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THE VOLUME CONIJECTURE AND FOUR-DIMENSIONAL
HYPERSURFACES
Oldiich KOWALSKI

Abgtract: In this note we prove the volume conjecture
by A. Gray andsL. Vanhecke for the four-dimensional hyper-
surfaces of E” with the exception of a subclass of hyper-
surfaces satisfying a non-trivial geometric inequality.
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Let us consider the following "volume condition":

(V): Fror an analytic Riemannian manifold (M,g), suppose
that any geodesic ball in (M,g) of sufficiently small
radius r>0 has the same volume as the Euclidean ball

of the same dimension and radius.

The volume conjecture by A. Gray and L. Vanhecke, [2],
then says that (M,g) should be locally Euclidean. The volu-
me conjecture has been proved in many important situations,
for example, for all manifolds of dimension n<3, for mani-
folds with non-positive, or non-negative Ricei curvature,
for the products of surfaces, for the products of classical
symmetric spaces, and so on. Little is known about the 3-
dimensional Riemannian manitolds with the exception of the

case when the metric is Ricci-parallel.
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In all these results, what has been really used is not
the strong condition (V) but only the information contained
in the second order - and the fourth order term of the po-
wer-series expansion for the volume of a geodesic ball (with
respect to its radius r). In other words, the following we-
aker condition has been used as the start point:

(Vv'): The volume of any small geodesic ball in (M,g) coin-
cides with the volume of the corresponding Euclidean

ball upto a remainder term of the form olr?).

The purpose of this Note is to prove the following:

Theorem. Let M4 be a four-dimensional analytic hyper-
surface of E? satisfying the weak volume condition (V').
Then either M4 is locally Euclidean, or we have the inequa-
lity

(1) -6,9456... =(K/h%) < -3,9288...

where K, or h, denotes the Gaugs-Kronecker curvature, or the
mean curvature of M4, respectively.

Proof. We shall start with some preparations. For any
Riemannian manifold (M,g), let us denote by Ry@, v the
Riemannian curvature tensor, the Ricci tensor and the sca-
lar curvature of (M,g), respectively. According to [1],[2],
the condition (V') is equivalent to the following couple of
conditions:

a) T=0,
(2)
b} 3iRIZ = 8 hel?,

where [IRIl and “@h denotes the norm of R and ® , respec-

tively.
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Consider a hypersurface Mc E™1 (n>4) equipped with
the induced Riemannian metric. At agny fixed point pe M, let
A)seeey A, denote the eigenvalues of the second fundamen-
tal form, and 81385500039, the corresponding elementary sym-

metric functions.

Lemmg. At any point pe M, the conditioms a),b) from
(2) are equivalent to the following conditions for the ele-
mentary symmetric functions:

a’) s, =0,

b") 918y = Ts,.

Proof of the Lemma. Let pg, k=1,2,... , denote the sum
of the k-th powers of the eigenvalues Ai‘ We shall use the
following formulas by Newton (cf. [4]):

Pp =8

Py = 8;P) - 28,

P3 = 8)Pp = 5P * 383

Py = 8)P3 = §,P, + 83p) - 484.

Hence we obtain immediately

Py = (31)2 - 285,
)3

P3 (87)” - 3s;8, + 383,

Py

Let us choose an orthonormal basis {el,.,.,en} of the tan-

"

(81)4 - 4(31)232 + 4553 + 2(52)2 - 4s,.

gent space TPM which diagonalizes the second fundamental
form (the "shape operator") S; then sij = dkd Ai for 1,j=

=l,...,n. We have the Gauss equations

Rigee = Sufpe = SuSye Lokt = 1,00
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Hence RiJiJ =Ryjqq = -Rijdi = -Rjiij = 2y AJ for any i+,
and Rijki = 0 whenever at least 3 indices are different.

Further,
= S A A =2 2
Pa1 =5% Ragig =35 Mty T Aes - (A
3o

and @;4 = 0 for all 1,§ = l,...,n, 1#J. finally,

s i=l,..4,n

& 2
= F ey = (9 - b,

From the Newton's formulas we see that ¥ = O is equiva-

lent to 8, = 0. Now, we have

IRiZ =¢ 5 (R, )% =3 2., (a292 =205 - pp),

1 1<3%m ijij 1=1<3%
i.e.,
2
(3) iIRHZ = 8s, + 4s5 - 89,55,
and
ke Yy
Eon2 - = 2 _ 2.2 3 4y _
Mo f® = 2y (@y4)° =2 (R]s] - 24378 *+ A]) =

- o2 _ 2
= 8)p; - 2slp3 + Py = -23133 + 232 - 434.

2
8,8 s

The relation 8lig 12 = 3 i RiZ then yields sy = i 42,
14

Hence the result follows.

Proof of the Theorem. Let us recall the definition
of the Gauss-Kronecker curvature and the mean curvature for

a8 hypersurface M, c E? (cf. [31). Here we have K 8,

= 232, A3, h =s8)/4. From (3) we get WRIZ = -48K, and
because K = %hs3, we see that any of the relations K = O,
h =0 implies that M4 is locally Euclidean.

Suppose now that M4 is not locally Euclidean and con-
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gider the characteristic equation of the second fundamen-

tal form:
x4 -8 x3 + 8 x2 - 8.x + 8, = 0. We shall recall in
1 2 3 4 ‘
brief the theory of a biquadratic equation. Consider the
equation
(4) x* alx3 + azxz + a3x + 8, =0
and put
2
p=a;- %81
1 13
@ =83~ 30% * 88
= 1 L 3 - 4
r = ay - §a183 * Jgaie, - zigel
The so-called gubic regolvent of the equation (4) is given

by

2

t3 + 2pt2 + (p2 - 4r)t - g2 = 0.

The discrimginant D of the equation (4) can be written in the

form

D = 16p%r - 4p°q° - 128p°r® + ladprg® + 2560 - 27¢%.

- - 2
We have D -121212-}54 (Ay ‘A‘,j) .

Now, the general theory (see (61) says that the equa-
tion (4) has 4 simple real roots if and only if

D>0,p<0,p2-4r>0.

The equality D = O corresponds to the case of a multiple
root.

In our case we have

__32 e _ 1.3 . _ 3
P==19g%, Q=783 -g%1» T =" 2% ~ 75°:1°
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Hence p<O iff h#40, and p° - 4r>0 iff yps} + 84>0, i.e.,
-16 < (x/n%).

After a long but routine calculation we get
- g%%sisf + §és4s3s§ - i gsf - 1083 T%s4s381
- g%egsf - 27s§.
Substituting now s; = 4h, 83 = %% ) 84 = K, we get
D = -27%n? L(7/16)4(x/nh) 2 + (102/(16)2) (&/B*) + 1)
and hence the condition DZ O implies

(771634 (x/nH2 + (102/¢16)2) (x/n%) + 12 0.

This is the case if and only if

~(51 +V7200)(16/49)%< k/n* < ~(51 - V200) (16/49)°

which is the wanted inequality (1). The relation --16<:K/h4
is a consequence of the above, thus it cannot bring in any
new restrictions for our invariants. It can be also checked
that in the case D = O our equation (4) has only real roots,

too.

Remark. The inequality (1) in our theorem has an int-
rinsic meaning. In fact, because K#%O0, the second fundamen-
tal form is non-degenerate and thus, following [5], it is
uniquely determined by the metric of LA (upto a sign). Thus
K/h* 1s o Riemannisn invariant of M;. It remains an open
problem whether the inequality (1) is compatible with the

strong volume condition (V), or not.
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