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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

PERIPHERALLY COMPACT MAPPINGS 
Valery MISKIN 

Abstract: The well-known Hanai-Morita-Stone-Michael 
theorem characterizing peripheral compactness of closed map­
pings of metrizable spaces onto arbitrary topological spa­
ces is extended to closed mappings of more general spaces 
and to more general mappings of metrizable spaces. In some 
general cases when a closed mapping f is inductively irre­
ducible the set of the points at which f is peripherally 
compact is considered.and described. Besides, it is estab­
lished that the images of rim compact spaces under certain 
monotone peripherally compact mappings are rim compact. 

Key words: Closed mappings, peripherally compact map­
pings, monotone mappings. 

Classification: Primary 54C10 

Secondary 54D30 

All mappings below are considered to be continuous. The 

set of all positive integers- is denoted by N. 

1. A T,-space X in which any countable discrete system 

of points is separated by a discrete system of their neigh­

bourhoods is called a b -space LL.l. A space has property D, 

[Mo, p» 69-1, if any two disjoint closed subsets, one of which 

is countable and discrete have disjoint neighbourhoods (this 

is not the usual definition of property D but is equivalent 

to it in first countable regular spaces). Property D is wea­

ker than pseudonormality even in the class of separable Moore 
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spaces (under the assumption of P(c)), lvD,W]. Spaces with 

property D will be called almost pseudonormal. It turns out 

that in a regular space the above mentioned properties are 

equivalent (K. Morita). 

Proposition 1. for a space X the following two conditi­

ons are equivalent: 

(i) X is a regular 8-space, 

( i i ) X is an almost pseudonormal T-.-space. 

Proof. (i) - -> (i i) , Let S = 4sJL:ic- N i be a countable 

discrete subset of X and let F be a closed set such that 

FnS = ttf. Choose -tOg \ .Q^ a discrete system of neighbourhoods 

of s. , ic N. By regularity, for each ie N there exists an o-

pen neighbourhood V of s. such that (clV ) n f = 0. If we put 

W a i = ° 3 i A \ a n d * lien's.' t h 6 n t h e 3 y S t e m ^s^ic-N i s 

obviously discrete and hence is conservative i . e . cl X v, W„ = 

= A-\. cl W . Thus, W is an open neighbourhood of S such that 

( clW)#\ F = 0. 

( i i ) —y ( i ) . It is clear that a pseudonormal T,-space 

is regular. IT "^xi^ j ^ jsj i s a discrete system of ooints, then 

tin- set S =4x . : i c N* is discrete in X. ,Ve can easily find 

by induction a disjoint system {0 j . j- of open neighbour­

hoods of x . , ±e N. It is obvious that the set F = X Wf,, 0 

i3 closed in X and FnB - 0. Hence, there exists an open set 

U-)D such that the system fV l-j^jp where Vx = U r i^x ' i a 

discrete and this completes the proof. 

Jefinition 1. If every compact subspace of a space X 

his countable character in X, then X is called a soace of 
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s t rong ly countable type . 

Def in i t ion Z. I f every compact sub-space K of a space 

X has a q-system i . e . a system {V^L „ of open neighbour­

hoods such tha t every sequence -fx-ji -ĵ w of d i s t i n c t p o i n t s 

x. e V . \ K has an accumulation po in t , then X i s s a id to be 

a cq-space. 

Metrizable spaces , spaces with a po in t - r egu la r base, a l l sub-

spaces of pe r fec t ly normal compact a, spaces of countable t y ­

pe with a countable network are examples of spaces of s t rong­

ly countable type , LA-̂ 3 , as- well as t h e i r per fec t images. 

Spaces of s t rong ly countable type and r egu l a r l o c a l l y 

countably compact spaces 9re cq-spaces as well as perfec t i -

mages of cq-spaces . 

We r e c a l l t h a t a space in which every closed, countably 

compact subspace i s compact i s ca l led isocompact. 

Def in i t ion 3 . Let f:X~~> X be a mapping of a topo log i ­

cal space X onto a topologica l space Y. A point y e Y such 

tha t f (y) ( i r f (y)) i s a compact subspace of X i s ca l led 

a point at which f i s compact (pe r iphe r9 l ly compact). I f f 

i s compact ( pe r iphe ra l l y compact) at each point y t Y, then 

f i s sa id to be compact ( p e r i p h e r a l l y compact), IVa l . 

Theorem 1. I f f :X .> Y i s a closed mapping of an i s o ­

compact G-space X of s t rong ly countable type onto a space 

Y, then the following condit ions are equ iva len t : 

( i ) Y i s a space of s t rong ly countable type , 

( i i ) Y i s f i r s t countable , 

( i i i ) Y i s a q-space, 

( iv) f i s pe r i phe ra l l y compact. 
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Proof. C i ) = ^ C i i ) and C i i ) = i > C i i i ) are obvious. 

C i i i ) = ^ C i v ) follows from [Mi-^, Theorem 13. Civ)^= .>Ci). 

I f f i s pe r iphe ra l l y compact, then f i s induc t ive ly per fec t 

i . e . there e x i s t s a closed se t Fc% such that f(F) = Y and 

f | « i s p e r f e c t . Since F i s a space of s t rong ly countable t y ­

pe , so i s i t s perfect image Y. Indeed, i f K i s a compact se t 

in Y, then (f |F)"* CK) i s compact and hence has a countable 

outer base {V i -̂  in F. I f V i s an open se t in Y such t h a t 

V D K , then Cf|F)"1CV) i s open in F and Cf |F)""1CV) z> Cf | F ) " 1 CK) , 

so for some n € N* we have t ha t U c C f U ) " 1 C V ) . Thus, 
o l 

KcCfU)#CU } = Y \ f C F \ U n )cfCU„ ) c V and therefore IF n^ n n o o o 

\ ( f | p ) ^ C U n U n 6 N form an outer base of K in Y# 

Simi la r ly we can prove the following, 

Theorem 2. I f f:X—>Y i s a closed mapping of an i s o -

compact 0 - and cq-space X onto a space Y,. then the fol lowing 

condit ions are equ iva l en t : 

Ci) Y i s a cq-space, 

( i i ) Y i s a q-space, 

Ci i i ) f i s pe r iphe ra l ly compact. 

And what i s more, i f we consider ccq-spaces ins tead of cq-

ones, i . e . spaces every closed countably compact sub9pace of 

which has a q-system, then we can obtain the following cha­

r a c t e r i z a t i o n of pe r iphera l countable compactness of closed 

mappings. 

Theorem 3 . For every closed mapping f :X—>T of a 0 -

and ccq-space X onto a space Y the following condi t ions a re 

equ iva len t : 
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( i ) Y i s a crcq-space, 

( i i ) Y is s q-sp3ce, 

( i i i ) f i s pe r iphe ra l l y countabl.y compact. 

We r e c a l l tha t 3 mapping f:X-—> Y of topolog ica l spa­

ces i s sa id to be countably d i s c r e t e ITJ i f the image of e -

very countable , d i s c r e t e subset of X i s closed in Y and f 

i s sa id to be pseudoopen i f f i s "onto" and for each y e i 

and every open U^f" (y) .we have y t Int f(U) LAp}. 

Since a quot ient im3ge of a s equen t i a l space i s sequen­

t i a l , [Apj, and every count3bly d i s c r e t e mapping onto a Hais-

dorff, s equen l i a l space i s c losed , [ T j , we obta in the f o l l o ­

wing vers ion of the Hanai-Morita-Stone-Michael theorem 

(LMHJ, IS J, [ Mx3 ) . 

Theorem 4. I f f:X—V Y i s a countably d i s c r e t e , q u o t i ­

ent mapping of a metr izable space X onto a Hausdorff space 

Y, then the fol lowing condi t ions are equ iva l en t : 

( i ) Y i s met r izab le , 

Cii) Y i s f i r s t countable , 

( i i i ) Y i s a q-SDace, 

Civ) f i3 pe r iphe ra l l y compact. 

Theorem 5. I f f:X—^Y i s a countably d i s c r e t e , pseudo-

open mapping with a closed graph of a met r izable space X on­

to a space Y, then the following condi t ions are equ iva len t : 

( i ) Y i s me t r i zab le , 

( i i ) Y i s f i r s t countable , 

( i i i ) Y i s a q-3Dace, 

( iv) f i s p e r i p h e r a l l y compact. 
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Proof, ( i ) ==^ ( i i ) and ( i i ) ==> ( i i i ) are obvious. I t 

L 1 J 

i s pe r iphe ra l l y compact, f i3 induct ive ly i r r educ ib l e i . e . 

the re e x i s t s a closed se t FcX such that £(?) = Y and f j ^ 

i s i r r e d u c i b l e . I t i s c lear tha t f\p i s countably d i s c r e t e 

and Y i s a Frechet-Urysohn space, as a pseudo-open image of 

a metr izable space . Since ft™ has a closed graph, i t follows 

from LMit-3 tha t f I™ i s pseudo-open and hence i s c losed. We 

may assume tha t f L i s compact and there fore i s p e r f e c t . Thus, 

Y as a perfect image of a metr izable space i s me t r i zab le . 

2 . I t can e a s i l y be ve r i f i ed tha t the preimage of eve­

ry nowhere dense se t under pseudo-open, i r r educ ib l e mappings 

i s nowhere dense as we l l . Thus, the image of a Baire space 

under a pseudo-open, i r r e d u c i b l e mapping i s a lso a Baire one. 

Making use of tMi^, Theorem 13 we obtain the following 

Theorem 6. If f:X-~-> Y i s a pseudo-open i r r e d u c i b l e 

mapping of an almost pseudonormal, s equen t i a l p-space X which 

i s a Baire one onto a Hausdorff space Y, then the se t of a l l 

points at which f i s compact i s a dense G—set in Y. 

Corol lary 1. I f f :X—^Y i s a pseudo-open, i r r e d u c i b ­

l e mapping of a Uech-complete, sequential 9 -space X onto a 

Hausdorff space Y, then there e x i s t s a dense G*-set ScX such 

tha t f i g i s p e r f e c t . 

We r e c a l l th3t a ?e-space i s a space in which every non­

i so l a t ed point i s a l imi t of a sequence of d i s t i n c t p o i n t s . 

Theorem J. If f:X—-> Y i s a closed mapping of a met a-

compact, almost pseudonormal p- .and cq-space X onto a ^e-spa-
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ce X which is also a Baire space, then the set P of all points 

at which f is peripherally compact is a Gr-set with a t> -dis­

crete complement. 

Proof. By Proposition 1 X is an isocompact 9 -space and 

therefore f is inductively irreducible I Mi-,]. Let F c X be a 

closed set such tint f(F) = Y and f\^ is irreducible. Since Y 

is a Baire space, there exists a dense G~-set M c Y such that 

for each ye M (f!«)"" (y) is compact and hence the set S of 

all points y eY such that (fit?)"" (y) is compact is dense in Y. 

Since F is a metacompact p-space, the set Y \ S is S-discrete 

[VJ and hence S is a dense G^-set in Y. Since f is a cq-space, 

by Theorem 2 we have that S is the set of all q-points in Y, 

for a closed irreducible mapping is peripherally compact if 

and only if it is compact. Now going over to f and again ma­

king use of Theorem 2 we get S = P. 

Corollary 2. If f:X—-> Y is a closed mapping of a meta­

compact, Cecil-complete 8 - and cq-space X onto a »t~3pace Y, 

then the set P is a dense G0- with a & -discrete complement. 

Note. This negligible complement can be non-void, as 

exhibits the factorization of IR by contracting 2. into a 

point. 

Corollary 3. If f:X—»- Y is a closed mapping of a 9 -

space X with a point-regular base onto a Baire snace Y, then 

P is a dense G^—set wi th a <& -discrete complement. 

Corollary 4. If f:X—* Y is a closed mapping of a 5ech-

comolete 0-space X with a point-regular base onto a space Y, 

then P is i dense Gr-set with a s'-discrete complement. 
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qorollarv 5. If f:X—> Y is a closed mapping of a 

metrizable space X onto a Baire space Y, then the set P 

coincides with the set of all points of countable charac­

ter in Y and is a dense Gj with a ^-discrete complement. 

Taking into account LMi*, Corollary 6 3 we obtain 

Corollary 6. If f:X—•> X is a closed mapping of a 

completely metrizable space X onto a space Y, then there ex­

ists the set S c X such that f(S) is dense in Y and f U is 

clopen and peripherally compact. 

3. We recall thit a space every point of which has a 

base of neighbourhoods with compact boundaries is called 

rim compact and a mapping of topological spaces is said to 

be monotone, if the preimages of all points are connected. 

It is known that rim compactness is preserved by clopen map­

pings [Ml, and, if the image is Hausdorff, by open monotone 

and quotient compact monotone mappings [K.3. 

Theorem 8. If f:X—*Y is a peripherally compact, clo­

sed, monotone mapping of a rim compact T-_-space X onto a 

space Y, then Y is also rim compact. 

Froof. Let y be a non-isolated point in Y, then 

Fr f~ (y) is compact, closed and non-void in X. If an open 

U3y, then ^ ( y J c f ^ U ) and f~X(U) is open in X. Since Y 

is obviously a T^-space, f" (y) is closed in X. Hence 

f~liy)c f~l{y)cf~liV). For each point x € Fr f~l(y) we can 

choose a neighbourhood V x c f~ (U) such that Fr Vx is compact. 

Let V ,...,V be a cover of Fr f'^Cy) and let 

At, 

V -= \JA V V U Int f (y). Then v/e have Fr V c .O, Fr Vv u 
t-rl Xi 4,-4 Xi 
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u Fr Int t~ (y). Since Fr* Int f""1(y)cFr f""1(y) , we have tint 

Fr V is a closed subset of a compact sp9ce jXjA Fr V o 
i 

ufT f (y) and therefore it is como3ct. Let us consider the 

set B a fr(V) = Y \ f ( X \ V ) . It is clear that B is an open 

neighbourhood of y and BcU. We shall show that Fr Bcf(fT V). 

Suppose the contrary, then there is a point z e. (Fr B)\f(Fr V ) . 

Hence f"""L(z)c X \Fr V. Since V is open in X, Fr V = (cl V) n 

n(X\V) and X\Fr V = (X \ cl V)uV. Since f is monotone, ei­

ther f"1(z)cV or f""X(z)cX\cl V. If f""1(z)cV, then 

Z€f.f(X\v), so zeB. Contradiction. If f"*1(z) c X \ cl V, then 

z4f(cl V) =- cl f(V) 9nd hence the set W = Y\f(cl V) is an 

open neighbourhood of z and Wc Y\ f (V) c Y \B. Contradiction 

again. Thus Fr Be f(Fr V) and hence Fr B is compact. This 

completes the proof. 

Corollary J. A monotone perfect image of a rim compact 

T-^-space is rim compact. 

Corollary 8. If f.X—=> Y is 3 monotone, closed mapping 

of a pseudonormal isocompact, rim compact T,-space X onto a 

q-space Y, then Y is rim compact. 

Corollary 9. A q-sp3ce which is a monotone closed ini3ge 

of a metrizable rim comp3Ct space is rim compact. 

Corollary 1CX. A q-sp9ce which is 3 monotone closed ima­

ge of a normal rim compact space with a ( . ^ - d i a g o n a l is rim 

compact. 

Corollary 11. If f:X—> Y is a monotone, closed mapping 

of a rim compact T,-space X onto a space Y and the set of all 

points in which f is peripherally ccmp3ct is dense in Y, then 

Y has a .fr-base of open sets with compact boundaries. 
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Corollary 12. Every monotone closed image of a comple­

tely metrizable rim compact space has a .*r-base of open sets 

with compact boundaries. 

We recall that a mapping f:X—> Y of a topological spa­

ce X onto a topological space Y is said to be bi-quotient 

tF],[M2l, if for every cover {V^} A of f~l(y) (yeY) by 

open sets in X there exist a finite number of elements 
Jk 

U f...flL such that y a Int f ( ; U U ). 

Lemma 1. If f.X—=> Y is a monotone, bi-quotient, irre­

ducible mapping of a Hausdorff space X onto a space Y and U 

is an open set in X such trnt Fr U is compact, then Fr f(U)c 

t f(Fr U). 

Proof. By -Mi,-, Lemma 11 the set f(Fr U) is closed in 

Y and hence, if yeFr f(U)\f(Fr U) , then Y\f(Fr U) is a 

neighbourhood of y. Since f"*1(Y)\f(Fr U)nf""1(f(Fr U)) = fb 

and Fr Ucf"X(f(Fr U)), the sets V-_ = Un f"*1(Y\ f (Fr U)) 

and V? = (X\cl U) f~X(Y f(Fr U)) are the preimages rela­

tive to f of some sets. Since f" (y) is connected, either 

f"1(y)cV1 and then yefiV^t f(U), where fCV-j) is open, for 

f is quotient, which is impossible or f~ (y)rV2> w n i c n is 

also impossible, for UnlI2 = fi implies f(U)M f(V^) = J0. Thus, 

Fr f(U)cf(Fr U). 

Theorem 9* If f:X • / T is a monotone, bi-quotient, ir­

reducible mapping of a Hausdorff rim compact space X onto a 

space Y, then Y is also rim compact. 

Proof. If y is a non-isolated point in Y and U is its 

neighbourhood, then f~ (y)c f""1(U) and f~1(U) is open in X. 
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For each xe f~ (y) we can choose an open neighbourhood 

V c f " (Ul such that Fr V is compact. Since f is bi-quoti-
X JU, 

ent, we can find V ,... ,T such that for the set V = -U 7V xl xk xi 
ye Int f(V) and Fr V c.O. Fr V is compact. By Lemma 1 

x = I X i 

Fr f ( V ) c f ( F r V), but Fr In t f (V) c Fr f(V) and hence 

Fr In t f(V) i s compact and f ( V ) c U . 

Note. I f Y above i s Hausdorff, then the statement of 

Theorem 9 remains val id for monotone, q u o t i e n t , pe r i phe ra l l y 

compact mappings (cf. LKl) . 

Lemma 2 . Let f.X—.> Y be a monotone, b i - q u o t i e n t , i r ­

reducible mapping of a Hausdorff space X onto a space X and 

l e t U be an open se t in X such that Fr U i s compact. I f 

f*(U)4-#, then f#(U) i s open in Y and f r f*(U) i s compact. 

Proof. By [Mi,-, Lemma 11 f(Fr U> i s closed in Y and 

hence f~ 1(f (Fr U)) i s closed in X and X \ f ~ 1 ( f ( F r U)) i s o-

pen in X. Let A = f ~ 1 ( Y \ f ( F r U)) = X \ f " 1 ( f ( F r U)) . We s h a l l 

show tha t AnU = f"*1(f#(U)). Obviously A n U 3 f ~ 1 ( f # ( U ) ) . I f 

x e A n U , then A n U n f " (fix) )=^l6. Since f i s monotone and 

AnFr U = 0 , AnU i s the preimage of a se t and hence 

f " 1 ( f ( x ) ) c AnU. Thus, we have f (x) e f #(U) and x e f""1(f*(U)). 

The se t f*(U) i s open in Y, for f i s quo t i en t . Since f i s 

monotone, f ( c l U) = f * ( U ) u f ( F r U) CPJ. Nov/, taking i n t o ac­

count tha t cl f#(U) = f # ( U ) u P r f#(U) , t*iV)n Fr f#(U) = t 

and cl f * ( U ) c f ( c l U), we obtain Fr f * ( U ) c f ( F r U) , so 

Fr f^(U) i s compact. 

Theorem 10. I f f ;X—>Y i s a monotone, compact, pseu-

do-cpen, i r r educ ib l e mapping of a Hausdorff, rim compact spa­

ce X onto a space Y, then f i s closed and Y i s rim compact. 
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Proof. If on the contrary there exists a point 

yecl f(F)\f(F) for some closed set F#J0, then Fnf~ (y) = 

-* 0 and f (y) is compact. Let us choose for each point 

xef" (y) an open neighbourhood 0 X such that 0X*^F =- 0 and 

Fr Ov is compact. If 0 V ,...,0V form a cover of f" (y), x x1 x n 

then for the set V s ,\%, 0 we have f (y) cV, Fr V c 

TV 

c f 'J^ Fr 0V and therefore Fr V i s compact. Since a pseudo-

open, compact mapping i s b i -quo t i en t and f ^ V ) * ^ , by Lemma 

2 f^(V) i s an open neighbourhood of y and f *(V)/> f ( F ) -= # , 

which i s impossible , for y s cl f ( F ) . Thus, f i s closed and 

by Theorem 9 Y i s rim compact. This completes the proof. 
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