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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,1 (1982)

PERIPHERALLY COMPACT MAPPINGS
Valéry MISKIN

Abstrgct: The well-known Hanai-Morita-Stone-Michael
theorem characterizing peripheral compactness of closed map-
pings of metrizable spaces onto arbitrary topological spa-
ces is extended to closed mappings of more general spaces
and to more general mappings of metrizable spaces. In some
general cases when a closed mapping f is inductively irre-
ducible the set of the points at which £ is peripherally
compact is considered.and described. Besides, it is estab-
lished that the images of rim compact spaces under certain
monotone peripherally compact mappings are rim compact.

Key words: Closed mappings, peripherally compact map-
pings, monotone mappings.

Classification: Primary 54C10
Secondary 54D30

All mappings below are considered to be continuous. The

set of all positive integers is denoted by N.

l. A Tl—space X in whioh any countable discrete system
of points is separated by a discrete system of their neigh-
bourhoods is called a & -space LL]. A space has property D,
[Mo, p. 691, if any two disjoint closed subsets, one of which
is countable and discrete have disjoint neighbourhoods (this
is not the usual definition of property D but is equivalent
to it in first countable regular spaces). Property D is wea-

ker than pseudonormality even in the class of separable Moore
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spaces (under the assumption of P(c¢)), [vD,W]. Spaces with
property D will be called almost pseudonormal. It turns out
that in a regular space the above mentioned properties are

equivalent (K. Morita).

Proposition l. For a space X the following two conditi-
ons are equivalent:
(i) X is a regular B-space,

(ii) X is an almost pseudoncrmal T,-space.

Proof. (1)--» (ii), Let S ={sjy:ic N¢be a countable
discrete subset of X and let F be a closed set such that
FnS = @. Choose 1‘05} jeN @ discrete system of neighbourhoods
of 83 i¢ N. By reguiarity, for each ie N there exists an o-
pen neighbourhood Vsi of s, such that (clei)r\F = . If we put

W31= Osif’\ Vsi and W = W_ , then the system {Wsi§ jen 18

L
] Si

obviously discrete and hence is conservative i.e. cl ILLNws =
i

= .‘\z'N cl WS o Thus, W is an open neighbourhood of S such that
¢ i
(elW)nF = B,
(ii) =» (1), It is clear that a pseudonormal T)-space

is regular. If {XiiitN is a discrete system of points, then

th set S = {xi:i( N§ is discrete in X. Je can easily find

by induction a disjoint system{Oxﬁ o open neighbour-
i

icN
heoods of Xis ie N, It is obviocus that the cset F =X \;l;_/,\‘ox
is closed in X and FAD = @, Hence, there exists an open set

U>D such that the system {V y where V. =UnO, , is
i i

§ .
Xy ieN i

discrete and this completes the proor.

2efinition 1. If every compact subspnace of a space X

1as countable character in X, ther ¥ is cslled 5 space of
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strongly countable type.

Definition 2. If every compact subspace K of a space
X has a g-system i.e. a system {vi}ieN of open neighbour-
hoods such that every sequence {xi§ieN of distinct points
X4 € Vi\ K has an accumulation point, then X is said to be
a cq-space.
Metrizable spaces, spaces with a point-regular base, all sub~
spaces of perfectly normal compacta, spaces of countable ty-
pe with a countable network are examples of spaces of strong-
ly countable type, [Al], as well as their perfect images.
Spaces of strongly ccuntable type and regular locally
countably compact spaces are cq-spaces as well as perfect i-
mages of cg-spaces.
We recall that a space in which every closed, countably

compact subspace is compact is called isocompact.

Definition 3. Let £:X—> Y be a mapping of a topologi-
cal space X onto a topological space Y. A point y €Y such
that f-l(y) (Fr f-l(y)) is a compact subspace of X is called
a point at which f is compe ct (peripherally compact). If f
is compact (peripherally compact) at each point ye¢ Y, then
f is said to be compact (peripherally ccmpact), [Val.

Thecrem 1. If £:X ~>Y is a closed mapping of an iso-
compact ©-space X of strongly countable type onto a space
Y, then the following conditions are equivalent:

(i) Y is a space of strongly countable type,
(ii) Y is first countable,
(iii) Y is a q-space,

(iv) f is peripherally compacte.
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Proof. (i) => (ii) and (ii) = (iii) are obvious.
(111) => (iv) follows from [Mi;, Theorem 11. (iv) => (i).
If £ is peripherally comps ct, then f is inductively perfect
i.e. there exists a closed set Fc X such that £(F) = ¥ and
f]F is perfect. Since F is a space of strongly countable ty-
pe, so is its perfect image Y. Indeed, if K is a compact set
in Y, then (fIF)—l(K) is compact and hence has a countable
outer base {Uninew.in F. If V is an open set in Y such that
V5K, then (£]x)71(V) is open in F and (£]p) "1V > (2] 7H(K),

so for some n_€ N we have that U C'(fl > L), Thus,
o n, F

xc(f|F)*(Un°) = Y\ £(F \uno)c f‘(Uno)c V and therefore

X(f‘F)*(Un)EneN form an outer base of K in Y.
Similarly we can prove the following.

Theorem 2. If £f:X—> Y is a closed mapping of an iso~
compact B~ and cq-space X onto a space Y, then the following
conditions are equivalent:

(1) Y is a cg-space,

(ii) Y is a q-space,

(1ii) £ is peripherally compact.

And what is more, if we consider cecg-spaces instead of cg-
ones, i.e. spaces every closed countably compact subspace of
which has a g-system, then we can obtain the following cha-
racterizatisn of peripheral countable compactness of closed
mappings.

Theorem 3. For every closed mapping £:X—>Y of a 8-
and ccq-space X onto a space ¥ the following conditions are

equivalent:
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(i) Y is a ecg-space,

(ii) Y is a gq-space,

(iii) £ is peripherally countably compacte.

We recall that a mapping f:X--> Y of topological spa-
ces is said to be countably discrete LTJ] if the image of e~
very countable, discrete subset of X is closed in Y and f
is said to be pseudoopen if f is "onto" and for each yeY

and every open U:)f_l(y),we have y e Int £(U) L4,1.

Since a quotient image of a sequential space is sequen-
tial,[AZJ, and every countably discrete mapping onto a Haus-
dorff, sequential space is closed, [T1, we obtain the follo-

wing version of the Hanai-Morita—-Stone-Michael theorem
(LMH], LS, TM).

Theorem 4. If f£:X—> Y is a countably discrete, quoti-
ent mapping of a metrizable space X onto a Hausdorff space
Y, then the following conditions are equivalent:

(i) Y is metrizable,

(ii) Y is first countable,

(iii) Y is a g-space,

(iv) f is peripherally compact.

Theorem 5. If f£f:X—>Y is a countably discrete, pseudo-
open mapping with a closed graph of a metrizable space X on-
to a space Y, then the following conditions are equivalent:
(i) Y is metrizable,

(ii) Y is first countable,
(iii) Y is a g-space,

(iv) f is peripherally compact.



proof. (i) = (ii) and (ii) => (iii) are obvious. It
follows from [Mi;] that (iii)=> (iv). (iv) == (i). Since f
is peripherally compact, f is inductively irreducible i.e.
there exists a closed set Fc X such that £f(F) =Y and f]F
is irreducible. It is clear that f]F is countably discrete
and Y is a fréchet-Urysohn space, as a pseudo-open image of
a metrizable space. Since le has a closed graph, it follows
from [Mi5] that fIF is pseudo-open and hence is closed. We
may assume that f'F is compact and therefore is perfect. Thus,

Y as a perfcct image or a metrizable space is metrizable.

2. It can easily be verified that the preimage of eve-
ry nowhere dense set under pseudo-open, irreducible mappings
is nowhere dense as well. Thus, the image ol a Baire space
under a pseudo-open, irreducible mapping is also a Baire one.

Mak ing use of [Miz, Theorem 1) we obtain the following

Theorem 6., If f:X—> Y is a pseudo-open irreducible

mapping of an almost pseudonormal, sequential p-space X which
is a Baire one onto a Hausdorff space Y, then the set of all

points at which f is compact is a denge G;-set in Y.

Corollary 1. If f :X—> Y is a pseudo-open, irreducib-
le mapping of a bech-complete, sequential @ -space X onto a
Hausdorff space Y, then there exists a dense Q;—set ScX such
that £ S is perfect.

We recall that a ae-space is a space in which every non-

isolated point is a limit of a sequence of distinct points.

Theorem 7. If f:X —Y is a closed mapping of a meta-

compact, almost pseudonormal p~ and cq-space X onto a ag-spa~
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ce Y which is also a Baire space, then the set P of all points
at which f is peripherally compact is a G(r—set with a & ~dis-

crete complement.

Proof. By Proposition 1 X is an isocompact & -space and
therefore £ is inductively irreducible '1Mi3]. Let FcX be a
closed set such that {£(F) =Y and f\Y is irreducible. Since Y
is a Baire space, there exists a dense Gd~-set McY such that
for each ye M (f\F)-l(y) is compact and hence the set S of
all points y eY such thst (f}F)_l(y) is compact is dense in Y.
Since F is a metacompact p-space, the set Y\ S is & -discrete
[V] and hence S is a dense Gy-set in Y. Since F is a cg-space,
by Theorem 2 we have that S is the set of 3ll g-points in Y,
for a closed irreducible mapping is peripherally compact if
and only if it is compact. Now going over to f and again ma-

king use of Theorem 2 we get S = P.

Corollary 2. If f:X—> Y is a closed mapping of a meta-
compact, Cech-complete 8 - and cq-space X onto a at-space Y,

then the set P is a dense G,- with a S-discrete complement.

Note. This negligible complement can be non-void, as
exhibits the factorization of R by contracting Z into a

point.

Corollary 3. If £:X—> Y is a closed mapping of a Q-
space X with a point-regular base onto a Baire snace Y, then

P is a dense G(;-set with a & -discrete complement.

Corollary 4. If £f:X—> Y is a closed mapping of a Cech-
comrlete O -space X with a point-regular base onto a space Y,

then P is n dense Gc~-set with a &-discrete complerent.
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Corollary %. If £f:X—> Y is a closed mapping of a
metrizable space X onto a Baire space Y, then the set P
coincides with the set of all points of countable charac-
ter in Y and is a dense G, with a €-discrete complement.

Taking into account LM14, Corollary 6] we obtain

Corcllapy 6. If £:X—> Y is a closed mapping of a
completely metrizable space X onto a space ¥, then there ex-
ists the set Sc X such that £(S) is dense in Y and fl|g is

clopen and peripherally compact.

3. We recall that a space every point of which has a
base of neighbourhoods with compact boundaries is called
rim compact and a mapping of topological spaces is said to
be monotone, if the preimages of all points are connected.
It is known that rim compactness is preserved by clopen map-
pings [M], and, if the image is Hausdorff, by open monotone

and quotient compact monotone mappings [K).

Theorem 8. If f:X—> Y is a peripherally compact, clo-
sed, monotone mapping of a rim compact Ti-space X onto a

space Y, then Y is slso rim compact.

Proof. Let y be a non-isolated point in Y, then
Fr f-l(y) is compact, closed and non-void in X. If an open
Usy, then £+ (y)e £ HW) and XU is open in X. Since Y
is obviously a T;-space, f-l(y) is closed in X. Hence
f-l(y): f.l(,y)cf.l(v). For each point x e Fr f‘l(y) we can
choose a neighbourhood ch:f‘l(U) such that Fr V* is compact.

Let V, ,...,V. be & cover of & £ '(y) and let

1 Xk
v=.u
LT

- Y
V,ulnt £ l(y). Then we have Fr Vc .U, Fr V, U
1 X4 i1 X

i
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v Fr Int f-l(y). Since Fr Int f—l(y)c Fr f_l(y), we have that
Fr V is a closed subset of 2 compact space {éz Fr Vx. J

v Fr fhl(y) and therefore it is comoact. Let us cons;der the
set B = £F(V) = YNF£(X\V). It is clear that B is an open
neighbourhood of y snd BcU. We shall show that #r Bcf(fr V).
Suppose the contrary, then there is a point ze (Fr BIN£(Fr V).
Hence f'l(z)c X\ Fr V. Since V is open in X, Fr V = (¢l V) n
A(X\V) and X\Fr V = (X\ ¢l V)uV, Since f is monotone, ei-
ther £ 1(z)cV or £ H(z)cXNcl V. If £ 1(z) cV, then

z¢ £(X\V), so ze€B. Contradiction. If iz cx\ el V, then
zg £lcl V) = ¢l £(V) =nd hence the set W = Y\ f{cl V) is an
open neighbourhood of z and Wc Y\ £f(V) c Y \B, Contradiction
again. Thus Fr Bec f(fr V) and hence fr B is compact. This

completes the proof.

Corollary 7. A monotone perfect image of a rim compact
Tl—space is rim compact.

Corollary 8. If £f:X—> Y is 3 rmonotone, closed mapring
of a pseudonormal isocompact, rim compact Tl—space X onto a

q-space Y, then Y is rim compact.

Corollary 9. A g-space which is a monotone closed image

of a2 metrizable rim compact space is rim compact.

Corollary 1G. A g-space which is 23 monotone closed ima-
ge of a normal rim compsct space with a Gr--disgonal is rim
compact.

Corollar . If £f:X—> Y is a monotone, closed mapping
of a rim ccrpact Tl-space X onto a space ¥ and the set of all
points in which f is perirherally ccmpact is dense in Y, then

Y has a aw-base of open sets with compact boundaries.
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Corollgry 12. Every monotone closed image of a comple-
tely metrizable rim compact space has a r-base of open sets

with compact boundaries.

We recall that a mapping f:X—> ¥ of a topological spa-
ce X onto a topological space Y is said to be bi-quotient
LF),[M,1, if for every cover {Uc3 _, of £Hy) (yeY) by
open sets in X there exist a finite number of elements

P
U 1”"’U~c such that yeInt £( ;L U, ).
k " i

oL

Lemmg 1. If f:X—>Y is s monotone, bi-quotient, irre-
ducible mapping of a Hausdorff space X onto a space ¥ and U
is an open set in X such thot Fr U is compact, then Fr f(U)c

& £f(Fr U).

Proof. By [Mi5’ Lemma 11 the set f(fr U) is closed in
Y and hence, if ye Fr £(U)\ £(Fr U), then Y\f(Fr U) is a
neighbourhood of y. Since £ T(Y)\ £(Fr U £ X (2(Fr U)) = B
and Fr U&f M(£(Er U)), the sets V) = Un £ H(Y\ £(fr U))
and V, = (x\cl U) £ XY f£(Fr U)) are the preimages rela-
tive to £ of some sets. Since f_l(y) is connected, either
f-l(y)C’Vl and then ye £(Vy)¢ £(U), where f(Vl) is open, for
f is quotient, which is impossible or f_l(y)t V,, which is
also impossible, for UnV, = P implies f(U)t\f(VZ) = p. Thus,
Fr £(U) c £(Fr U).

Theorem 9. If f:X - » Y is a monotone, bi-quotient, ir-
reducible mapring of a Hausdorff rim compact space X onto a

space Y, then Y is also rim compact.

Proof. If y is a non-isolated voint in ¥ and U is its
neighbourhood, then f-l(y)c £ and 1 s open in X.
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For each xe€ f_l(y) we can choose an open neighbourhood
ch f-l(U) such that fr Vx is compact. Since f is bi-quoti-

Jo
ent, we can find Vxl,... ,ka such that for the set V =:\Y in

&

yeInt £(V) and Fr V c.,4, Fr V. is compact. By Lemma 1
1

Fr £(V)c £(Fr V), but Fr Int £(V)c fr £(V) and hence

Fr Int £(V) is compact and £(V)cU,

Note. If Y above is Hausdorff, then the statement of
Theorem § remains valid for monotone, quotient, peripherally

compact mappings (cf. LK1).

Lemma 2. Let £f:X—> Y be a monotone, bi-quotient, ir-
reducible mapping of a Hausdorff space X onto a space Y and
let U be an open set in X such that Fr U is compact. If
£M(U)+ B, then £#(U) is open in Y and fr f¥(U) is compact.

Proof. By [Mig, Lemma 11 f(fr U) is closed in Y and
hence £ (£(fr U)) is closed in X and X\£ 1(£(Fr U)) is o-
pen in X. Let & = £ (YN £(Fr U)) = X\ £ L(£(Fr U)). We shall
show that AnU = £ 1(£¥U)). Obviously AnUs£ L(£¥(U)). If
xeAnU, then AnUf\f-l(f(x))zkb. Since f is monotone and
A~nFr U =0, AnU is the preimage of a set and hence
£1(£(x)) € AnU. Thus, we have £(x)e £¥U) and xe £ T(s*U)).
The set £¥(U) is open in Y, for f is quotient. Since f is
monotone, r(cl U) = £HU)u £(sr U) [P). Now, taking into ac-
count that cl £¥(U) = £¥(U)u Fr £H(U), £¥(U)A Fr £¥(U) = 8
and cl £#(U) = £(cl U), we obtain Fr £¥(U) c £(Fr U), so
Fr £#(U) is compact.

Theorer 10. If f:X—> Y is a monotone, compact, pseu-
do-cpen, irreducible mapping of a Hsusdorff, rim compact spa-

ce £ onto 2 space Y, then f is closed and Y is rim compact.
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Proog. If on the contrary there exists a point
yecl £(F)N£(F) for some closed set F+ 0, then Fr\f-l(y) =
=@ and f'l(y) is compact. Let us choose for each point
Jcef-l(y) an open neighbourhood O, such that O, nF = © and

Fr O is compact. If O, ,...,0, form a cover of f'l(y),
1 n

then for the set V =i\__3‘3,_ cxi we have f'l(y):v, FrV c

s {;?, Fr 0xi and therefore Fr V is compact. Since a pseudo-
open, compach Papping is bi-quotient and £¥V)<+ g, by Lemma
2 £F(V) is an open neighbourhood of y and £T(V)m £(£) = B,
which is impossible, for ys cl f(F). Thus, f is closed and

by Theorem 9 Y is rim compact. This completes the proof.
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