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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

THE VOLUME CONJECTURE AND FOUR-DIMENSIONAL 
HYPERSURFACES 

Oldfich KOWALSKI 

Abstract: In this note we prove the volume conjecture 
by A. Gray and--L. Vanhecke for the four-dimensional hyper-
surfaces of B with the exception of a subclass of hyper-
surfaces sat isfying a non- t r iv ia l geometric inequal i ty . 

Key words: Submanifolds, Riemannian manifolds. 

Classif icat ion: 53C40, 53C20 

Let us consider the following "volume condition": 

(V): For an analyt ic Riemannian manifold (M,g), suppose 

that any geodesic bal l in (M,g) of suf f ic ient ly small 

radius r > 0 has the same volume as the Euclidean bal l 

of the same dimension and rad ius . 

The volume conjecture by A. Gray and L. Vanhecke, C2J, 

then says that (M,g) should be local ly Euclidean. The volu­

me conjecture has been proved in many important s i t u a t i o n s , 

for example, for a l l manifolds of dimension n<s=3, for mani­

folds with non-posit ive, or non-negative Ricci curvature, 

for the products of surfaces, for the products of c lass ica l 

symmetric spaces, and so on. L i t t l e is known about the 4-

dimensional Riemannian manifolds with the exception of the 

case when the metric is R icc i -pa ra l l e l . 
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In all these results, what has been really used is not 

the strong condition (V) but only the information contained 

in the second order - and the fourth order term of the po­

wer-series expansion for the volume of a geodesic ball (with 

respect to its radius r). In other words, the following we­

aker condition has been used as the start point: 

(v'): The volume of any small geodesic ball in (M,g) coin­

cides with the volume of the corresponding Euclidean 

ball upto a remainder term of the form 0(r ). 

The purpose of this Note is to prove the following: 

Theorem. Let M. be a four-dimensional analytic hyper-

surface of E^ satisfying the weak volume condition (v'). 

Then either M* is locally Euclidean, or we have the inequa­

lity 

(1) -6,9456... l=(K/h4)^ -3,9288... 

where K, or h, denotes the Gauss-Kronecker curvature, or the 

mean curvature of M., respect ive ly . 

Prooff. We shal l s t a r t with some preparations. For any 

Riemannian manifold (M,g), l e t us denote by R,<j> , *£ the 

Riemannian curvature tensor , the Ricci tensor and the sca­

la r curvature of (M,g), respect ively . According to Q ] , C 2 ] , 

the condition (v ' ) i s equivalent to the following couple of 

conditions: 

a) X = 0, 
(2) 

bJ 3ilR«2 = 8 Up II2, 

where HRll and \$>\ denotes the norm of R and ft , respec­

t i ve ly . 
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Consider a hypersurface Mc E n (n£4) equipped with 

the induced Riemannian metric. At any fixed point pe M, let 

^1>« • * * ̂ n
 d e n o* e the eigenvalues of the second fundamen­

tal form, and 8^,3^,...,sn the corresponding elementary sym­

metric functions. 

Lemma. At any point p£M, the conditions a),b) from 

(2) are equivalent to the following conditions for the ele­

mentary symmetric functions: 

a') &2 = 0, 

b') sis3 a 7s-. 

Pro_of of the Lemma. Let p^, k=l,2,... , denote the sum 

of the k-th powers of the eigenvalues A*. We shall use the 

following formulas by Newton (cf. f4l): 

pl = s l 

p2 =" slpl " 2 s2 

P} =- s - ^ - s ^ + 3s3 

P4 -
 S

XP3 - s2p2 + a^Pi - 4s4. 

Hence we obtain immediately 

p2 = ( s l ) 2 " 2s2» 

p3 ~ ^sl^ " ^sls2 + ^ s 3 f 

P4 * ^ S
L ) 4 - 4(s1)

2s2 + 48^3 + 2(s 2)
2 - 4s4-

Let us choose an orthonormal basis 4ei,..»,enl of the tan­

gent space T M which diagonalizes the second fundamental 

form (the "shape operator") Sj then S-j . -= J'.y ̂  for i,j= 

=l,...,n. We have the Gauss equations 

Ri;jk£ = SikSj-2 " Si£Sjk> Xf^kt^ = ^,---»n-
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Hence H 1 J i J = B ^ = .*._....,_ = - R J i i < 3 = fi± Aj for any i + j , 

a n d R i jk, 
F u r t h e r , 

and R.^4^5 = 0 whenever at l e a s t 3 indices are d i f f e r e n t . 

;n 
Seii = * ? , R i j i j - , ? , л 1 л

0 - = Л Л - <Л1> 2. -=- n 

îн 
and £><4 = 0 fo r a l l i , j = l , . . . , n , i + j . F i n a l l y , 

чг 
£_, <o44 = ( s j 2 X - ifS P i i = l V - P2« 

From the Newton 3 formulas we see that t = 0 i s equiva­

lent to s« = 0 . Now, we have 

liRlj2 = 4 , 2 _ ^ i i i , ) 2 » 4 . ? . . ( ^ A J 2 = 2(p 2 - p J , 

i . e . , 

(3) l iRi i2 = 8a4 + 4s 2 - 8 s 1 s J , 

and 

il?))2 » J ^ ( p i l ) 2 s . | ^ (^2S2 _ 2 ^ 3 3 i + ^ 4 } a 

58 s l p 2 " 2 s l p 3 * p4 ~ " 2 s l s 3 "** 2 s 2 ~ 4 s 4 * 

The r e l a t i o n Q\\(t\\2 =- 3 ll Rii2 then y i e lds s . = --=----• + —2 , 
4 7 14 

Hence the r e s u l t fo l lows. 

Proof of the Theorem. Let us r e c a l l the d e f i n i t i o n 

of the Gauss-Kroneeker curvature and the mean curvature fo r 

a hypersurface M.c.Er (cf. [ 31 ) . Here we have K = s . = 

s Xx %2 %>3\f h = s x / 4 . From (3) we get I.Rii2 = -48K, and 

because K = yhs-», we see tha t any of the r e l a t i o n s K = 0, 

h = 0 implies tha t Iff- i s l o c a l l y Eucl idean. 

Suppose now that M, i s not l o c a l l y Euclidean and con-
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sider the characteristic equation of the second fundamen­

tal form: 
A "5 p 

x* - s 1 x J + s 2x - s-»x • s- = 0. tie s h a l l r e c a l l in 

b r i e f the theory of a b iquad ra t i c equat ion . Consider the 

equation 
(4) x 4 + a-jx3 + a2x + a3x • a^ = 0 

and put 

p = a2 - %ax 

q = a3 - | a i a e + | a 3 

r = a4 - i a x a 3 + ^ a 3 a 2 - ^ a 4 

The so -ca l l ed cubic reso lven t of the equat ion (4) i s given 

by 

t 3 • 2 p t 2 + ( p 2 - 4 r ) t - q2 « 0 . 

The discriminant D of the equation (4) can be written in the 

form 

D = 16p4r - 4p3q2 - 128p2r2 + 144prq2 • 256r3 - 2?q4. 

We have D = TT (A, - A . ) 2 . 
1ticj,£tt x J 

Now, the general theory (see t6.l) says that the equa­

tion (4) has 4 simple real roots if and only if 

D>0, p<0, p2 - 4r>0. 

The equality D = 0 corresponds to the case of a multiple 

root. 

In our case we have 

p » - |s2, q = -s3 - is
3, P = - |s 4 - ̂ s 4 . 
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Hence p< 0 i f f h-j=0, and p 2 - 4 r > 0 i f f -ygaf • s 4 > 0 , i . e . , 

-16* - (K/h 4 ) . 

After a long but routine calculat ion we get 

D * - WA + §IS4S3S1 ~ §S3S1 ~ 108s4 * f4s4s3sl -

" 2 0 3 s l " 2 7 s 3 * 

Subst i tut ing now s-̂  = 4h, s-v = jjj , s^ » K, we get 

D » -27K2h4 L (7 /16) 4 (K/h 4 ) 2 • (102/ (16) 2 ) (K/h4) • l j 

and hence the cond i t ion D£0 implies 

( 7 / l 6 ) 4 ( K / h 4 ) 2 * (102 / ( l6 ) 2 ) (K/h 4 ) • 1 * 0 . 

This i s the case i f and only i f 

- (51 + \ / 2 O 0 ) ( l 6 / 4 9 ) 2 ^ K / h 4 ^ - ( 5 1 - \/200)( 16/49) 2 

which is the wanted inequality (1). The relation -16< K/h 

is a consequence of the above, thus it cannot bring in any 

new restrictions for our invariants. It can be also checked 

that in the case D * 0 our equation (4) has only real roots, 

too* 

Remark. The inequality (l) in our theorem has an int­

rinsic meaning. In fact, because K^O, the second fundamen­

tal form is non-degenerate and thus, following £53, it is 

uniquely determined by the metric of M* (upto a sign). Thus 

K/h4 is a Riemannian invariant of M-. It remains an open 

problem whether the inequality (l) is compatible with the 

strong volume condition (V), or not. 

86 -



R e f e r e n c e s 

t l3 GRAY, A.: The volume of a small geodesic b a l l of s Rie-
mannian manifold, Michigan Math. J . 20(1973), 
329-344. 

[2] GRAY, A., VANHECKE, L.: Riemannian geometry as d e t e r ­
mined by the volume of small geodesic b a l l s , 
Acta Math. 142(1979), 157-198. 

L3J KOBAYASHI,S., NOMIZU, K.: Foundations of D i f f e r e n t i a l 
Geometry, Vol .2, New York, I n t e r s c i e n c e Publ . ,1969. 

L4.1 RUbEI, L. : Algebra, E r s t e r T e i l , Akademische Verlagsge-
s e l l s c h a f t , G e e s t - P o r t i g K.-G., Leipzig 1959. 

L 5] THOMAS, T.Y.: Riemann spaces of c la s s one and t h e i r 
c h a r a c t e r i z a t i o n , Acta Math. 67(1936), 169-211. 

C6J Van der WAERDEN, B.L.: Algebra, Siebte Auflage der Mo-
dernen Algebra, E r s t e r T e i l , Springer 1966. 

Matematicko-fyzikélní f a k u l t a . Univers i ta Karlova, Sokolovská 
83, 18600 Praha 8, Czechoslovakia 

(Oblátům 26.6 . 1981) 

87 -


		webmaster@dml.cz
	2012-04-28T07:48:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




