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ON THE SYMMETRY OF APPROXIMATE DINI DERIVATES
OF ARBITRARY FUNCTIONS
D. PREISS and L. ZAJICEK

Abstract: In the article the strongest relation connecting
the approximate Dini derivates of arbitrary functions is found.

Key words: Approximate Dini derivates, & -porous sets,
Classification: 26A27

In [2]) (see also [1]) the strongest relation connecting the
Dini derivates of an arbitrary real functiom which holds except
on a first category set is found, The corresponding problem for
approximate Dini derivates was partially solved in [3] by the
following theorem,

Theorem A, Let f be an arbitrary function on R. Then there
exists a 6-porous set P such that for any tcR - P or
(1) T2 (8) = 25 (8, £2.(4) = £2(F) or
(11) max(1%y (+) 1,122 (+)1) = max (| T2 (2)1, 1 £5(£)1) = + 0 ©

The second author proved Theorem 1 which is more general
than Theorem A and, after reading his preprint, the first e thor
added an example showing that this result gives actually the de-
sired strongest relation.

In the following the symbol « stands for the outer Lebes-
gue measure in R, The right upper density of Mc R at xcR is

denoted by at(M,x). Por definitions of porous and 6 -porous sets
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860 e.g. [ 2],

We shall use the following simple lemma,

Lemma. Let MCR, X€R and O<e< 1 be given. Then

Um eup w (M N (x+ch,x+h)) / (1-c)h za*(M,x).

- O4
Proof. Let h™li(MN (x,x+h))Z a. Since (x,x+h) =
o0
',nli‘o {x + cn"lh, x + ¢Ph) it is easy to see that
@lx + ™, 1 + ¢™) (¢®h - ™h)"1Za for an inmlex n. From

this the conclusion of our lemma easily follows,

Propogition. Let f be an arbitrary function on R. Then the
- =4
get M(f):= { x; tap(x)< fap(x)< +00% 18 6 ~-porous,

Proof. Define g(y,x) = (£(y) - £(x))(y - x)'l. Por ratio~

nal numbers R<s<3S put
M(R,s,3) = £x; f;p(x)< R<a<?;p(x)< St.

Obviously M(f) = U M(R,s,5). Let rationals R<s8<3S be fixed. For
positive integers n, k denote by M(n,k) the set of all points x
for which

(1) a*(iz; g(e,x)>st,x)>1/n,

(2) w(y; g(y,x)>8, x<y< x+h})-h'1< C for h<1l/k, and

(3) @(iy; gly,x)>R, x-h<y<x})-h~1<C for h<1/k,

where C = min (1/4(3—R)(S-R)"1, 1/2n). Obviously M(R,s,S) c

c U M(n,k) and therefore it is sufficient to prove that M(n,k)
is a porous set for fixed positive integers n, k. Let xc M(n,k)
be given. Choose a number 0< p <1/2 such that

(4) 2p(1-p)~} (S - R - (s-R)/2) < (8-R)/2.

Let a d' > O be given., By (1) and Lemma there exists
h<min(od”,1/k) such that
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(5) ul{z; glz,x)> s}N(x + (1-p)h, x+h)) (ph)~L > 1/n,
We shall prove that
(6) (x + (2-2p)h, x +(1-p)h)M(n,k) = &,
Suppose on the contrary that there exists yc (x+ (1-2p)xn,
x+ (1-p)h)N M(n,k). Then, of course, g(y,x)ZR + (8-R)/2 or
g(ysx)< R + (8-R)/2, We shall show that the both possibilities
yield a contradiction.

8) The case g(y,x)ZR + (s-R)/2,

In this case
(1) (xx +w(y-x))c is; g(x,2)>sStU{s; g(s,y)>RE,
where @ = 1/2 (s-R)(S-R)~1,

In fact, suppose that (7) does not hold. Then there exists
g€ (x,x +(y-x)) such that g(z,x)48 and g(=,y)%R. Consequent-
1y we have

gly,x) = S23) = r(z); - ;f(s)’ = 1(x)) . Sx-n)Ry-«-_g;-x) s .

= R + (2z-x) (S-R)/(y-x)<R + w (8-R) = R + (8-R)/2
and this is @ contradiction., Since y~x<1/k we obtain by (7),(2)
and (3) w(y-x)< G(y-x) + C(y-x) which contradicts to the defi-
nitions of the numbers C, w . \

b) The case g(y,x)<R + (8~R)/2.

In this case
(8) (x + (1~-p)h,x+h)N{z; glz,x)Zxtc{z; g(g,y)>8%.

In fact, suppose that (8) does not hold. Then there exists
ze(x + (1-p)h, x+h) such that g(z,x)Z s and g{z,y)45. Using
(4), we consequently obtain

. - - f(x
8<g(g,x) = £(z 4 z—*xf &

£ z-v)S + -X)(R + (8-R)/2 = R + (s-R)/Z +
= 2 - X
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+ (2 - y)(2 - x)'l(S - R ~ (8=-R)/2)2R + (s-R)/2 +

+2p (1-p)"t (S - R - (s-R)/2)<s=

and this is a contradiction. Since h<1/k we obtain by (8),(5)

end (2) ph/n< 2phC which contradicts the definition of C.
Since d is an arbitrary positive number (6) yields that

M(n,k) is porous at x. Therefore M(n,k) is a porous set and the

proof of Proposition is complete,

Theorem 1, Let f be an arbitrary function on R, Then the-~
re exists & € -porous set P such that for any xc R-P at least
one from the following relations holds:

(1) To (x) = TL(x) end £ (x) = £ (%)
(11) F7(x) = 40 end £7(x) = -
(111) gzp(x) = - 00 and -f;p(x) = 4 0O .

Proof, Suppose that for an x€R no from the relations (1),
(11),(411) holds and max (\E;p(x)i .|g;p(x)|) - max (t?;p(x)t,
l_f;p(x)l) = 4+ 00 , Then it is easy to mee that xec M(f(x)) U
UM(=-£(x)) U -M(f(-x)) U ~M(=~2(~-x)), where M(g) has the same
sense as in Proposition. From this observation, Theorem A and

Proposition , our theorem easily follows.

Theorem 2. Whenever D*, D*, D™, D" R are such that at
least one from the following relations helds
(1) D* = D~ and D* = D7,
(1) D* = 40 and D™ = - 0,
(1i11) D' = -0 and D" = + @,
then there is a function f such that _ﬁ;pf(x) = D%, Q;pf(x) = Dt
D;pt(x) = D~ and _I_);pt(x) = D™ holds for every x belonging to

some residual subset of R,
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Proof. If (1) holds, then the desired functions are const-
ructed in Examples 2, 3 in [ 3],

If (i1) holds, let 4},d"cR be such that at — 0%, o —7"
and ld;l +lagle 2® and let A,BCR be disjoint measnrable sets
such that «(INnA)>0 and « (INB)> 0 for every interval I, Let
In be a sequence of all rational intervals., By induction we shall
construct sequences & hn of functions (n = 0,1,...) nd sequen~
ces Tnc I_of open intervals and Fn of disjoint compact nowhere

n
dense subsets of A (n = 1,2,...) such that

(a) 0% 8, Bry1 “Bpa1 B <1y
(b) for every interval I there is an interval J< I auch that
sup 5nl.1< int anJ,
(¢) wr, 2™, wr < 272 ast (7,,F) and
|hn+1(u)-gn+1(v)| 22781 4404 (T,,F,) for all u,veT,
(d) for every tc T there is s < (0,2™2) guch that
M((t-a,tn)-rn)_{- 278, ana
- 2
(e) for every t¢‘!n either P <2 D 3ist (t,F,) or
By (8)£ int { by 3 (w)=2"(Ix-ul + | x=t1); uet,, xcP 3.

We put g = o, h1 = ) and, whenever &, and h have been de-
fined, we find an interval Jc In and ¢,d € (0,1) such that gné Q<
<d<h, on J. Next we find an intervel Kc J such that wK <
<2734 (a-0)2, WwK22® a1at?(R-0,K) end ((K-a)< 2772 w K,
Let !nc KN A be a compact nowhere dense set which does not con-
-Ne2

tain the center of K such that w(K-Fp )z 2 K. Fipnally we

find an open interval T containing the center of K such that

-n-2 K and we put

-2
@ =27 aist (T ,F)) and w T, £2
Bra1(t) = 8,(t) and h . (t) = n (t) for $&J,

8,,1(1) = max (c,d-27""1 atst (T,,P,)) and hy,,(t) = d for teT,
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and
8,,1(t) = ¢ and hn+1(t) = (c+d)/2 for tcJ-Tp*

Then (a),(b) and (c) ere obvious and (d) follows from
@l 4= uK/2, b+ @K/2)-R ) £ 27 P2 UK 4l £ 22tk
To prove (e) assume that t¢7T , uc? and x€ P, ere such that
h ()2 h  (w)-2" (Ix-ul + [x-t]), If t¢J then
@P, £ WK< 2™ a1st? (R-J,K)= 27" aist?(t,B ). I t€J then,
sccording to the definition of the function by,3+ We get
2%(| x-ul + | x~t1)= (d=-c)/2, hence wK+dist (4P, )+uKZ 27 2"l(g e)
end dist (t,F )> 2 2"1(4_¢) -2uK> 2-8-2(4_c), Hence
Ry pES 2"3"‘4(d )22 27 atst?(t,P)).

Let G 'ka’l mUan -mL:J,) P, end choose s € T,» Put

f(x) = igt hn(x) for xe@G,
2(x) = b 4(8,) + d;(x—an) for xe P, x>8,
£2(x) = by 4(s,) + A (x~5,) for xcP,, x<s, , and

f(x) = 2 in all other cases.

Then G is a residual subset of R of measure zero, f<1 on
G and the set {x; f(x)=2% 18 of positive measure in every inter-
val, therefore (see, e.g.,[4], Propoeition 5)
d({t; £(t) = 21,x) = 1 for all x from a residual subset of R and
nenece Dy (x) = +co end D, f(x) = - o holds in & residual sub-
get 0of Go If t€G, let C = U{Fn; te‘l‘n'§ and
D=U{F,; wF, =2 Pa1at2(¢,F ). From (d) we see that 4(C,t) = 1
and obviously d(D, t) = 0, I X R- (CUDUG) and x ¢ku Py, then
either £(x) = 2 and hence £(x) - £(t)>1 or x belongs to some Py
with nZm. In the latter caese f(x)Zh (s ) - 2 lx-snl. ke nce
£2(x) - £(t) > 2"| x-t ) according to (e). If x¢e C, xcP, and x>t,
then |2(x) = £(%) - af(x-t)12 | £(t)=By 3 (s )] + 2% | g | 2
< 27" atst (1,,F)) + 2w <27 atat (1,7 )< 270t | 5y,
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Similarly we get | f(x) ~ f£(t) - d;(x-t)\f.?'n*l | x-t| tor xecC,
xeP , x<t, Hence Q;pf(t) = D* ana T);pr(t) = D™ for every tc g,

which finishes the proof.

Finally we note that the case (11i) follows frem (ii) by

symmetry.

[4]
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