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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,4 (1982)

EULER POLYGONS AND KNESER'S THEOREM FOR SOLUTIONS
OF DIFFERENTIAL EQUATIONS IN BANACH SPACES
Bogdan RZEPECKI

Abstract: By (PC) we denote the problem of finding the
solutlon of the differential equation x'= f(t,x) satisfying
the initial condition x(0) = X where t belongs to a compect

real interval and f is a function with values in a Banach spa-
ce E, In this note we are interested in the study of the pro-
blem (PC) with applying the method of Euler polygons. Using this
method we obtain some Kneser-Szufla tyve results for (PC) (the
set of all solutions of the problem(PC is a nonempty continuum
in the space C(J,E)) when the function f satisfying regularity
Ambrosettli type condition with respect to the "messure of non-
compactness oc ",

Key words: Differential equations with values in Banach
space, Eﬂ'er polygons, structure of the set solutions, measure
of noncompactness.

Classification: 34G20

1. Introduction and notations. Throughout this peper we
assume that I = [0,a], E is a Banach space with the nomm |l. ||,
B={xeEB:lx - xoﬂ < r}, £ ig & uniformly continuous function
from Ix B into E, and M = sup {) £(t,x) Il :(t,x) € Ix Bi<on.More-
over, let J = [0,h] where h = min(a,ll"lr).

By (PC) we shall denote the problem of finding the soluti-

on of the differential equation
x* = £(t,x)
satisfying the initial condition x(0) = x_ .

In this note we are interested in the study of the problem

(PC) with applying the method of Euler polygons. More precisely,
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using this method we obtain some Kneser-Szufla ([9]) type re-
sults for (PC) (the set of all solutions of the problem (PC)
is a nonempty continuum in the space C{J,E)) when the function
f satisfying regularity Ambrosetti type condition (see [11,[3])
with respect to the "measure of noncompactness o ". The idea

of our work is closed in [10]. See also [5) -~ [8].

2., Definitions. Denote by C(J,E) the space of all continu-
ous functions from J to E, with the usual supremum norm il - .

Definition 1. A function x:J —> E is said to be a solution
of the problem (PC) on the interval J, if it is a differentiable
on J such that x(0) = X x(t)€EB for t in J, and x"(t) = £(t,x(t))
on J., Moreover, denote by S the set of all solutions of (PC) on J,

Definition 2, Let O<€& £ h, 04p<h and let v:J—> B be
a function such that v(0) = x_ and I v(p) - x I £ Mp. We will
call an ( g yp,V)=-polygon Euler line for (PC) on J any function
y(+3 €,v) of the form:

v(t) for O4£t<p;
y(t;€,p,v) = | v(p) for p£t<£p + €;
y(t;3e,p,v) +
+ (- )20t 4y(t57 €,p,7))
for t, £ t< t5,10

here (without loss of generality) we assume that T, = p/e eand
r° = h/e are positive integers, r°>1 and t; =ie for i =
=T, + 1, T, + 2,...,r° - 1.

Definition 3. By an € -polygon Euler line of the problem
(PC) we shall cell any ( € ,p,vV)-polygon Euler line of (PC) with
p=0and v(t)= x on J.

Definition 4. Let n be a positive integer. By Sn we can
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denote the set of all 'x]; -approximate solutions of the problem
(PC) on the intervael J. Here, a function u:J—> E is said to
be % -approximate solution of (PC) on J, 1f it satisfies the
following conditions:

(1) u(0) = x, and Nu(t") - u(tHDIHeM |t = 37 tor
t°, t" in J; "

(11) fu(t") = u(t’) - L, £(s,u(s))ds l<n™ | ¢n - ¢
for all 04t < t"£h;

(11i) gg% fu(t) = x, - j: f(s,u(s))ds | < 1/n.

Definition 5. We say that the function £ satisfies the
condition (8) if any set fu n = 1,2,...} with u, in E; ( = the
closure of S, in C(J,E)) is a conditionally compact subset of
C(J,E).

Let S, be the set of all solutions of (PC) which are a 1li-
mit of uniformly convergent sequence of Euler polygonal lines
which are approximate solutions of this problem on J. It can be
demonstrated (cf. [5]) that under suitable assumptions 5,18 a
nonempty continuum in the space C(J,E). Note that S#So.

Indeed, let £(t,x) = VX for t20 and xZ 0, Let us put
@o(t) = 0 for t20, and

-0 for 0<t £ €,
%M1 -€)%/4 tor ¢ > §
where § >0, It is easy to prove that ¢, end 9? (g > 0) are
solutions of (PC) with X, = 0. Moreover, Qo€ So and ?f # So

for each E .

0
3. Some properties. First we prove that S =”Q4 S,. Ob-
0
viously S Can‘l S,» Let Mu; - u Il —> 0 with u; €8, for all 1.

Since f is uniformly continuous and
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t
fu(t) - x; = _{; £(s,u(s))as | < 1l u - ulll +1/n +

t
+ [ l£(s,u (8)) ~ £(s,u(s))ds,
°
so letting 1 — @ , we obtain
t
fuCt) - x, - fo 2(s,u(s))ds |l £1/n
for t in J. This implies W?:\,"S_;CS and we are done.
Let y(»3 €,pP,Vv) be an (€ ,p,v)~polygon Euler line for (PC)
on J and let tié tétiﬂ (here ti = 1€ for i = T, + 1, r. +

(4]
+ 2,...,1‘0 - 1)0 We have

(1) y(tse,p,v) = v(p) +
-n1

+ mzd (t"o*""‘l - trom)f(trom,y(trom; € p,yv)) +

+ (% = £)208,,y(t34 €,0,V))
and

(2) N y(ts e,p,v) - x - j;t £(s,y(84 €,p,v))as Il £
£liw(p) - x, - £pf(s.v(s))da I+
tn.a—d
+ N 2(s,y(85 €,p,¥)) a8 + I, £
fb

t
éguep:)ﬂv(t) -x, - f‘; £(s,v(8))ds || + Me + Iy
where
L-n°—4 t'uo+mu+4
IO = 'b\«§1 J;N.g"v nf(trova(tromi €45D,V)) =
- 2(s,y(8;3 €,p,V)) | ds +

t

+ J; F2(t;,5(%55 €,00v)) = 2(8,5(85 2,p,v))]l s,

Hence, for ty< t°< tyyy and fetnst

£
el with J£k,

n

. t
(3) ly(t";e,pv) = 3(t'; €40,v) - j;, 2(8,y(8; €,p,v))ds || =

= |(td"'1 - t’)f(tjc’(tjl €sPsV)) +
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w2g Cgamal = Fyam) 1 Eam T (Ey 005 84007)) +
(- tk)f(tk'y(tkievpvv)) -

+

t.
.1
[T #sy(as £ p,v))a8 -
t
R-3-1

ftjfmv"
m=1 *é+m

- j;: 2(s,y(8; g,p,v))ds | &

4
#(s,y(8} €,p,v))ds ~

b,

£ :* “f(tj.y(tda £,0,v)) - £(8,y(8; €,p,v)) || a8 +
- t;'-a-m 1

- '[*-pm W 2Cty 0o T (g 4m# 85Ps7))-

- 2(8,y(85 €,p,7)) | d8 +

. ft:' N 2Ct,,3Ct s €,2s¥)) - 2(8,3(85 &,p, )| as.
Moreover, it can be easily seen that
(4)  Uy(t758,p,7) =~ y(t"5 6,0, V)l 2 M |£7 - tnf
12 N w(t") = v(t")h £ M|t '- t*| for t°, t" in J.

Let ug be an ¢ -polygon Euler line for (PC) on J., Evi-
dently, luy(t") - u (4" <M|t" - t"| for t',t" in J.

Choose 7) > 0 and 0 <d £ 1/n with M + S h<1/n. By uni-
form continuity of f there exists a positive eoé 7, such that
We(tyuc(ty)) - f(s,ue(s)) i< d” for e < min( € osh) and
ty€s<ty ) (1 =1,2,...,7°. Hence, by (2),

t t
Nug(t) - x, = [ #(s,uc(a))as I < [ ') 2(s,u,())0 a8 +

i1 by
+ 51 ftm VeCep,ug(t)) ~ 2(s,u (s)) ]l ds +

+ f WeChugty)) - feug(@)l da < M+ b

for tié. tét“_l. This implies
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5P flug () = x - fot £(s,u.(8))ds 1 £ M + F'h<1/n.
Further, by (3), for tjét'é ty41 and t £t €ty 4 (here J£k)
Hug(e") = ug(e") = [V r(s,u,(e))as 1l £
< f:w i th,ueuj)) - 2(s,ug(s)) ] ds +
+ i§4'1 f;i:”n £ty o0 () =

- f(s,ue(8))ll as +

n
+ J:% 20t ,u (%)) - £(s,ug(s) il ds <
<d 1t - trlen™ e - enlL

So we have proved the following:

Fix en index n, There exists &,>0 such that the Buler’s
€ -polygonals line uce S for any ¢ < min( eo,h). We claim that
for each we Sn there exists a positive elo < €, such that
( € ,pyw)=polygon Euler line y(+ 3 £,p,W)€E Sn for any € < e;/o
and 0<p4h,

In fact, let us assume that 7 < €  end "4 1/n are such
that

sup, lw(t) - x -f:: t(s,w(s))ds Il + 7 M+ d'h<1/n,

By (4) we obtain |y(t’; e,p,w) = y(t"; €,p,wW){l € Mlt" - tn|
on J, Now, similarly as above, there is a positive s'o <7
with \\f(ti,y(ti; €sPsW)) - £(8,y(8; €,0,®)) Il < & for ¢ <« 5’0,
O04péh and tyé 8bty,q, where ty = 1€ , 1 =71 +1,...,r% 1.

Furthermore, let us put

t
1(t) = N y(ts e, = x5 - [, f(s,¥(s5 €,p,w)) as I
for t in J. We have:
t
1) if 04t£p, then I(t) = N w(t) - x - fa 2(s,w(s))as l
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2) if p.‘.tétro+l, then

- L ra,me)) i+

b
+ u.[‘, £(s,w(p))ds ll 2

(]

I(t) £l w(p) - x,
£ sup, lw(t) - x, - j;t £(s,w(s))dsll + € g
3) if tiététi+1, then
t
I(t)étsélg Nw(t) - x, - j; f(s,w(s))ds i+ eM + I <
t
< pum Iw(t) = x = £ 2(s,w(s))dsll+ eu +

Lty ~1
+ A - .
d mzﬂ (tr°+m+1 tro_m)+d"'(t—ti)£-.

t
< pup hw(t) - x - fo f(s,w(s8))ds )l + €M + d'n,
From this we deduce that
. t
) I(t)é‘:&!lelp:J liw(ty - x, - j; f(s,w(s))ds Il +
+ €M + Fh<1/n,
Moreover (see (3)), for tyet’s ty41s and teEtN L,

"

I yCt"; e,00w) - y(t 5 €,p,w) - j;t, 2(s,y(s; €,p,w))ds l <

*R-3-1
<J“tj+1 - ¢ +mzj4 ‘ Yiama1 t;j+m‘ +

8" - 1) = 07T o e,

Consequently

, t"
Iy(t";e,p,w) - y(t';€,p,w) = ft 2(s,y(8; € ,p,w))ds ll<
< oYt o gy

for t ,t"e J, which ends the proof.
Now, modifying the proof from [10], we prove that
g +>ug, PH>3(+; €,p,w) (here € < € ) are continuous map-

pings of (O, e’o) and respectively [O,h] into C(J,E),

For a convenience of the reader we give a short proof of
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the first in these results: Assume €(j)—> € ag j—> 00 .
Let 0<e’, &< &, and let byl tétyy,s B EtL e o, where
ty = je’ , ty = 1€ for j = 1,2,...,h/e’ and i = 1,2,...
...,h/& + Then
"ue.(t) - ua(t) el “g,’(tj) - “z(ti) i+
+ I = 5 20t5u, (44)) = (% = ) 208, u (%)<
ra - - -
£l uel(tJ) “a(ti)u + "(t tj)f(t;’pue:(t;’))
- (%t - ti)f(t."'ual(tj))“ +
- - Z
# 1= byl Nty (8)) = 20t ,u (4)) 1| £
£ - -
< “g'(tj) u (t) 0+ Mit:, tyl o+
AR AN !(tj,u's,(td)) - 2(tg,u (.
This with the uniform continuity of f implies
1}1._:’nﬂo ||u5(3)(t) - u (t)ll = O for each t in J, which proves that
l||ue(” ~ull—> 0as 3§ —> -
Finally, we set
’
U={u:0 <e<ed,
Ve ={i{y(-;&,p,w) 104 péni,
where €< e’o and wesn. Note that the sets U, V' are connec-
ted in C(J,E). Furthermore, y(+; €,0,w) = u.(-)eUn Vo W(e) =
= y(-;€,h,w)eV , and V€S, and V 5, . The set UUV_ is con-
nected, and therefore the set W, =U A TuV iwe Sn§ is connect-
ed in C(J,E). Since Snc Vln, 80 Sn = 'n' Consequently we make
the result (cf, [10]):
The set S, (n=1,2,...) is nonenpty and connected in
C(J,E).

4, Main result. We begin with the following two lemmas
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that are of a general nature.

Lemma 1., Suppose that u,€ §; (n=1,2,,..) and (uk(n))
is a convergent subsequence of (un) with 1limit uge Then u & S.

Proof. We have
(5) lu (t e yas l £ 1/

Nu () = x) = J° 2(8,u,(s) £1/n
(n = 1,2,0e..) for t in J. Since £ is uniformly continuous and
il Yeen) = Yo ll— 0asn—>00 it follows that
t(t,uk(n)(t))-—?f(t,uo(t)) uniformly on J as n —» ¢c© , Repla-
cing n by k(n) in (5) and letting n —> c0 , we obtain uo( t) =
t

=x + [ 2(s,u (8))ds for teJ. It is clear from this that u,
i3 a solution of x° = £(t,x) on J such that u,(0) = x , which

completes the proof.

Lemma 2, Let {X : n = 1,2,...} be a family of nonempty
closed and connected subsets of C(J,E) such that each sequence
(x,.) with € contains a convergent subsequence with limit

%’ 3 AR o g q
in @Q4xn‘ Then the set MO,, X, is connected.

The proof follows directly from the definitions and assump-

tions,.
We now state the main result.
Theorem. Let the function f satisfy the condition (s).

Then the set S of all solutions of (PC) on J is nonempty, com-
pact and connected in C(J,E),

<0
Proof. By the facts above, S =,[_\1 §, and S, (0 = 1,2,.00)

are nonempty connected subsets of C(J,E). Since SC S, 80 S 18
a compact. Let u € 5-; and let (uk(n)) be a convergent subsequen-

ce of (un) with limit u . We have by Lemma 1 that u,€ S. Now it
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0 —_—
follows immediately from Lemma 2 that "LQ,‘ S, 1s nonempty and

connected, and the proof is finished.

5. Application. The measure of noncompaciness o< (X) of a
nonempty bounded subset X of E, introduced by K. Kuratowski, is
defined as the infimum of all € > O such that there exists a
finite covering of X by sets of diameter £« € , (For convenien-

ce, we shall be using below the same symbol o< to denote the
measure of noncompactness in E as well as in other Banach spa~
ces like C(J,E).)

Let us 1ist some known properties of o« (see e.g. [2] or
[4]) which we shall use in our discussion:

Let xcE and let A ={p : n = 1,2,...}, B={q ¢t n=1,
2,++¢} be bounded subsets of E, and let X be a countable bound-
ed equicontinuous family of C(J,E). Then

1° o ({x3%) = 0;

2° 4f «C(A) = O then A is compact;

3% o (ftxixeAy) = |t1 L (A) for eachreal t;

4° o« ({x}ur) = L (A);

5° o« (A) = ot (B) £ ac(dpy = q 2 0 = 1,2,.0.1)5

6° if sup {lixll :xeAI<b, then oc(A)< 2b;

7 pup oL ({y(¥) iy € XY = (X)),

From the Theorem we obtain the following result:

Let L:J=<[0,00)—> [ 0,0) be a continuous function such
that L(0,0) = O and u(t) = O is the unique continuous solution
of the inequality u(t) « [ L(s,u(s))ds for which (Lim w6/t
exists and is equal to O, Suppose that o ({£(t,x)sxe X3) <
L(t,o< (X)) for any subset X of B and all t in J. Then our func-
tion f satisfies the condition (8) and consequently the set S
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is nonempty, compact and connected in C(J,E).

Proof. Let unes—n' for n21, Put p(t) = o (fu, (%) m=z1})
for each t in J.

Let teJ and t > 0. By 5° and 6°

p(t + t7) - p(t) £ cup(t + t7) - w () m>13)e Mt",
Therefore p is continuous and thus t+—> L(t,p(t)) is integrable

on J, Now we prove that

‘t
(6) p(t) &), L(s,p(s))ds
for a1l t in J.

For proving (6), let t€ J. Since f is uniformly continuous,
for any given & > O there exists J” > O such that |s - 8'|<
lx - x"Nl<d” implies |l £(8,x) - £(8 ,x") |l < £ /4. For a posi-
tive integer k>d L. temax(1,M), let h = t/k and 8 < 5, < ...
cee< By = t where 8, = 0 and By =8y 4 + ho with 1 = 1,2,..4,ke
Then | £(s,u,(8)) -~ f(s;,u,(8;)) Il < £/4 (n =1,2,...) for
8y 1< 8%8s; end therefore

I un(si) - un(si-l) - hof(ei'un(si)) " <

5

£lluy(ey) = u(sy 1) - j,; 2(s,u (s))ds il +
-1
< 3

s 1, teuge))as = [ % 2(ag,uy(ey))as ) £

~L
gnMey -8y 11+ [, I 2s,u(e)) -
- f(si,un(si))“ ds<(1l/n + € /4)h £Nh g/2

for all nZ ng. Now, by 3° - 6°,
e
12, (p(s3) = p(sy_3) = hoee (£2(sy,uy(8;))mZ13)) £

)
£ .2 owuglsy)) - u(e; 5) - n 2(sy,u,(84))n218) =
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1]

&
2y o u (sy) - uylsy 3)) - b f(sy,u,(sy))mzn3) 2
&

=

=1

i

2h°8/2 = Ekho = gt

>

and

&
-2 (P(By) = p(sy_3) = hoee({2(s;,u(8;))mz13))2 - © to

Hence

=1z
& &
=, %, (p(sy) - plsy 1)) =3, (p(s;) - play j) -

I’ *
Lé,, hoL(si,p(si)) > .2 hoe(,({f(si,un(si)):nzﬂ) =

- hy (££(s;,u (8;))mZ1%)) z (p(t,) -

- p(t,)) - €% = p(t) - p(0) ~ €t = p(t) - £t.
Consequently

t &
Jp Tsp(8))ds = 1im = h L(s;,p(s;))Zp(t) = Et.

Since € > O is arbitrary, we have j‘ot L(s,p(8))ds= p(t) for t
in Je.

It is easy to verify that 11% p(t)/t = O, By (6) and the

t> 04

continuity of p from this it follows that p(t)= 0 on J. Final-
ly e fu,mmZ1 ) = Bup <({u,(t):n=1%) = 0, since fu mnz1}
is a bounded equicontinuous family. Hence{151n121§ is condi-

tionally compact, and we are done.
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