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CoMMENTATIONES MATHEMATICAE UNI1VERSITATIS CAROLINAE
24,2(1983)

ON THE DIFFERENTIATION THEOREM IN METRIC GROUPS

M.STUDENY

Abgtract: Davies’ example can be embedded isometrical=-
1y into a compact metric group with a translation invariant
metrice On a metric space with an almest uniform measure a

weak type of Differentiation theorem hlds for each measure.

Key words: Compact metrie greup with a translation in-
variant metric, almost uniform measure,

Clasggification: 28A15

In this note we deal with compact metric spaces on which
there are two different measures agreeing on balls. We show
that these measures can always be chosen mutually singular
and that some of such spaces can be isometrically embedded
into a compact metric group with a translation invariant met-
ric. This also gives an example that the Differentiation the-
orem in convergence in measure need not hold in a compact me-
tric group. Further, we prove that on metric spaces which ad-
mit an almost uniform measure, the weak Differentiation theo-
rem of Christensen’s type holds for each measure, Finally, we

show the uniqueness of almost uniform measures.

We shall consider a separable metric space (M,? ). Unless
otherwise specified, all the measures considered will be posi-
tive, finite, countably additive Borel measures. If w and ¥
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are measureg on M then we denote by 4 » a/ (& the Radon-Niko-
dym derivative of the absolutely continuous part Ya of »
with respect to v o We shall denote the closed ball with
centre at x and radius r by U(x,r). Purther, we denote the
gset of all natural numbers by N , the boundary of the set A
by 9A and the distance from the point x to the set A by
SD(x,A). Pinally, U(G,e) ={xe M,Sb(x,G)£ €?! where G is a
subget of M.

1. Remarks to R.O. Davies example. R.O. Davies [4] has

congtructed a well-known example that two different measures
on a compact metric space may agree on balls. Now we shall

show that each such metric space admits also a pair of such
measures which are mutually singular (or mutually ebsolutely

continuous).

Proposition 1. Let % be some collection of Borel sub-
gsets of M such that there is a pair of different measures on

M which agree on F.

A) Then there is also a pair of mutually singular measures
agreeing on F.

B) Then there is also a pair of different and mutually abso-

lutely continuous measures agreeing on 7.

Proof: Let [m ,»] be the original pair. We put A =
=@w=2 3 obviotllsly A is a bounded signed measure and accor-
ding to the Hehn decomposition theorem (see [61) A = AY -~
where At and A~ are mutually singuler. Obviously A*B =A"B
if wB = v B, hence [ A*,A"] has the properties from A)., For
the proof of B) we put u = 4 + 2» and V=Y + 2 -
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It follows from the results of J.P.R. Christensen [ 3]
that no compact Abelian group with a translation invariant
metric admits a pair of different measures which agree on
balls. Nevertheless, we show that the original example of R.
0. Davies can be isometrically embedded into such group. In
this connection we note that the following question is open.
Can a separable metric space which admits a pair of different
measures sgreeing on balls be isometricaelly embedded into a

Hilbert space?
We consider compact metric spaces M with the following speci-

al property.
For each @ > O there is a finite disjoint partition
{Agt  of M such that '
(1) &) ao+4
b) diam Ay < e
¢) if 14] then @(x,y) = @ (z,y) whenever x,z€ A, and
ye AJ .
Lemma 1. Let M be a compact metric space with property
(1). Then there is a sequence of real numbers a,Z 0, for which

lim a, = 0, such that there is an isometry of M into the
m~> 00
space Y =@ETW [0,8,] metrized by d(x,y) = sup {lx, - y,l,ne
e N%¢ .

Proof: It ig easy to find a sequence of finite, disjoint
partitions ﬁ'n such that a)-c) hold for & = n~! and ﬂ’m-l re-

fines ,/in (i.e. if Be ﬁ‘n+1 then there is C e JZn guch that

BcC).
Let ne N s
that Bc L. We put f5 ;(y) = min{@(y,B),diam L3, Clearly
’

we choose Le A and congider Be Apsy Such
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“'B,L(y) - !B,I.(x)l £ @(x,y) for x,y&M. Conversely, it x,ye

€ M then there is [B,L] such that @ (x,y) = |fg 1(x) =

- 25 1(y)| (1% is enough to findn e N such that there are
’

B,Ce A BNC = #, x€B, ye € and x,ye L e Ay).

n+l’
We take a sequence of all pairs [B,,L 1, evidently a, =
= diam I‘n tends to zero. Obviously the mapping x +—>

— -LIBn’Ln(x)} nely 18 an isometry.

Proposition 2. Let M be a compact metric space with pro-
perty (1).

Then there is an isometry of M into & compact Abelian group
with a translation invariant metrie.

Proof: Acocording to Lemma 1 it suffices to embed the spa~
ce ,TlnC(0,8,]. Let C be the unit oirole with the metric
k(x,y) equal to the angle between x and y. We embed isometric-
ally every segment [O,an] into the space C, = C metrized by
k, = &- 7 "k, Since a_ = diem C_ tends %o zero, TN Cy 18
a compact Abelian group with a translation invariant metrio

n(x,y) = sup ik (x ,y),ne N§ .

The Davies example has property (1), hence we can apply
Proposition 2. We transfer a pair [, »] of mutually singu-
lar measures which agree on balls by an isometry into the men-

tioned group. Now we put T = @+ and get the following

Corollary 1l. There is a compact metric Abelian group X
with a translation invaeriant metric such that there is a pair
of measures [ w, '] on X for which
1) w= T

-1
2) f£(x) = :'ngn . (TU(x,r)]™" . wU(x,r) exists

0
for T -almost all xe€ X
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3) 2(x)+4u/T (x) for T -almost all x&X,

2. Weak differentiation. Recall that a locally finite
non-zero measure on a separable metric espace is called uni-

form if the measure of & ball depends only on its radius. Ac-
cording to the results of J.P.R. Christensen (see [2],[3]),

there is no pair of different measures on M esgreeing on balls,
if M admits a uniform measure. Even the following weak form
of the Differentiation theorem helds.

C) VWhenever & ,» are measures on M, >0 and (aBA-‘vB for

every ball B with diam B<r, then w « »-

To illustrate the connection of C) with the Differentiation
theorem we remark that the velidity of the Differentiation
theorem for all measures on M is equivalent to the following
property.
Whenever « , » are meagures on M such that for each
xecM there is a sequence of real numbers rn(x)> 0 tend-
ing to zero for which wU(x,r,(x)) £»U(x,r (x)), then
@ = P .
This leads maturally to the question whether on a metrie space
with a uniform measure the Differentiation theorem holds for
each measure, This was answered by P, Mattila [5] who const-
ructed a compact metric group with a translation inveriant
metric such that the Differentiation theorem does not hold
for its Hear measure. But for Haar measures a weaker form of
the Differentiation theorem holds (see [1]); this was genera-
lized by P, Mattila [ 5] for almost uniform measures.

Definition 1. A locally finite Borel measure m on M is
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called almost uniform if there is c« (0,1 and a nondecreas-
ing function h:(0,r)) > (0,00) such that

(2) c-h(r)< mU(x,r)< h(r) whenever xe€ M and r< Toe

We note that uniform measures are a special case of al-
most uniform measures but one can construct a compact metric
gpace with an almost uniform measure on which there is no uni-
form measure. P, Mattila [5] proved that for an almost uniform
measure m the Differentiation theorem holds in convergence in
measure, i.e.

for each measure »

(3 [mU(x,r)]'lc »U(x,r) tends to d.va/m(x) in m-measure on
every set of a finite measure.

The assumption that m is almost uniform is essential since

Proposition 3. There is a compact metric space admit-
ting a uniform measure and measures ,?» such that
-1
[»u(x,2)] - ¢ U(x,r) does not converge to dx, /> (x) in

» -meagure,
Proof: A stronger result is given by Corollary 1.
We show that a weaker assumption of the existence of an

almost uniform measure implies the weak Differentiation the-

orem C).
Proposition 4. If M admits an almost uniform measure
then C) holds.

Proof: Assume that « and » are measures on M such that
whenever xe M and re (O,rll, then

(4) @ U(x,r) < »U(x,r).
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Let m be an almost uniform measure on M. Let o €(0,1] and
let h:(o,ro) +—> (0,00) be a nondecreasing function sueh that
(2) holds. We put T'm ¥ - “ 3 evidently 3 1is a bounded sig-
ned measure and according to the Hahn decomposition theorem
(see [6]), T = w - u where w and u are mutually singular. We
want to show L £, i.e. u = 0, It is enough to prove that
u is absolutely continuous with respect to w, we show that e-
ven ¢+ usw,

Since each open set is approximable by open sets G with
( 6L+)>)(8G) = 0, it is enough to prove this inequelity on-
1y for such sets G.
Consider r< min&r_,r;} . From (4) it follows
(5) A (x) =jé [mU(y,r)) -1, w(y,r)dm(y) =

£ [, [n0(y, o170 Wiy, e an(y) = A*(x).

We define & function &, on MxM by
(6) 8,(x,y) = 1 whenever @(x,y)<r

g.(x,y) = O otherwige.
By Fubini theorem and inequality (2) we get
K@) = o L DUy, 07 g (x,y) an(y) aw(x) <

£ 1 -JL CmU(x,r)J-l~ n{U(x ,r)n G} dw(x).
Similarly we estimate A~(r) from below end by (5) get
n cz-fM [mU(x,r)) L. m§U(x,r)n G} dulx) <

% jM [mU(x,r)]'l. miU(x,r)n G} dw(x).
Letting r tend to zero, by Lebesgue's dominated convergence

theorem we get the desired inequality.

A uniform measure is unique up to a multiple by e posi-
tive constant (see [3) and also Corollary 3). If m is an al-

most uniform measure on M and £:M —> [KI,KZ] is a Borel
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measursble function (where K, and K, are positive constants)
then the new measure »B = fB £ dm (for each Borel set B) is
almost uniform, too. We show that almost uniform measures are

unique within the framework of this equivalence.

Lemma 2. Let » and « be locally finite Borel measures
on M, Assume that there are real numbers c,de (0,1] and non-
deoreaging functions h,s:(o,ro) +—> (0,00) such thet for each
x€ M the following inequalities holds
(8) c-n(r) &« wU(x,r)<£n(r) for r<T,

(9) c-ar) € ¥ U(x,r)< s(x) for r<r
Then there is a positive K such that
(10) odeK-@ 4 »&fodd™l- K. w.

Proof: Denote by & the family of all open sets G such
that (w+»)(2G) = 0 and there is &> O with (u+»)U(G,¢)
finite. For such set G we put ry(G) = mind{e,r } end vy(r) =
- fM [9{U(x,r)J-1- » U(x,r)n G} d(u.(x) for r<ry(G). By the
Lebesgue s dominated convergence theorem
(11) '}_j;ma* vg(r) = @G for each G € %.

The rest of the proof will be divided into 3 parts.

A) Por GeF and r<r,(@)

(12) o.[s(r)~L. »e &« [ n(x))"L. ve(r) 2[a. s(x)]"1. »a.
We take t (x,y) = [i(r)-h(r))-l-gr(x,y) (see (6)) and put

I = fuxe eyl » ) (x,y).

By Pubini theorem and inequality (8) we get
o-[s(x))" . vG4T2[a(r)) L. »a.

Similarly from (9) it follows
I€in(®] . v 4at- 1,

B) I£G e % and vg(r)>0 fer all sufficiently small r, then



for these r

(13) ¢ [vG(r)] “toyaeln(r)] L. s(r)éﬂd‘vc(r)]'l-vG.

¢} Tthere is a positive mmmber K such that (1C) holds for eash

get G e F.

We chense H e ¥ such thet wH>C 2rd put K = L’(u,H]"l.»H.

If r tend to zero, we see from (13) that

(14) cKe3in [h(r)) L. a2« }?x&[h(rn']‘- s(x)<da . k.
Now we use (13) for general G €« F and get (10). If the

assumptiong in B) do not hold, it is » G = 0 by (12) and by

(11) MG = 0. Now (10) fnllows because each open set of fini--

te measure ig approximable by sets from F.

Corollary 2. If w and » are almost uniform measures on
M then there are constants Kl,K2:>0 end & Borel measursble

function £:M —> T K,,K,] such that £ = du/»

Corollary 3. Let « and » be uniform measires on M.
Then there is a positive number K such that » = K-
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