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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROilNAE 

23,2 (1982) 

CONSTANT AND VARIABLE DROP THEOREMS ON METRIZABLE 
LOCALLY CONVEX SPACES 

Mihai TURINICI 

Abstract: A maximality pr inc ip l e on quaai-ordered qua­
s i -metH!zable uniform spaces, appearing as a common extension 
of both "uniform" Brxkidsted s and "abstract" Br^zia-Browder a 
onea i s used to obtain a number of constant as wel l aa var i ­
able drop theorems on metrizable l o c a l l y convex apace*. 

Kev words: Quasi-ordered quasi-metrizab le uniform spa­
ce, maximal element, closed mapping, constant drop , support 
theorem, variab le drop, mapping theorem. 

Class i f i ca t ion: Primary 54E35, 54C10, 46A05, 52A07 
Secondary 54C08, 54H25, 47H17 

Let X be a f i n i t e or i n f i n i t e dimensional Banach space. 

For any y i n X and r;>o, l e t S (y ,r ) denote the closed sphere 

with center y and rad ius r . Given x , y e X and r .>o ( r e s p e c t i ­

ve ly , given x e X and o^q-< l ) l e t K(x;y,r) (V(x,q)) ind icate 

the subset of a l l combinations Ax+(l-S\ . )z , o - - A . 6 1 , z e 

€ S(y,r)(S(o*qllxli)) and c a l l them the constant (variab le) 

drop generated by x, y and r (x and q) . The fol lowing r e s u l t s 

eatab l iahed by DaneS 112 3 (cf . alao Brandsted [53) and, r e a -

pec t ive ly , by Turinici 128J muat be mentioned as a s tar t 

point of our development*. 

Theorem \ . Let Y be a c losed aubaet of X and l e t y e X, 
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r > o be such that Y is disjoint from S(y,r). Then, to every 

X G Y there corresponds a z c bd(Y) n K(x;y,r) ( here, bd indi­

cates the boundary) with the property K(z;y,r) ={zl* 

Theorem 2. Let X-̂  be a closed subset of X and suppo9e q e 

e Lo,l) is 3uch that, for any x + o in X-_ the subset X-̂ E. V(x,q) 

contains more than one point. Then, we necessarily have oeX,. 

As already pointed out by Brdzis and Browder [43 (se« al­

so Ursescu [293), the first result - appearing as a non-convex 

extension of the famous Bishop-Phelps' support theorem [3 3 -

represents a very appropriate instrument of the normal solva­

bility theory as developed by Pohozhayev £233, Browder £83, as 

well as by Zabreiko and Krasnoselskii 1313* On the other hand, 

as indicated in the above quoted author s paper, the second 

result may be viewed as an abstract variant of a very interes­

ting mapping theorem established by Altman [13 and having some 

useful applications to nonlinear programming [23. Taking into 

account these facts, a metrizable locally convex generalizati­

on of these contributions may therefore be of interest. It is 

precisely our main aim to state and prove such a couple of ex­

tended variants of the above results, the basic tool of our 

investigations being a maximality principle on quasi-ordered 

quasi-metrizable uniform spaces appearing as a common extensi­

on of both "uniform" Brandsted's and "abstract" Br^zis-Browder a 

ones. As applications, a metrizable locally convex version of 

the above quoted Bishop-Phelps support theorem and, respecti­

vely, Altman s mapping theorems will be given. 

Let X be a nonempty set and let D =- (d^ieN) be a denu-

merable family of quasi-m~-^^ics on X. It is well known that, 
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by the construction 

d a. ..21K1(l/2
i)d./(l + d,) 

-tv e N 1 1 

the structure (X,d) appears as a quasi-metric space (respecti­

vely, a metric space in case D is a sufficient family (dj(x,y)~ 

= o, all ieN imply x = y)); for this reason, (X,D) will be ge­

nerally termed a quasi-metrizable (respectively, metrizable) 

uniform space. We shall say the sequence (x ;neN) is a D-Cau-

chy one provided that it is d̂ ""Cauchy for any ieN, and D-con-

vergent to x when d^Cx fxi—> o as n—> oo for all ieN (in 

which case we write x — > x ) . Also, ̂  being a quasi-ordering 

(that is, a reflexive and transitive relation) on X, let us say 

the sequence (x ;neN) is monotone if x . ^ x , whenever i^.j, and 

bounded from above provided that x ^y, all neN, for some y in 

X called in this context an upper bound of the considered se­

quence. Finally, the element z of X will be said to be D-maxi-

nial when z£y implies d^(z,y) = o, all ieN. 

The following maximality principle will play a central ro­

le in the sequel. 

Theorem 3. Let the quasi-ordered quasi-metrizable uniform 

space (X,D,^) be such that 

(i) any monotone sequence in X is both D-Cauchy and boun­

ded from above. 

Then, to every x in X there corresponds a D-maximal element z 

in X with x^ z. 

Proof. Of course, without any restriction we may suppose 

D is an increasing family (d. _£d. whenever i^j). We claim the 
-*• J 

following property holds at every x in X 
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(1) for any ieN and © p- o there exists y « y(i, e )> x such 

that d i(y,z)^ e , all z>y. 

Indeed, assume by contradiction (1) were not valid. Then, the­

re must be a couple ieN, e- >• o such that, for any y>x, a 

z>y may be found with d..(y,z) > e .It immediately follows 

a monotone sequence (yn;ncN) in X may be chosen with d^(ynf 
yn+l^ z 0 ' a11 n € N > contradicting the first part of (i) and 

proving our claim* In such a case, given x . i n X, it is not 

hard to construct a monotone sequence (x ;ncN) in X with x^x n, 

all neN, and 

(2) neN, y z x n imply dn(xn,y)-< l/2
n. 

By the second part of (i), xn-£ z, all n e N (so, by (2), 

x n — > z ) for some z in X. Clearly, x£z; moreover, again by (2), 

z^y implies xn-2->-y that is, d1(z,y) « o, all ieN, and the 

proof is complete. Q.E.D. 

A partial indication about the power of this maximality 

principle follows from the considerations below. Let (Xfl£) be 

a quasi-ordered set, (X,e,---) a quasi-ordered metric space and 

( 9-f ;ie N) a denumerable family of mappings from X into Y. As 

a first application of Theorem 3, the following "combined" ma­

ximality principle may be formulated. 

Theorem 4. Suppose that, for any ieN 

(ii) 9>£ is increasing 

(iii) every monotone sequence in 9^(X) is e-Cauchy 

Then, the following conclusions are - respectively - valid. 

A). Under the assumption: there is a uniformity % on X 

with 
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( i v ) any monotone 2(-Cauchy sequence (x ;n€N) i n X con­

verges to some x in X with x .4 x, a l l n e N 

(v) for every U in 01 there e x i s t s i e N and e > o such 

that x£y and e ( 9 i ( x ) , 9 A (y ) ) -^ £ imply ( x , y ) c U 

given any x in X there e x i s t s z in X with x£ z and, in a d d i t i ­

on, z ^ y imp l ies ( z , y ) € U, a l l U in QJL • 

B) . Under the supplementary hypothesis 

(v i ) any monotone sequence in X has an upper bound 

to every x in X tnere corresponds an element z in X with x&z 

and, in addition, z - . y imp l ies 9.^(z) =- 9-i(y)> a l l i e N. 

Proof. Let us define a family of quasi-metries D s (d*; 

i e N) on X by 

d . (x ,y ) =- e( ^ ^ ( x ) , 9 i ( y ) ) , a l l x , y e X . i e N 

and l e t (x ;n€N) be a monotone sequence in X. By ( i i ) + ( i i i ) , 

the f i r s t part of ( i ) w i l l be es tab l i shed . I t remains only to 

prove ( iv) • (v) lead us to the second part of ( i ) (because, 

by ( v i ) , t h i s assert ion i s t r i v i a l ) . To t h i s end, l e t U in 21 

be arb i trary f ixed and l e t i € N, e ^ o be introduced by ( v ) . 

From the above conclusion about our sequence, there e x i s t s 

n * n ( i , e ) € N such that d^(x ,x ) ** e , a l l p , q e N, n£ p ^ q 

so (again invoking (v) ) (x ,x ) € U , a l l p , q ^ N , n .^p^q , prov­

ing (x ;neN) i s a monotone 'Zt-Cauchy sequence and completing, 

by ( i v ) , our argument. Consequently, in e i ther case Theorem 3 

appl ies . Q.E.D. 

Let (X,D) be a quasi-metrizab le uniform space. A func t i ­

on «p:X—> H w i l l be said to be D-isc (use) provided that , for 

any sequence (x n ;n€N) in X and any couple x c X , t e R , r e l a t i ­

ons xn-?--->x and <f(*n) -* t ( 2 t ) , a l l n c N , imply < y ( x ) ^ t ( - ? t ) . 
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Also, (X ,D ) being another quasi-metrizable uniform space, 

we shall say the mapping T:X—> x' is closed when xn-=-~> x and 

Tx n—-> x' imply Tx =* x'. Suppose in what follows (X,D) and 

(X ,D ) are complete quasi-metrizable uniform spaces and T: 

:X—•> x' is a closed mapping from X into x'. Let us introduce 

a new denumerable family of quasi-metrics E = (e^jicN) on X 

by the convention 

ei(x,y) = max (di(x,y) ,d^(Tx,Ty)), x,yeX, i c N 

In t h i s case, as a second app l icat ion of Theorem 3 , the fo l low­

ing "operator1* maximality pr inc ip l e may be formulated 

Theorem 5. Let the denumerable famil ies ( <p±;i£W) and 

( Y ^ i e N ) of functions from X into R be such that 

( v i i ) cy± and Y± a r e E "l sc and bounded from below, for 

a l l i € N . 

Then, to every x in X there corresponds an element z in X such 

that (a) d jL(x,z) 4 <?±(x)- <?±(z)t d^(Tx,Tz) £ ^ ( x ) - y±lz), 

i € N , (b) for any y in X with d±(z9y) £ g>±(z)- 9±(y)$ 

d± (TzfTy) £ ^ ( z ) - Y±(yh i € N, we necessari ly have d±(zty)~ 

« o f d±(TzfTy) a o, a l l i € N. 

ProQf. Let us define a quasi-ordering £ on X by 

x£y i f and only i f d±(xty) £ ^ ( x ) - $>±(y) f and 

d^(TxfTy) ^ y±(x)- Y±(yh a l l i € N 

and l e t (x n ;n£N) be a monotone sequence in X, that i s 

d i ( x n» x m ) * » ± ( x n } - »i(*«>"» d i ( T x n» T x m ) * T±^n
)' 

" ' / i ( x m'» a 1 1 n ' m c Nf n*m> a 1 1 *^ N » 

F irs t ly , as ( <f±(x ) ;n€N) and ( t j^ (x n ) ;n€N) are decreasing 

sequences (hence, by the second part of ( v i i ) , Cauchy sequen­

ces) in R for a l l i « N, i t immediately follows that (x R ;nsN) 
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and (Txn;ncN) are D (D')-Cauchy sequences in X (x') or, in ot­

her words, that (x ;neN) is an E-Cauchy sequence in X. Second­

ly, by completeness hypotheses, x R — > x and Txn---~->.x' for some 

x € X, x € X' and this gives (by closedness hypothesis) Tx =- x' 

that is, x — > x in which case, from the preceding relation we 

get (by a limit process combined with the first part of (vii)) 

di(xn,x) .* 9i<* n)- 9 i(x), d^(Txn,Tx)^ Ti
( xn }- Ti<x> t 

all neN, ie N 

proving x ^ x , all neN. Consequently, Theorem 3 again applies 

(with D replaced lsry E) and the proof is finished. Q.E.D. 

Concerning the first of these applications, it must be no­

ted that, in case Y^= R, e = the usual distance in R and -£ the 

usual dual ordering on R, Theorem 4(B) - reductible to a previ­

ous author's result 126J - appears as a sequential version of 

Br^zis-Browder's ordering principle C4J, while Theorem 4(A) as 

a sequential extension of a similar Brjdndsted s maximality 

principle [53. At the same time, the second of these applica­

tions - refining Theorem 2 of the above quoted author s paper -

may be viewed as a Mdenumerable" variant of a related Downing— 

Kirk's result [133 (see also Turinici [273) as well as (under 

the assumption T is the identity mapping) of a variational ty­

pe Ekeland/ s result [14, 15, 163 or, equivalently, - after 

Br^ndsted's pattern C63 - of the fixed point Caristi-Kirk's 

theorem [10, 19J (see in this direction Kasahara [18J, Browder 

[93, Wong [303 , Pasicki I22J, Siegel [243, Turinici [25 3, 

Br^ndsted [73 for a number of interesting new viewpoints con­

cerning this problem) so that, our initial maximality princip­

le extends all these contributions. 
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In what follows, a precise statement of the results an­

nounced in the introductory part of the note will be perform-

td. Let X be a metrizable locally convex space whose topology 

it generated by the denumerable sufficient family of seminomas* 

D at ( I • Ij^icN). For any y in X and any r = (ri;ieN) in R
N 

with :r.|> o, icN, let B(y,r) denote the subset of all z in X 

with l a r - i l . ^ r^, U N ; also, given any x in X, let K(x;y,r) 

indicate the subset of all combinations .A x*( 1-A,) z, o-f=^^l, 

i€B(y,r), and call it the (constant) drop generated by x, y 

and r# Clearly, B(y,r) is a closed convex subset of X and so 

it K(x;y,r); indeed, let (un =- &n% • (1-A,n)vn;ne N) - for 

sowe (&n;ncN) in lIot13 and (vn;ncN) in B(y,r) - be such that 

» J->u for some u in X then (observing that, without loss of 

generality one may suppose A,n4-1, ne N and 3-n—> A # l) vn= 

* (u^ -^nx)/(l- An)-=?^(u- ./tx)/(l-Jl )eB(y,r) proving our 

assertion. Suppose further (X,D) is a complete metrizable lo­

cally convex space. Then, as an interesting application of our 

initial maximality principle, the following (constant) drop the­

orem can be derived. 

Theorem, 6. Let the closed subset Y of X, the element y in 

X and the vector r » (r^jicN) in R with r ^ o , i€N, be such 

that Y is disjoint from B(y,r). Then, to any x in Y and any 

s » (sjjicN) in R with ô ŝ -crr.̂ , ic N, there corresponds a 

8 » i(x,e) in bd(Y)nK(x;y,s) with YHK(z;y,s) = iz\. 

£&&&£• Lot 6 denote the ordering on Y defined by 

w4» if and only if veK(u;y,s) 

(tht foot that «t is actually an ordering is an Immediate con-

ttqutnoe of our contentions). Given x in Y arbitrary fixed, let 

WO put fti » l-c-yl̂ t icN; also, denote by oC± the I • ..j-dis-
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tance between y and Y ( c l e a r l y , O C ^ P ^ f o r an ± e N. Now, 

l e t u, v in Y be such that x ^ u * v . As u,v € K ( x ; y , s ) , i t c lear­

l y follows l u - y l ^ l v - y l t ^ fi± + a i f a l l i £ N . On the other 

hand, as u^v means v » ^ u + ( l - ^ ) f f0r a o m e 0 *. x £. 1, w £ 

£ B ( y , s ) , one has 

I v - y i ^ A l u - y l i • ( l - ^ ) I w - y l ^ X\ u-y l± • ( l - A ) a l f i € N 

and th is immediately gives (by the above re la t ions ) 

( l - A K c C j - s ^ . * ( l - A H l u - y l ^ - s ^ l u - y ^ - I v - y ^ , i € N 

Final ly, again from the re la t ion between u and v 

l u - v l i ^ ( l - A ) l u - w l i ^ ( l - A ) ( fi± • 2 8 ^ , i € N 

s o , combining with the preceding one 

l u - v l ^ U ^ i-«-2s i)/CoC i"-s i))Clu-yI i - I v - y ^ ) , i € N 

proving condition (i) of Theorem 3 will be satisfied (witn X 

replaced by Y) and completing the argument. Q.E.D. 

Again let Y be a closed subset of X, with a nonempty boun­

dary bd(Y). We shall say xebd(Y) is an essential point of X 

provided that, given any neighborhood V of x there exists y in 

V and r * (r^icN) in RN with r ^ o , i£N f such that V.oB(yfr) 

and YnB(y,r) =- #; the subset of all such points will be term­

ed the essential boundary of Y and denoted by Bd(Y). Also, % 6 

e bd(Y) will be called a support point of X when the element y 

in X and the vector r * (r^icN) in R with r ^ o, icN f mar/ 

be found with YnB(y,r) «- 0 and YnK(z;y,r) »-fis"J; the subset 

of all points having such a property will be denoted by Sp(X)v 

Now, as a direct consequence of the above result, the following 

"sequential" support theorem can be stated end proved. 

Theorem 7. Let Y be a closed subset of X having a non-
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empty essential boundary (hence, a nonempty boundary). Then, 

the subset of all support points is nonempty too, and dense in 

the essential boundary. 

Proof* Let x be an arbitrary point of Bd(Y) and let V be 

a neighborhood of x (of course, without any loss one may suppo­

se V is closed and convex). By the definition of the essential 
/ \ N boundary, there exists y in X and r = (r^jieN) in R with r.,>-

> o , i £ N, such that Vr?B(y,r) and YnB(y,r) * 0. By the above 

theorem, given s = (s.jieN) in R with o-Oa-^r^, icN, a z = 

* z(x,s) in bd(Y)n K(x;y,s) may be found with YnK(z;y,s) = *fzj. 

Clearly, zcSp(Y); moreover, V3B(y,r) implies z cV and this 

ends our argument. Q.E.D. 

Regarding the elements involved into the above statements, 

some remarks are in order. Firstly, it is clear that, in case 

D reduces to a single element (that is, in case (X,D) becomes 

a Banach space) these results coincide with Theorem 1 and, res­

pectively, the Bishop-Phelps support theorem quoted in the in­

troductory part of the note. Secondly, as remarked by Holmes 

[17, ch. Ill, § 203 it is possible to construct closed subsets 

Y of X having no support points (hence no essential points) 

and this shows that, generally, the conclusion of Theorem 7 has 

a "relative" character (modulo the assumption Bd(Y) is not emp­

ty in case bd(Y) is such) in contrast to the "effective" charac­

ter of the normed case (where Bd(Y) coincides with bd(Y)). Fin­

ally, it should be noted our statements may be put, without ma­

jor changes into a "pure" metrizable uniform framework, by the 

use of a well-known Kuratowski s embedding procedure 121, ch. 

II, § 153; a detailed version of such a development will be gi-
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ven elsewher*. 

Suppose in what follows Y is a complete metrizable local­

ly convex space under the denumerable and sufficient family of 

seminorms D'= ( I- l^ieB). Given any x in Y, let lxl denote 

the vector (Ixl^i £ N); also, letting q = (q^icN) in RN with 

o ^ q ^ l , ieN, let us put V(x,q) = K(x;o,qlxl) and call it 

the variable drop generated by x and q. Now, as a useful ap­

plication of the operator maximality principle we expressed be­

fore, the following variable drop theorem can be derived. 

Theorem 8. Let Y, be a closed subset of Y having the pro-

perty: there exists q ~ (q-jieN) in R with o^-qi<rl, 1<=N, 

such that, for any y in Y* distinct from o, the intersection 

T . ,nV(y,q) contains more than one point. Then, we necessarily 

have oeY* (o is an element of Y,). 

Proof. Let u, v in L be such that veV(u,q); then, v = 

= Jtu • (1- A)w for some o-£ A <£• 1, weB(o,qlul) so that 

I v I ^ A l u ^ + (1-A)qiluli> ieN 

or, equivalently, 

(l-A)(l-q1)|u ±U\u ±\ - IVIJL, ieN 

At the same time, again from the relation between u and v 

lu-vl^ (l-A)(l+qiJ|uli , icN 

so, combining with the preceding one 

I u - v l i . 6 ( ( l * q 1 ) / ( l - q i ) ) ( l u l i - \v\±), i£N 

proving all conditions of Theorem 5 hold (with X = Y, , D = D' 

and T = the identity mapping). Consequently, given x in Y, , 

there exists z in Y^ satisfying conclusions (a) -*• (b) of that 

result and this necessarily implies z = o because, otherwise, 

the hypothesis we accepted about the nonzero elements of Y^ 
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would oontradict the conclusion (b). Q.E.D. 

KB an i-.mediate consequence of this result, we have 

Theorem 9. Let X be an abstract set and T a mapping from 

X into Y with T(X) closed in Y. Suppose there exists a vector 

q a (q1;ieN) in R with o ^ q . ^ 1 , icN, such that, for any x 

in X with Tx%o, a xc X may be found with Tx + Txe V(Tx,q). 

Then, Tz = o for some z in X. 

A simple inspection of this result shows the essential 

property of the mapping T we used here is the closedness of 

its range T(X). It would be interesting to know whether this 

condition may not be replaced by the closedness of its graph 

<?,-, « ((x,Tx);x€X) in case we suppose X is endowed with a qua-

si-metrizable uniform structure D =- (d1;icN). In this direc­

tion, as a completion of the preceding statement, we have 

Theorem 10. Let the complete quasi-metrizable uniform 

space (X,D) and the closed mapping T:X—> Y be such that a 

q » (q-i.ie N) in RN with o ^ q ^ l , i e N and a r = (r^ic N) 
N i n R with r 1 > o , i e N may be found with the proper ty : fo r any 

x in X with Tx4=o t he re e x i s t s x i n X with Tx=j-Tx€ V(Tx,q) and 

d 1 ( x , x ) ^ r 1 I Tx - T x / i f i c N . Then, the equat ion Tx « o has 

at least a solution in X. 

Proof. By the above developments it follows that, x and 

x given as before 

d1(x,x)^(ri(l^qi)/(l-qi))(lTxli - iTx!.,), ieN 

lTx-Txli^((l+qi)/(l-qi))(iTxljL - iTxf.,), i€N 

As Theorem 5 again applies, it follows that, given x in X a 

corresponding z in X may be found with the properties (a) •*-
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• (b)> of t h a t r e s u l t . Suppose Tz-Jro then , by the hypotheses 

we adopted, t h e r e e x i s t s 2" i n X with Tz +TST€V(Tz,q) and 

d . ( z , z* ) - r r . 1 T z - T z L , U N so t h a t , by the above r e l a t i o n s , 

(b) w i l l be c o n t r a d i c t e d . Therefore , n e c e s s a r i l y , Tz = o and 

the r e s u l t fo l lows . Q.E.D* 

From a t e c h n i c a l viewpoint , i t i s now evident t h a t , i n 

case (Y,D ) reduces to a Banach space , Theorems 8 and 9 r e d u ­

ce to Theorem 2 and, r e s p e c t i v e l y , Altman's mapping theorem 

[1J (see a l so Kirk and C a r i s t i T20]) ; moreover, i n case (XfD> 

reduces to a complete met r ic space , Theorem 10 may be i d e n t i ­

f i ed with another Altman s mapping theorem (see the above r e ­

ference as wel l as Downing and Kirk f l 3 3 ) . On the o ther hand, 

as pointed out by these au tho r s , t h e i r con t r i bu t ions extend a 

s im i l a r Browder s one E8.1 s o , the same conclusion may be f o r ­

mulated about our s t a t e m e n t s . F i n a l l y , i t must be noted t h a t , 

by the same procedure as tha t used he re , one may s t a t e and 

prove a wdenumerablew va r ian t of some recen t con t r ibu t ions i n 

t h i s d i r e c t i o n due to Cramer and Ray L123(see also Altman 121); 

a development of these arguments w i l l be done in a forthcoming 

paper. 
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