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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CARCflNAE 

23,1 (1982) 

INVERSE LIMITS OF SMOOTH CONTINÜA 
Wlodzimierz J. CHARATONIK 

Abstract: It is proved that (l) smoothness of conti-
nua in the sense of Mafikowiak is preserved under the inver­
se limit operation for sequences* with bonding mappings be­
ing monotone relatively to* points which form a thread; and 
(2; the property of Kelley is preserved under the inverse 
limit operation for sequences of continua with confluent 
bonding mappings. 
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Classification: Primary 54F15 
Secondary 54B25, 54C10 

The aim of this note is to prove that smoothness of 

continua in the sense introduced by MaSkowiak ([5],p. 81) 

is preserved by the inverse limit operation if the bonding 

mappings are monotone relative to points which form a thread. 

This is an answer to Problem 2 asked in til. It is also pro­

ved that the property of Kelley (see [7], p. 291; cf. E6J, p. 

538) is preserved under the inverse limit operation with 

confluent bonding mappings. 

All spaces considered in this paper are assumed to be 

metric continua. The following notation will be used. The hy­

pers pace of subcontinua of a continuum X (with Hausdorff met-
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ric) is denottd by C(X), and we put CT̂ CX) for C(C(X)). Given 

a continuous mapping f:X—-> Y, we denote by f** :C(X)—> C(Y) 

the induced mapping defined by f* (K) = f(K), and analogously 

f**:Cr(X)—>C (Y). Further, we use the lower and upper limits 

and the limit of a sequence An of subsets of a continuum X 

(in symbols Li A , Ls A and Lim An respectively) in the sen­

se of £2], § 29, p. 335-340. Similarly, the notion of upper 

(lower) semi-continuity of a set-valued mapping will be used 

in the sense of 12], § 18, p. 173 (cf. £33, § 43, II, Theorems 

1 and 2, p. 61 and 62). The symbol 4x ,f J^Li denotes the in­

verse sequence of continua Xr with continuous bonding mappings 

f i : X i * l — ^ x i . w e d e n o t e by X s lim-fX^f1! the inverse limit 

space, and by #r : X — > X the projection from X into the i-th 

factor space X . Given two inverse sequences ix ,f l^-i and 

-fY,S I^LJI and a mapping fh 1^^ between the two sequences, 

we denote the limit mapping by lim h1: lim f X1,f ̂ — > \±m {Y1,, 

g1} (cf. £23, p. 2B-30). 

Finally recall that a continuous mapping f:X—> Y is said 

to be (see 143, p. 720): 

- confluent, if for every subcontinuum Q of Y each component 

of the inverse image f (Q) is mapped by f onto Q, 

- monotone relative to a point peX, if for each subcontinuum 

Q of Y such that fCp)e Q the inverse image f" (Q) is connect­

ed. 

We say that a continuum X is smooth at the point peX if 

for each convergent sequence ix^ of points of X and for each 

subcontinuum K <e#r.3L.ftueh that p,xeK, where x = lim xn> there 

exists a sequence -?Kn} of subcontinua of X such that ptxne Kn 

for each n = 1,2,... and Lim KR =- K (see £5l, p. 81). 
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I. The mapping F. Fix a point p of a continuum X and 

consider a mapping F[X,p]:X—> Cr(X) which assigns to a point 

xeX the family of all subcontinua K of X containing both p 

and xf i.e. , 

F[X,pD(x) sr-fKe C(X) :p,xe K\. 

Note that, for each xeX % this is a compact and arcwise 

connected subset of C(X), whence this is really an element 

of C CX). In this section the considered continuum X and the 

point p are assumed to be fixed, so we will write F instead 

of FtX,pi]. 

Proposition 1. The mapping F is upper semi-continuous. 

Indeed, let xRc X and x n—->x. We have to prove that 

Ls F(x }C F ( X ) . Let a continuum K be in Ls F(x ). Then there 

exist a subsequence ^n.\ of natural numbers and a sequence 

of points of F(xn ) that converges to K. Each of these points 

is a continuum in X containing p and x_ , whence K contains 
nk 

p and x, i.e., KeFCx). 

Proposition 2. The mapping F is continuous if and only 

if the continuum X is smooth at the point p. 

Proof. Assume F is continuous. Let a point xe Xf a con­

tinuum KeFCx) and a sequence of points x n6 X convergent to 

x be given. By continuity of F we have Lim FCxR) = F(x), so 

there exist points KR of F(xn) tending to K. Since the conti­

nue K contain both p and x , we are done by the definition 

of smoothness. 

Assume X is smooth at p. By Proposition 1 we have only 

to show that F is lower semi-continuous, i.e., that 
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F(x)c Li F(xR) for any sequence xn—•> x. Let KeF(x). By 

smoothness of X at p there is a sequence of continue 1C, 

with p,x € K , converging to K. Thus K n
€-^ x

n)>
 a n d *ne c o n" 

elusion follows by the definition of the lower limit. 

Proposition 3. Let a continuous surjection f:X—> X 

and points p e X and qe Y with q » f(p) be given. If F-̂  » 

* F[X,p"J and F^ -* FlY,q.], then the diagram 

f 

r.«- x 
F
2| I 'i 

commutes if and only if f is monotone relative to p. 

Proof. Assume that the diagram commutes, i.e., that 

f^*i(F1(x)) = F2(fCx)) for each xe X, which means that 

(1) {f*(K):Ke C(X) and p,xe- Kf=* i L c CCY),:q,f (x) c h'i for 

each xe X. 

Let Q c Y be a continuum containing the point q. Suppo­

se that f" (Q) is not connected, and pick up a point x in an­

other component of f~ (Q) than that to which the point p be­

longs. Then Q is in the right member of (1), while it is not 

in the left one. 

Conversely, assume that f is monotone relative to p. We 

have to show that (1) holds. Take an arbitrary x in X and no* 

te that the left member of (1) is obviously a subset of the 

right. To prove the inverse inclusion take a continuum L in 

the right member of (1), i.e., such that q,f(x)e L. Since f 

is monotone relative to p we conclude that K » f~ (L) is a 
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continuum, so L .* f*(K) belongs to the left member of (1). 

Corollary. Let a continuum X be smooth at a poir/. peX, 

and let a mapping f:X—^ Y from X onto a continuum • be mo­

notone relative to p. Then Y is smooth at f(p). 

Proof. By Proposition 2 we ought to show that the map­

ping F ^ Y — ? CTCY) defined as in Proposition 3 is continuous. 

Take a sequence of points y € Y which converges to a point 

yeY. We have to show that FpCyn> tend to F2(y). Choose xn e 

e f " Cyn) and x e f" tyl such that x n — ^ x (take a proper sub­

sequence if necessary). Now F 2(y) =* FpCf (x )) -* f**(F^(xn)) 

by Proposition 3, and similarly we have Fp(y) = F2CfCx)) -* 

s f̂ C'F-j (x)). Since F, is continuous by Proposition 2 and 

f**" is continuous by its definition, we conclude that 

f*'*(F1Cxn)) converge to f^F^Cx)), i.e., F->(y ) converge to 

F2(y); thus the proof is finished. 

II. Smoothness of inverse limits. Now we are ready to 

prove the following 

Theorem 1. Let -fx ,f i . j ^ be an inverse sequence such 

that for each i = 1,2,... (a) the continuum X is smooth at 

a point p ; (b) f (p ) -* p ; (c) f is monotone relative 

to p1*1. Then the inverse limit continuum X = lim{X^,f j is 

smooth at the thread p « ip ^---L» 

Proof. Put F1 = FLX ,p j for i - 1,2,... and consider 

the mapping {F iT-^ between the inverse sequences; -fx tf I ial 

and*C2(Xi),f1*,']?L1. 
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ғ1 ғcr -;- ""** x -*—' . .. 

i K 1 
c ^ C x 1 ^ . c/cx2}*? «.* c£ Cx) 

Since for each i = 1,2,... the diagram 

f1 

X 1 ^ 1 x1*1 

** j | F1*1 

c ^ x 1 ) ^ cfcx1*1) 

commutes by Proposition 3, and since all mappings F are con­

tinuous by Proposition 2, hence the limit mapping F^= ^im F 

is continuous. Note that the inverse limit C^ CX) =* 

« UrnA C2(Xi),fi^^i is homeomorphic to C?(X). Indeed, by 16.1, 

Theorem (1.169), p. 1?1, Cco(X) a lim -{ CCX
1) ff

X*i is homeo­

morphic to C(X> under a homeomorphism h:C^(X)—^ C(X) defin­

ed by h(A) » lim 4 Ai,fiU1^1?, where A =- ̂ A 1 ^ ^ C^(X) (see 

L63,l5J, p* 172). Using the same result once more we see that 

C^CX), = l i m i C 2 ^ 1 ) ^ 1 ^ is homeomorphic to C(C^CX)) under 

a homeomorphism g-C^CX)—>C(CC^(X)) defined by 

(2) g(B) . l i m ^ f 3 * ) B 1* 1], 

where B * iB J?.e C^(X). The composite of g and h7* is the 

required homeomorphism from C^ (X) to CTCX). 

Now let us consider the following diagram in which F =* 

38 F X,p 

X 

clo(x)—>cicJx))—-X^X), 
g h* 
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and note that its commutativity implies continuity of F, which 

is equivalent by Proposition 2 to the conclusion of the theo­

rem. To prove that the above diagram commutes, take a point 

« ir*° 
x s-ix *i=:iex» W e ought to show that 

(3) h*(gCF°°(x))) » Fix). 

Applying the definition of F°° and (2) we have: 

(4) g(F°°(x)) « g(-5FiCxi)i^L1) * Urn i F^x 1 ) ^ i F1*1 &H, 

whence h*(g(F°°(x))) * h*(lim -JFi(xi) ̂ I F 1 * 1 ^ 1 4 ) } ) ' Take an 

element K in h^(g(F^(x))). Thus there exists a thread 4 K 1 * ^ 

such that 

(5) {K1}^ ^F^xH^lF^U^hl 

with K » h W K 1 ^ ) , i.e., K = ^ m ^ K 1 ^ 1 ^ 1 * 1 } . Note that 

(5) implies that p , x e K for each i = 1,2,..., whence p, 

x€K, i.e., KeF(x). So one inclusion in (3) is proved. 

To show the other one, take LeF(x). Thus, p,xeL. Put­

ting L = JT (L) we have p , x .s L for each i = 1,2,..., 

whence L e F (x ), and therefore the thread \l> JJ^-J is in the 

right member of (5), so it is in g(Fcx?(x)) by (4). Thus we 

conclude that L = lim ihl,filLi^1^ is in the left member of 

(3). Hence (3) is shown and so the proof is complete. 

III. The property of Kellev. Let d denote a metric on 

a continuum X. The continuum X is said to have the property 

of Kelley (173, II, p. 291 and 292; cf. £6"}, (16.10), p. 538) 

provided that given any £ r 0 there exists cf y 0 such that 

if a,beX, d(a,b)«-cT and aeAeC(X), then there exists 
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BeC(X) such that beB and H(A,B). <: e , where H denotes the 

Hausdorff metric in C(X). 

Define a mapping «,LX3:X—*C2(X) by octX3(x) = iK e 

£ C(X):xeKl (see H73, p. 292; cf. C6], p. 551). The follow­

ing two statements are known (17.1, Theorem 2.2, p. 292 and 

Theorem 4.2, p. 296). 

A. The mapping cc£X3 is continuous if and only if X 

has the property of Kelley. 

B. The diagram 

r 
y < X 

ooEY] | | c 6 [ X 3 

(^(Y)^ (^CX) 

commutes if and only if f is confluent. 

Using the same methods as in the proof of the previous 

theorem, we will prove 

Theorem 2. Let 4x ,f i a _-• be an inverse sequence such 

that for each i =1,2,... (a) the continuum X has the pro­

perty of Kelley, and (b) the mapping f :X* - v X is con­

fluent. Then the inverse limit continuum X = lim -iX ,f } has 

the property of Kelley. 

In fact, to prove the theorem it is enough to replace in 

the proof of Theorem 1 the mapping .FtX**-^1.] by cClX*') for 

i = 1,2,,., and to delete the points p and p from the consi­

derations. Then the role of Propositions 2 and 3 ia performed 

by the statements A and B respectively. 
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