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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

THE LCC-TOPOLOGY ON THE SPACE OF CONTINUOUS 
FUNCTIONS 
Jaromir SISKA 

Abstract: The topology on the function space is intro­
duced and their properties are studied. This topology proved 
to be useful if relays and their generalization are studied. 

Key words: Function space, protectively generated, Bai-
re property, separation axioms, connectedness. 

Classification: 54C35 

Introduction. The purpose of this paper is to describe 

a topology on a function space which is useful when a relay 

and its generalization are studied [1, 2.1. A relay can be 

considered as a non-linear operator from the set of real-va­

lued continuous functions defined on a compact interval I to 

the space of two-valued right-side continuous functions defi­

ned on I equipped with the metric f/(f,g) = Llf(t) - g(t)ldt. 

It is obvious that a relay is not a continuous operator if R 

is endowed by the compact-open topology. The topology consi­

dered in this note is one of the simplest topologies in which 

relay and its generalizations are continuous operators. In 

this note basic properties of the set r endowed with this 

topology are examined. 
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§ -»• Notations and the definition of the level topo-

XQF2L 

1.1. Let X be a topological space and % be a covering 

of it. The star of a set Y in Z is defined to be the set of 

all Z e. £ intersecting Y and will be denoted by st (Y,&). 

Let us remind the definition of the hyperspace of lower 

semicontinuity. See also 13). Let X be a topological space. 

The hyperspace H_(X) of lower semicontinuity is defined as 

follows: the underlying set of H_(X) is exp'x where exp'X » 

=- exp X - {0\ and Ast (U,exp'x)l Y n U + 0 , U is an open set} 

is a local subbase at Y in H_CX). 

For purposes of this paper let us denote H°,(X) the spa­

ce formed from H_(X) by adding of an empty set. Local bases 

of the points from exp X are the same as in H_(X) and the lo­

cal base of the empty set is one element set 4 exp X{. 

The set of all continuous maps on a topological space 

X we shall denote Y % for a point y e Y we shall denote 9 
«y 

the mapping on Y* into Hf(X) defined by 9 y(f) = f~
X(y). 

--•2» Definition. The level topology (L-topology) on the 

set IT is the topology projectively generated by the family 

-teySyeY* 

I t i s useful to know how the loca l subbase of the l eve l 

topology on Y^ looks . Let f g r , y e Y and Q be a neighbor­

hood from the l oca l subbase of 9 ( f ) . We s h a l l denote the 
y 

neighborhood of f determined by these parameters by W. We 

may suppose 9 > y ^ to be a non-void s e t . I t s neighborhood Q 

i s s t (G,exp X), G being an open se t with a non-void i n t e r ­

sec t ion with 3>v(f). k mapping g 6 T i s an element of W i f f 
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the set cpy(g> is an element of Q; this is equivalent to 

g (y)ft G+0. Let x be a point in G such that f(x) = y. The 

set G may be considered as a neighborhood of x. Then a map 

g is in the neighborhood W iff in the neighborhood G of x 

there is a point x' such that f(x) = g(x'). Thus V(x) being 

a neighborhood of a point x in X and U(V(x))(f) being the 

set {geT'l there is x' in V(x) such that g(x') = f(x)i, we 

can describe the local subbase in felr as follows: 

Proposition. The local subbase in f is formed by the 

family {U(V(x))(f) I x is an arbitrary point in X and V(x) ia 

an arbitrary neighborhood of xj. 

1.3. Proposition. Let X be a T,-space. Then the space 

XX endowed with the L-topology is T±f too. 

Proof. Let f,g€XX, f^g and geU(V(x))(f) for an ar­

bitrary point xeX and its arbitrary neighborhood V(x). Then 

there is a net ixV(x) c V(X) | V(X) cY(x)i for each x€X, TTix) 

denoting the local base in x, such that g(xy(xj) - f(x)« The 

net converges to x and it follows from continuity of g that 

the net ̂ g(xV(x)) 1 V(x) c V(x){ converges to g(x). Since X 

is a T,-space, every constant net has an only limit point 

and therefore fix) = g(x) for each x€ X. This contradicts 

the assumption that f4*g» 

1.4. Remark. No stronger separation axiom ia possible 

to prove for the space * endowed with the L-topology. This 

statement becomes self-evident as soon as one realizes that 

any open subset of x is a dense subset of X^. 
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§ 2. The definition of the level topology of compact 

cpnvergence and its basic properties 

2.1» Definition. The level topology of compact conver­

gence (LCC-topology) on Y^ is the topology protectively ge­

nerated from the L-topology and the topology of compact con­

vergence on x . 

Speaking in the rest of this paper about a space Y of 

continuous mapping we shall always mean that the topology on 

this space is the LCC topology. 

2.2. Proposition. If the space Y is a T^-space then the 

space Y^ is also a T,-space. 

Proof. Any space projectively generated from T-^-spaces 

is a T,-space. 

2.3* The aim of this paragraph is to prove providing 

that X, Y are Tychonoff spaces and X is moreover a locally 

compact space that i is a Tychonoff space. Two preparatory 

lemmas will be proved first. 

If X and Y are completely regular spaces, their topolo­

gies may be projectively generated by families of pseudomet-

rics. Let us suppose the topology of X is generated by the 

family S = \ #*.* ̂ € A and of Y by the family R » -ff^/seB* 

The local base of a point xeX are sets V(c^f l&A JLi) (x) =-

- {y€ X Jtfk =- 1,... ,ra is &^(xfy) «c o } for all real positi­

ve o and all finite subfamilies of S. The local base of a 

mapping f £ YX are seta U( e ,K, ̂ j i l ^ i 4V( cTjf -C^lj^) 

(xj)}j=0L(f) a i « ^ l V i 8 l » " « , n i 8 s&1(f(x),g(x)) •< e for 

x€K and for each j - lf...fm there is x\ such that 
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# P ( x .pxt) < o r . for each k -= 1 , . . . ,mi and g ( x p = f(x .)f, 

for each r e a l pos i t i ve e , each compact subset K of X, each 

f i n i t e subfamily of R and each f i n i t e family of point3 from 

X toge ther with t h e i r a r b i t r a r y neighborhoods. 

Lemma. Let the topology on the set X be p r o t e c t i v e l y 

generated by the family ot% pseudometric3 S = " ^ o o ^ ^ e &• 

Let x c X and V = V( ( / , i,"^k$ ?_-) (x) be a neighborhood of x . 

Then VciyeX | for each k = 1 , . . . ,m i s <5k(x,y) **'o~i * 

Proof. Let z e V. For any f i n i t e subfamily i &A j = 1 of 

S and any e ^ 0 the re i s y e V such tha t efAy, z)-*-. e for 

j = l , . . . , n . I f the subfamily i £> k^k=l i 3 c n o s e n then 

^ k ( x , z ) ^ ^ k ( x , y ) * ^ k (y , z ) ^ - "cT+e for k = 1 , . . . ,m and eve­

ry pos i t i ve e . Thus # k ( x , z ) <= c/' and the lemma i s proved. 

Lemma. Let X, Y be Tychonoff spaces , X be l o c a l l y com­

pac t , f c l * , U( e- ,K,^ , V ( c / , - t € r k ^ = 1 ) ( x ) ) ( f ) = U b e a neigh­

borhood of f such that V( c / , -C^ k ^ k = 1 ) (x) c V(x) and V(x) i s a 

compact neighborhood of x . Then for e ' < & and Sf-<. <f i s U-,= 

= U(e',K,p ,V(^ ,^^J 5 l (x ) ) ( f ) cU . 
Proof. Let g e U ^ We shall show at first that there is 

a point ys. X such that ^ k ( x , y ) - < r c ^ for k = l,...,m and f(x) 

- gh^ We know that V =- Vicf* ,-i G^*^) (x) <z i z cX I ̂ k(z,x)£ 

^ cf' for k = l,...,micV(or', *C^kik=1)(x)c V(x) and that V is 

a compact set. Assuming fix) is not in g(V) there exists a 

neighborhood of the set g(V) which does not include f(x). 

Choosing this neighborhood and the set V as parameters of a 

neighborhood of the mapping g, we have got the neighborhood 

of g which has an empty intersection with U(e\Kfp ,V(</', 

"^k* k=1(x))(f) and this is in a contradiction with the 

- 93 -



assumption that g i s in U^. 

It i s e well-known fact that y> (f (x) f g(x)) -c E* for each 

x c K and thus g £ U . 

Corollary. Let the spaces X, Y be the same as in the 

preceding lemma. Let f£Y% U( e fKf i f i i ? - ! ) t 

{V( cTj,-[flr^xk^1)(x,)5m
:=:i(f) = U be a neighborhood of f such 

that the inclusion V( ^,-Co* ^ k ^ ) (x A c V(x A i s val id for 

each j = l f . . . f m and V(x^) i s a compact neighborhood of the 

point x*. Let us denote ' 

Ur * U(re,,K, ipJ^JVlr ^j» ^ k J k = l } ( x j ^ j - ^ ^ ( f } ' f o r a 

real p o s i t i v e number r. Then for r from the interval (0 ,1) ia 

U r c U . 

Proposition. Let X, Y be Tychonoff spaces and X be a 
X l o c a l l y compact space. Then Y i s a Tychonoff space. 

Proof. Let f be an element of Y , A be a closed subset 

of Y* and do not l e t f be in A. There i s a neighborhood of f 

which f u l f i l s the assumptions of the above corollary and 

which has an empty intersect ion with the se t A. I t wi l l be 

denoted again U. I t i s U r c U for re (0,1) and i f s c (0 ,1) 

and r o t then U r c U s c U . 

The function FiT*-* 109U i s defined so that Fig) -* 1 

for gsY^NU and Fig) = inf A r c (O f l) I g€U p ^ for g e U . Then 

Fif) = 0 and F(A) » 1. The proof of cont inuity of that func­

t ion i s s imilar to that for the function from the Urysohn 

lemma. Hence the complete regularity of the space Ŷ  i s pro­

ved. Using now the proposit ion 2.2 i s the proof completed. 

2 . 4 . Proposition. Let iX96 ) and (Y,§&) be metric spa-
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Ce9- Let (X,£) be ^-compact and locally compact and let 

(Yf (p ) be complete. Then the space Y is a Baire space. 

Proof. At first a few words about notations used in 

this paragraph. The local base of x will be a modification 

of the local base from the previous paragraph. Using the 

fact that Y, X are metric spaces, the notation may be simp­

lified: U( e ,K, ( c T ^ x ^ ^ ) )(f) = ige YX icu(f(x)),g(x))< & for 

xe K and for each j = l,...,m, there exists x.. such that 

g(x!j) = f(x.) and 6T(xj,xJ <- cTi • 

Substituting 4s for -< in the above notation the modi­

fied local base is obtained. An element of this new base is 

denoted: U ( e ,K,( c/\*Xjjm=1) )(f). 

Let g be an element of U = U( e ,K, (i/,ix J m
= 1)) (f). 

Let us denote -Cxj(U,g)im_, an arbitrary set of the cardina­

lity m and such that for each j -=- l,...,m it includes an e-

lement x!j for which g(x!j) == f(x .) and a'tx.pX.J) ± cT. 

The local compactness and the <-*-compactness of the apa­

ce X implies existence of the increasing sequence of compact 

subsets of X the sum of which is X. 

Let -* Ĥ i i=:1 be a sequence of open and dense subsets of 

YX, f be a mapping from YX and U = U( e ,K, (cf ,-f x^Jj^)) (f) 

be its neighborhood from the local base, tfo prove that i 

is a Baire space, a mapping h e U must be found such that 

h €„r\H,. *- 1 i 

The density of H, implies that there is h-,e H, such 

that h,e U. There is a neighborhood of h, included in H^oU, 

as this intersection is an open set. This neighborhood U-, = 
~ -> 1 nl 

= U t S , , ^ ,( d*^ ,"lx.{ . ,) )(h1) may be chosen such that 
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1 n l 

^ < 6 / 2 , - i x j l ^ h ^ i " c { x j } j = 1 c L , K c L , cT^ cT/2 
and for each Xj(U,h1> ho lds : i x | 6*(x,Xj(U,h1)) ^ cT-^i <=-

c-tx \&(xfxJ«zcr$ * 

Analogously there is a mapping h->€ V^n Hp and there is 

its neighborhood included in UjO H2. This neighborhood Up = 
/v p, np 

* U(e 2>Ki f( 2^x1^i=l^ ̂ h 2 ^ may he chosen such that 

e2 " V 2 « 4->i.-2>. j i ^ ^ f ^ c K^ .K^C Ki2, or2<cr i /2 

and tha t for each x ^ U , , ! ^ ) ho lds : f x leCx-xJCU^hg)) < 

" ^ ^ ^ t x l ^ i x j X i l ^ ^ * Analogously are defined mappings 

h n and t h e i r neighborhoods Un for a l l n a t u r a l n . 

Thus there i s a sequence {U I*?, such that U _,. c U, for n n n=-i n+i n 

every n € N . This sequence forms a base of a f i l t e r W and 

t h i s f i l t e r i s a Cauchy f i l t e r in the uniformity of compact 

convergence of x • The fil^OT W c©»¥#*gas to a mapping h . 

I t w i l l be shown that h i s the mapping which i s sought . 

Let Un = U ( e n , K i » ( c * /
n t ^ X j i , n

1 ) ) ( h n ) be a neighborhood 

from the sequence ^ 5 ^ . . For each x n the sequence -f zA . ~ 

w i l l be constructed by induct ion such that zQ « x n and sup­

posing the element z k has been defined, the element z k + 1 <s 
m 

€ i x n " f k ( u
n 4 . k » h

n + k ^ l ^ j a i i s chosen such tha t # ( z k , z k + 1 ) ^ 

d <Tn¥k and h n + k ( z k ) « V k + 1 ( z k + 1 ) . The sequence 4*^"^ 

i s a Cauchy sequence and i s included in the closed ^ - n e i g h ­

borhood of the point x.,. There i s a l imi t point z of t h i s 

sequence ly ing in this neighborhood. 

Shawing tha t h(z) = h n ( x n ) , i t i s proved that for each 

x n there i s x n ' such tha t £ ( x n , x n ' ) ^ «/*n and h ( x n ' ) » 

= h n ( x j ) . To show that h(z) = h n ( x n ) , i t i s su f f i c i en t t o 
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prove t h a t £>(h(z) ,h n (x j )> = 0. I t i s t rue t h a t p ( h ( z ) , 

h ^ X j ) ) 6 p ( h ( z ) , h ( z k ) > + JD ( h ( z k ) , h n ^ k ( z k ) • 

* f ( h n-Hc ( z k^» n n* x j ^ s P t h ( z ) f h ( 7 k ) ) • p (h(z k ) | b n + k ( z k ) , 

because ----.^(zjg) = - ^ ( x ^ ) . The terms p (h(z) f b ( z k ) ) , 

ri)(h(zk) , h n + k ( z k ) ) converge to zero as k —> • oo because h 

i s a continuous mapping and because the sequence i -̂ n-j-ji K a0 

converges to h in the topology of pointwise convergence. 

Thus j D ( h ( z ) , h n ( x j ) ) = 0 . 

I t i s l e f t t o prove tha t ro(h(x) , h n (x ) ) .6 e n for each 

x€KA . As a l imi t point of the f i l t e r S* i s a l so a c l u s t e r 

point of t h i s f i l t e r , h i s an element of U n
T C C e fgcX* I 

q> (h n (x) ,g (x) ) -= 6 n for xcK^ \ • 

Let us sum up what has been proved. It has been proved 

that h € U c U for each natural number n and that U c H . 
CO 

Hence h e-Qj H^H. 

2 . 5 . In t h i s paragraph i t w i l l be proved tha t the spa-
R ce R i s s epa rab l e . At f i r s t we s h a l l remind the d e f i n i t i o n 

of a piecewise l i n e a r funct ion and a well-known lemma. 

D e f i n i t i o n . We s h a l l c a l l a continuous funct ion f from 

R i n t o R piecewise l i n e a r i f there i s a f i n i t e s e t S .̂ such 

tha t for each x £ . D ( f ) ^ S f a neighborhood of x can be found 

on which the funct ion f i s l i n e a r . 

Lemma. Let f:CT fT^J—•> R be a continuous func t ion . 

Then for each e ^ 0 there i s a piecewise l i n e a r funct ion 

V C T o » T l 3 •~*'R s u c h t n a t «eC To ) = f ( T o ) ' % ( T l ) s f(V a n d 

sup I f (x) - g(x) | -* €>• • 
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t> 

Propo s i t ion . For each f eR and each neighborhood U of 

f in the LCC-topology there i s a piecewise l i n e a r funct ion 

g e U . 

Proof. I t may be supposed that U = UCs, ,Kf ( cT^x*}1!? .,)) 

( f ) , K = CT0,T1] t ^ X j i ^ c K and x - X . - . ^ x . ^ . Then on the i n -

t e rv3 l s Cx . , x . + 1 3 fo r /j a l , . . . , m - 1 and on the i n t e r v a l s 

[T , X J P , Exm,T^J there are piecewise l i n e a r funct ions pos9e9-

3ing the p roper t i e s of the funct ion g • Concatenation of 

these functions produces a piecewise l i n e a r funct ion defined 

on the i n t e r v a l CT ,Tj] . A new piecewise l i n e a r funct ion can 

be defined on R such that i t s r e s t r i c t i o n to the i n t e r v a l 

CT.T ,3 i s i d e n t i c a l with the former funct ion and tha t t h i s 
O ' JL 

latter function is an element of U. 

Proposition. Let Q denote the set of all piecewise li­

near functions f e R such that Sf's are subsets of rational 

numbers and coefficients of linear parts of these functions 

are also rational numbers. 

Then 

i) Q is a countable set 

ii) Q is a dense subset of the subspace of all piece-

wise linear functions. 
•p 

Proposition. The function space R is separable. 

Proof. The countable aet Q i3 dense in the subspace 

of all piecewise linear functions and this subspace is den­

se in the space R . Hence Q is a dense subset of 1* • 

2.6. The aim of this paragraph is to prove that the 
R 

local character of R is countable and that generally the 
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space "i i s not normal. 

R 

Proposition. The local character of the space R is 

countable. 

Proof. Let E f denote the set of strict local extremes 

of f e R , 3C system of all closed intervals which ends? are 

integers, R f the union of E- and of the set of rational num­

bers. Then the family i U(l/n,K, ( l / n ^ x ^ * ) )(f> | ncN, 

i x ^ ^ n C R and K c % $ is countable and forms a local base 

at f. 

Lemjaa. The set of all constant mappings in x is clos­

ed. The subspace formed by this set is discrete. 

Proof. The set of all constant mappings is closed in 

the topology of compact convergence and thus also in the 

LCC-topology. The second part of the lemma follows from the 

definition of the LCC-topology. 

Proposition. The space R is not normal. 

Proof. As R is separable, there is only a continuum 

of continuous real functions defined on 1* • If the space R 

C 

were a normal one, it would have to be at least 2 of con­

tinuous real functions defined on R in order that each con­

tinuous function defined on the set of all constant mappings 
ID 

may be extended on the whole space R • 

2.7. In this paragraph the arcwise connectedness of 

the apace X^ will be examined. The final result is that pro­

viding X is an arcwise connected space, the space X^ is also 

an arcwise connected. The final result will follow from se­

veral propositions which will be proved at first. 
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Let f:R—>X be a continuous mapping. The mapping F: 

: to ,Jr72 l —> XR i s defined such that providing t4=jT/2 

F( t ) (x ) = f (0) for l x . ^ t g t 

= f (x - tg t ) for x ^ t g t 

= f ( x + tg t) for x < - t g t 

and for t = # / 2 i s F ( J T / 2 ) ( X ) = f(O). 

Proposition. The mapping F: CO,jr/2.!l—> X^ i s continu­

ous in the L-topology on the space A . 

Proof. Let t eCO, sr/2l and U = U( o ,\x£ n
s l ) i s a neigh­

borhood of FCt). A neighborhood V of the point t i s sought 

for which F(V)c U. 

At the f i r s t part of the proof i t w i l l be assumed that 

t ^ j r / 2 and w i l l be proved that supposing u e C o , j r / 2 ) i s such 

that 1 tg u - tg t I < <f , then there i s x± for each i = 1 , . . . 

. . . ,n such that \ x± - x i | < oT and F (u ) (xp = F(t) (x±). 

Let x^ from the set ^ x ^ ? - ! be chosen. Without loss of 

general i ty i t may be supposed that x±Z 0 . Then e i ther 

1) x±& tg t or 2) x±> tg t . 

Ad 1) F ( t ) ( x i ) = f (0) and e i ther x±& tg u and thus 

F(u)(x^) = f (0) or x±^ tg u and x± may be set equal to tg u. 

Ad 2) F ( t ) ( x i ) = f ( x i - tg t) and x^ may be set equal 

to (x± • tg u - tg t ) . Then x± > tg u andF(u)(x.[) = 

= t(x± - tg u) = f ( x i - tg t ) . 

Continuity of the function tangens on the interval 

C0,Jf/2) implies there i s a neighborhood V of t such that 

for each u e V ia 1 tg u - tg t \ --- oT. 

The second part of the proof i s for t = J f /2 . Then the 

neighborhood V i s the set 4u e Co, J T / 2 1 | tg u > x i for every 
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i = 1,•••,nj. 

JPropoaition* The mapping F i s continuous in the topo­

logy of compact convergence on A • 

Proof. Let us define mappings <f>: LO, *jr/23_x R —> X, 

<&(t,x) = J? ( t ) (x ) , (p :L0, JT/23xR—> R, for t^-st/2 i s 

9 ( t , x ) = 0 i f I z U t g t , 9 ( t , x ) = (x - tg t ) i f x > t g t , 

<p(t,x) = (x • t g t ) i f - x > t g t and for t = s?/2 i s 

9 ( ^ / 2 , x ) = 0 . The mapping cp i s continuous and thus $ -

- f © <p i s a lso continuous. Using the theorem of exponenti­

a l correspondence gives the requi red r e s u l t . 

P ropos i t ion . The mapping J? i s continuous i n the LCC-

topology. 

Proof. I t follows from the p rope r t i e s of the p r o j e c t i -

vely generated topology. 

Let geX1*, x Q € R . Let us define a mapping G :£0 ,^ /2 j—> 

—^X11 such tha t providing 1 4 = ^ / 2 

G( t ) (x ) = g(xQ) for | x - x 0 l ^ t g t 

g(x - tg t ) for ix - x | > tg t 

g(x + tg t ) for l x 0 - x \ > t g t 

and for t = jrV2, G(srV2)(x) = g ( x Q ) . 

P ropos i t i on . The mapping G i s continuous in the LCC-

topology. 

Corol la ry . Let f e X R , g e X ^ and f = const (gCxQ)) . 

Then there s re continuous mappings G:[0, jf/2.J -—r A and H: 

: 1 0 , ^ / 2 3 - ^ X 1 1 such that G(0) = g, G ( W 2 ) = f, H(o) = f 

and H(uY/2) = g. 

Proof. The map G i s the mapping from the preceding 
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proposition and H = G o y where f(t) = JT/2 - t for t e 

£ £0,W2]. 

The corollary may be also stated as follows: Let f, g 

be mappings from A . If f is a constant mapping and if the­

re is a point x e R such that f(x ) = g(x ) then the map­

pings f and g lie in the same arc-component of the space A . 

It follows from this formulation that mapping f and g 

from & are in the same arc-component if there is a point 

x & R such that f(xQ) « g(xQ). 

Froposit ion. If the space X is arcwise connected, then 

the space A is arcwise connected. 

R 
Proof. Let f, g be mappings from X . Let us choose 

points x and y , x04=-y0» Arcwise connectednes3 of X implies 

there is a mapping h e X R such that h (xQ) = fix ) and h(y ) =* 

- g(y0)* The mappings f and h are in the same arc-component 

and also the mappings g and h are in the same arc-component. 

R 
Thus f and g are in the same arc-component and the space X 

is arcwise connected. 

C o r o l l a r . y . If the space X is arcwise connected, then 

the space A is connected. 

2.8. Various algebraic operations are possible to de-
X 

fine pointwise on the space R • It is easy to verify that 

the operation f —> -f is in the LCC-topology continuous. 

Let us now consider the operation of addition. If this ope-

X 
ration were continuous, the space R would be a topological 

group. Th3t it is not the case, demonstrates the following 

example. In this example even the space X is the space of 

real numbers, i.e. the space possessing a lot of nice topo-
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log ica l propert ies, implying for example that R i s a Ty-

chonoff space. 

Let f and g be two d i f ferent constant mappings from 

RR. Let U = U( e f K f ( c r f { x 1 i 5 - 1 ) ) ( f ) t 

V * V ( ^ , L , ( f , i y i i i _ 1 ) ) ( g ) be their arb itrary neighbor­

hoods from the local bases. There are f 'e U and g 'e V such 

that f ' > f for X6R - ^ 5 ^ and g V g for x e R -"^y^i .-! 

and { x í V 1 = 1 o í y í Í ^ Í = 0. Thus f' + g ' > f + g for a l l rea l 

numbers and f +• g cannot l i e in any small enough neighbor­

hood of f • g. 
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