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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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ZERO-DIMENSIONAL OPEN MAPPINGS
WHICH INCREASE DIMENSION
A. CHIGOGIDZE

\

Abstract: Using a notion of O~-soft rectangular disgram
it is shown that any positive-dimensional compact of weight
is an image of a 1-dimensiomal cempact ef the same weight un-
der O-soft mapping whose fibers are all hemeomorphic te the
Center cube DT of weight ¢ .

Key words: AE(0), O-soft mappimg, O-soft diagranm.
Classificatiems 54F45, 54C10, 54C55

Introduction, It is well-known that open mappimgs with
zero-dimensicmal fibers can arbitrarily imcrease dimension.
The first example of such mappimg was described by Kolmogorov
in [7]. In this example the domainm is a 1-dimensional Peano
continuum and the ramge is 2-dimensional, Then Keldys [6] com-
structed a similer example where the range is a square 12.

The fact that Menger ‘s umiversal curve can be mapped omnte eve-
ry Peane contimuum by am epen mapping whese fibers are all
homeomorphic to the Cantor set was established by Wilson [12].
The most general result in this direction is the following
important theorem of Pasynkov [10]:

Pagmgov'g Theorem. Any positive-dimensional compact of
weight v is an image of a 1-dimensional (in the sense of dim)
compact of the same weight under an open mepping with zero-
dimensional fibers.
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The purpose of this note is to prove a stronger result
than the last cne, Namely, the following:

Theorem. Any positive-dimensional compact of weight ¥
is an image of a 1-dimensional compact of the seme weight un-
dexr a O-soft mapping whose fibers are all homeomorphie to the
Cantor cube D¥ of weight ¥ .

Before getting down to the proof of this theorem, I'11
resall some preliminary notions and results that will be need-
ed,

Some preliminary notions and results. All the topologi-~
cal spaces esonsidered will be eompact (and Hausdorff), and the

meppings - eontimuous. Under the dimension I mesn the eovering
dimension dim. wX denotes the weight of a spase X.

Reeall that a eompact X is an absolute extensor for zero-
dimensional eompaets (X6 AE(0)), if for any zero-dimemsional
sompact B and for any its elosed subset A any mapping g:A—>X
can be extended over the whole B, Such spaces have been scii-
vely studied (see a recent survey of 3Zepin [111; note here
that dimensional properties of AE(0O) ‘s have been eonsidered al-
so in [4],[2]1). A similar property of a mapping is O-softneas.
Let us recall that a mapping £:X—> Y is said to be O-soft if
for any zero-dimensional compact B, any closed subset A of it,
and any two meppings g:A—>X and hiB—> Y sueh that £g = h/A
there exists a mapping k:B—> X such that fk = h and k/A = g,

Prom §60pin's results it follows that every O-soft mapping
is open and surjective. Michael ‘s selection theorem (9] implies
that for meppings between metriec eompacts the sonverse is also
true. On the other hand it is easy to see that a constant
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mapping of a compaet X is O-soft iff X is AE(O). So a simple
example of an open but not O-soft mapping is & eonstant map-
ping of any eompact whieh is not AE(0). Thus the elass of O-
soft mappingg is strietly included in the class of open ones.

An inverse system {X ,pﬁ s A indexed by the ordinals
less than some A 1is said to be eontinmuous if for all limit
ordinals o < A , the natural mapping from X, to '
Um{x ,pf,’r} is & homeomorphism, If S; ={X .95 s A3 snd
S, ={Y_ .qﬁ » A} are inverse systems and for each o« < A
£, 3X, —~ Y, 1is & mapping sueh that all the rectangular dis-
grams that arise are eommtative, then the system {f_ soc < AS
i3 called & morphism between 8, and 82. Clearly, in this case,
there exists s limit mapping lim £ :lim 8,—> lim S,. 111
denote rectangular diegrams eonsisting of the eompacts X .q9
23

Yoo Lo v Yo and corresponding mappings %(4-1' fx v D,

ol
d’::" by D( ,oc+1),
Let us recall [11] also that for & eommutative disgram
22 N
D= P q
£
X be!

the diagonal pA22 (see [3]1) of the mappings p and 1, eonsi-
dered as a mapping of X, into the fibered product of X, and
Y, with respeet to f; and q (see [1]) is said to be a eharae-
teristie mapping of D.

Clearly, a diagram "is"™ a eorresponding fibered product
iff its characteristie mapping is a homeomorphism. Note also
that a disgram is biecommutative (8] 1ff its ocharacteristies
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mapping is surjective (see, for example, L[11]).

O-soft diegreams and the proof of the theorem.

Definition. A reetangular ecommtative diegram is said to
be O-soft 1iff its characteristie mapping is O-soft.

Lemme 1, Let D be a O-poft diagram. Then for any zero-
dimensional compact B, any elosed subset A of it, and any three
mappings h:B———’Yz, s:L——»Ia and k1:B—> x, sush that f1k1 =
= gh, £, = h/A and pg = k,/A there exisis a mapping ky:B —>
~—>X, sush that g = k2/1, £k, = h and pk, = k.

Proof. Let Z be a fibered product of I, and Yz with res-
peot to £, and q3 let q':Z—> X, end £;32—> Y, be the canoni-
eal projections (see [1]1). Clearly the diagonal k1Ah maps B
into Z. It is not hard to show that (k,Ah)/A = rg where r:
tX,~—> 2 18 a eharasteristic mapping of D. By our assumption
r 18 O-soft. Consequently, there exists a mapping kZ:B——> 12
sueh that ‘rkz = k1Ah and g = kZ/A. It is easy to check that
k2 is the desired mapping. The lemma is thereby proved,

Lemma 2. Let 8y = §X,,p°,23 and 8, =¢Y_,q7,a;
be two well-ordered continmuous inverse systems. Suppose that
ff s <A is a morphism between S, and S, such that for
each o < A (A is a limit number) diagrams D(cc ,oc +1) are
O-goft. Then the limit mapping f = lim fec tlim 81 —> lim 82
is O-soft whenever to ig O-soft mapping.

Proof., Suppose that B is a zero-dimensional compast. A
is a closed subset of B and g:A —>lim 3y and h:B—>1im 8,
are mappings such that fg = h/A. Let us prove that there is
an extension k:B—>1ir S, of g sueh that fk = h, Set
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g D -8 amd b = q . (cc <7 ) where p, end q_ are the
1imit projectiona of 31 and 52 respeetively, For oc= 0 the map-
ring fozIo-—> Yo is O~soft by assumption. Consequently, there
exists an extension kozB——> IO of the mapping gosA—9 xo sueh
that fk, = h,. Suppose now that for all c < 8 (3 < A )
we have already conatrueted extensions k " tB—>X . of the
meappings g . in such a way that all the diagrams that arise are
esommutative (in partieular, t, k., =hy ). 1t the mumber 3 is
a limit ordinal, then we set kﬂ = }ci:ﬁ k 1B—> 1/3 + Obvious-
1y, kp /A = &z 4 T kg = by a.ndpzk/,- c (e =B )
Suppose now that [5- o« +1, By assumption, the diagrem
D(c yoc +1) is O-soft, Consequently, we can use lemma 1 and so,
there exists an extemsion kc( +B—X, 4 of & 41 sush that

t k

o+1
Lo+ Bepg =B g andp K =k .

o

Continuing the eonstruction, we get a family{k, J of ex-
tensions of the mappings g, s o < A , and all the diagrams
arising are sommutative, Next, let k = 1lim ko{ tB —> lim 81.
It is easy to cheok that k is the desired extension of g. Thus
£ is O-soft. The lemma is proved.

Lemma 3, Any positive~dimensional ecmpact Y of weight <
is an image of a 1-dimensional compact X of the same weight 7
under O-soft mapping with zero-dimensional fibers,

Proof (by induction on the weight of Y). Suppose that
wf = %,, i.e., Y 1s metrizable. It follows from Pasynkov's
theorem mentioned in the introduection that Y is an imege of
a l=dimensional metrizable esompact under an open mapping with
zero-dimensional fibers. But every open mapping between met-
rizable eompacts is O-sofs.
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Suppose now that the lemma has been proved for all posi-
tive-dimensional eompaet spaces Y of weight < T , and let
wY m v ., As it is well-known, we can represent Y as a limit
spase of a eontinuous well-ordered inverse system Sy =
={Y ,qz,.’/\i where all Y, .'s are eompaets with o<,
Without loss of generality we can agsume that each Y < is po-
sitive-dimensional.

Now let us somstruet a contimous well-ordered inverse
system S8y = {X ,p‘f »A3 "parallel" to Sy and & morphism
{2,} 18y —> Sy such that 1im Sy and lim £, will be the desi-
red objeets.

By the industive hypotheais Yo is an image of a 1-dimen-
sional eompact Io with on = wYO under & O-soft mapping £,
with zero-dimensional fibers. Suppose now that for all o¢ < P
( % <A ) we have already consiructed:

a) 1-dimensional compacts X with wX o= W s

b) O-soft mappings IM :Ic(——r Y, with zero-dimensional fibers;
¢) mappings pof: :Iﬂ———> X, (= pB<y)

such that

1) 2ll the diagrams D(ec yo< +1) are O-soft (o < ¥ )3

2) pf-pi.pﬁ, for every o ,d° end 3 witho <d'< (B3 <9

%
Let us comstruct xx ’ fy and B,

(<)

If the number - is & limit ordinal, then we set
Iy=niXx, ,pfl,y3 end t, = Un_ £, . Obviously, &im X, =1,
WX, = WY, . It 18 easy to check (see [1]) that f,. has & zero-
dimensionsl fibers, By lemme 2, f, is O-soft. Clearly, p¥
are the limit projections of an inverse system {X .pg i

Suppose now that y = o« +1,

Consider a fibered product 2 of X < and Y

{1 with respect
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to £, and gy e Dot (€12 > X end 2742 —> Y4y De the
canonical projections. It follows from [1]1 that £ 1is a sur-
jeotion with & sero-dimensional fiber . It is easy to see also
that £ is O-soft, in particular, open and hence dim % >0 (re-
call that Y 4 is positive-dimensional). Since all the mappings
considered are perfect, wZz wl 4. On the other hand, since Z
is a subspace of the topological product X = Y .4, we have the
following inequalities: wz<max {wk, ,wY ..} = max{wy  ,wr , i<
é'!d 41 Thus w2 = '!ac ST . Again by the inductive hypothe-
sis Z is an image of a 1-dimensional compact x‘“ with d‘ﬂ =
=wl = wi _, under O-soft mapping h with sero-dimensional fibers.
Set £ .4 =2 . hana p* . (¢*") ".n, ovviously, ¢, 1s O-
soft as a composition of O-goft mappings and has sero-dimensio-
nal fibers as a composition of wmappings with sero-dimensional
fibers. Finally, let us note that the arised rectangular dia-
gram is O-soft since its characterostiec mapping, as it is easy
to see, coincides with O-soft mapping h,

Contimiing the construction, we set X = lim{X_,p~,2?
and £ = lim f. » Obviously, dim X = 1, X = wY and £ is surjec-
tive mapping with gero-dimensional fibers. By lemma 2, £ is O-

soft. The lemma is thereby proved.

Now I give a proof of the theorem stated in the introduc-
tion.

Proof. Let Y be a positive-dimensional compact of weight
T . By lemma 3, Y is an image of a 1-dimensional compect Z
with w2 = T under O-gsoft mapping h with zero-dimensional fi-
bers. Set X = ZxDT , where D is the Cantor cube of weight
~ o Let p:X—> Z be a natural projection. Since DT is AE(O),
it is easy to check (see, for example, [5]) that p is O-soft.
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Consequently, & oomposition £ = hp is alse O-soft. For each
point y fyom Y its inverse image £~ 1 (y) coincides with the
product h™'(y)» D¥ . Since h~'(y) is & sero-dimensional AE(0)

of weight < v we can conclude, using e characterization of
DT given by HSepin (see [11), theorem 1), that £~'(y) is ho-
meomorphic te DT . To complete the proof, we only bave to re-
mark that ¢im X = 1 and wX = T ,
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