXpC A C Q * 

•C<Y))«2*°. But 2 C S - | Y H 2 | > 2 * ° , which is a 

contradiction. 
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5. Some positive results and final remarks. 

In connection with the negative answer to Question 1*1 it 

is worth looking for classes of spaces in the realm of which 

Question 1.1 is settled positively. According to J.G-insburg 

and B.G.Woods* result (see Introduction) In the realm of col-

lectionwise Hausdorff spaces an answer to Question 1.1 is "yes". 

The following easy result is of the same kind. 

Proposition $.1. In the realm of Hausdorff spaces of 

pointwise-countable type an answer to Question 1.1 is "yes". 

Proof. For spaces of pointwise-oountable type ̂ ^ X ) ~ 

- = 0 C £ X ) (8«« C'l» Exercise 3.1-F)- Hence a space of point­

wise-coun table type with a G»-diagonal is first-countable. Now 

It suffices to apply A.HaJnal and I.Juhasz's result | X | ^ 

<exp(^eX)-c(X))[7]. 

Oorollary 5.2. The cardinality of a Oeoh-oomplete c.o.o. 

Hausdorff space with a G^-diagonal does not exceed 2 C °. 

With the help of a method, different from described above, 

the author obtained the following general result: 

Theorem b.3* Let us consider the following properties: 

1 ) having a (.-..-diagonal, 

2) being 6 -discrete (this Is to be a sum of count­

able family of its discrete closed subspaces), 

3) normality, 

4) metacompactness, 

5) hereditary metacompactness. 

Every Tychonoff space A can be embedded as a closed 

G.-subspace in a Tychonoff c.c.c. space l in such a way that 

the space i has any of the above properties whenever X has. 
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Cormllary 5*4. For any cardinal TT there exists a nor­

mal hereditarily metacompact (5 -discrete c.c.c. space zz 

such that )lE\>rC. 

Bernard 5*5« Brery & -discrete space has a G^-diagonal. 

Bemark 5*6. This work had already been finished when I 

found out from the thesis of Toshlji Terada [dj that he had 

also given an answer to Question 1.1. I don't know his proofs, 

for his paper submitted to MCanadian Mathematical Journal" 

is not published yet. V.V. Uspenskii, after haying learned argu­

ments of the present paper, gave his own solution in 19]* 
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