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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

22,4 (1981)

ON NUMBER OF COVERING ARCS IN ORDERINGS
V. KOUBEK, V. RGDL .

Abstract: Two of results - a distributive lattice on n-
point set contains at most n logzn covering arcs. If the di-

graph of coveri arcs of an ordering of n point set does not
contain 35 ,2 is the digraph consisting of all arcs

leading from a point set to two-element set) then it has at
most (1 + o(l)) Va = 1 03’2 arcs.

Key !pzds. Covering arc, transitive reduct, transitive
clogsure, ordering, lattice, distributive lattice, algorithm.

Classificetion: 05C30, 05C20, 05415

One of the possibilities of an economical deseription
of an ordering is by means of its covering arcs - a directed
graph (X,R) is a transitive reduct (or a Hasse diagram, or a
graph of covering arcs) of an ordering (X,4) if it is the
smallest directed graph such that (X,<) is a transitive and
reflexive closure of (X,R). It is clear that if X is finite
then for every ordering (X,4£) there exists its transitive
reduct. The aim of this note is to give estimates of the ma-
ximal number of arcs in the transitive reduct for specieal
classes of orderings. We give also some applications of the-
se estimates.

In this note all sets (except the set N of all natursl
numbers) will be finite. If X is a finite set then |X! deno-
tes the size of X. For a directed graph (X,R) denote
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xR = {y;(x,y}e R}, Rx = {y;(y,x) e R} for each xeX. If (X,£)
is an ordering then its transitive reduct is denoted by
Red(X, <),

Recall that an ordering (X,<) is a lattice if every
couple of points x,y<€X has the smallest upper bound (or sup-
remum) - denote it by xwvy, and the biggest lower bound (or
infimum) - denote it by xAy. A lattice (X,£) is called dis-
tributive if for every triple x,y,z of points of X

(xAay)vz = (xvz) Alyvaz)
holds.
If G 1s a finite set of directed graphs, then an ordering
(X,4£) has promrty CP(C*) if for no graph (Y,R) € G, there
is a one-to-one compatible mapping from (Y,R) to Red(X,<).

Define functions 4,2 ,p@ from N to itself as follows:
d(n) = max {|RI; (X,R) = Red(X,<), |X| = n,(X,£) i3 a dist-
ributive latticef,

£(n) = max {I1Rl; (X,R) = Red(X,<), |X| =n, (X,2) 1a a
latticel, qu(g) = mex {) Rl; (X,R) = Red(X,<), IX| = n,
(X,£) 1s an ordering with the property @((})}.

For positive integers s,b define a directed graph 1Ca,b =
= (X,R) where X ={0,1,...,a+b-1}% and R = {(4,J); 0< 1<a,
aéj<a+b . Denote for a<b, Pa,b = P{¥a,b, X p,at* We give the
asymptotical estimates of functions d, £ +Pg,p £OF bza>1.

First we give two easy observations.
Lemmg 1: Every lattice has property P({jcz’a}),

Lepma 2: For every natural number n
d(n) < 2(“)‘: p2,2(n)
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and for a4e, b£d p, (M €p, 4(n).
b ’

Theorem 3: (1 + o{1))e B clog n<d(n)< nelog, n.
2 2

Proof: First we prove the lower bound of d(n). For
this purpose we congider the lattice of all subsets of a
set X with 1X| = k. This lattice is distributive and for
7,6c¥X, (Z,V) is a covering arc iff Zc V¥V and | 2] + 1 = {Vl,
Thus there are V! covering arcs leading to V. Hence the'

number of covering arcs in this lattice is
i &

E (5= B (5) -k -
This lattice has 2¥ points and so if n = 2X the d(n) =

zg 1og2n. Let n be a positive integer. Then there exists
exactly one increasing sequence {jl,Jz,...,J’k§ of non-nega-
tive integers with n =;Z__)1 2"L, For each 1 = 1,2,...,k, let
(Xi,é-) be the distributive lattice of all subsets of the

set {O,l,...,Ji-l}. We form a lattice (X,<4) such that X is

a disjoint union of Xy and we define that for each i = 1,2,...
+ee,k=1 the smallest element of (xi+l’é) is bigger than the

biggest element of (Xi,é). Then (X, <) is a distributive

latliice, {Xl =n and if (X,R) = Red(X, <) then {RI
-1

_ i

= .2y 52 + k-1. Further

* Js=1 % Jsi-1 Ji=1
n = 1 i i
3 logy,n ==, 332 =, (@7 logyn - 452 7 )

T

3y-1 2 -1 &k Jy-1
= = 2 =, G2tz
¢ +. 32y (3 31)2 £
. a1 4-1
Ji"l ’k i'l ’;Q’L i 1
X - - n
1 2 *iZ N2 it 25t

"Me

= 32, (logyn = jy)2

3
A

=

-
v

"MP* " M?

i-1_.
2 P
1 3)
Here we used that

+ 2,5 n

.
1
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(1) Je£ logon<j, + 1

+ t
(2 = i-1 _ it i-1 _ oty i-1
)] 2y 12 =y (1-1)2 1':24 12 tz"-1 4,.-222

and 3 &
% Ji=1
(3) 2 2t o = ot
1=1 =1

Thus we get the lower bound of d(n).
We prove the upper bound of d(n). Let (X,<) be a distributi-
ve lattice with (X,R) = Red(X,< ). We show that if for x&X,
|Rx| = k, then there exists a one-to-one mapping @ from the
gset of all subsets of Rx to ¥, hence |XI|2Z 2k and so we have
IRx) £ log, IX\. Define ¢(B) = x and for B+ZcRx, ¢(2) =V2Z
(the smallest upper bound of Z; it exists because (X,<) is a
finite lattice). To end the proof we have to prove that % is
an injection. By distributivity we get N {¢ (2), @(V}§ =
= @(Zn V) for each Z,VCRx. Thus if ¢ 1is not injective then
there exists a set Zc Rx such that for some yeRx - Z we have
®(2) = @(Zuiyd),
Assume that Z is a subset of Rx with the smallest size such
that for some yeRx - 2, ®(2) = ¢ (Zu4y§). If 12| = 1 then
@(Z) = 2z for z€2Z and therefore |Z|> 1. Choose z&Z and put
V =2 -4z}, Then \VI<iZzl, hence @(2)# @ (V) and
@(V u1yY) + (V). On the other hand, @(V) =A{ @(2),
@(Voiy¥t and @ (2) = @ (Zudy]) = @ (Vuiy)) because ¢ is
compatible and so we have « (V) = @ (Vw4y}) - a contradic~
tion. Thus ¢ 1is injective and hence d(n)£ nelogyn.

Conjecture: d(n) = (1 + o(1))- g-logzn.
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Corollary 4: There exists an algorithm which for a di-
rected graph (X,R) decides whether it is a distributive lat-
tice and in the positive case constructs operations supremum
end infimum in time proportional to O(IX)Zloglxl).

Proof follows from Theorem 3 and Statements 1 and 2 in [4].

The best known algorithms deciding whether a bigroupoid
(X,v,n~) or a directed graph (X,R) is a lattice, require.the
same time - 0(1X17/2) - see [41. The analogous fact does not
hold for a distributive lattice - there exists an algorithm
deciding whether g bigroupoid is a distributive lattice in
0(1%12) time - see [ 3] whereas the best known algorithm deci~
ding whether a directed graph is a distributive lattice is gi-
ven in Corollary 4.

It was shown in (5], see also L4] that

(0) A(n)z (1 + o(1))87L/ 2532
and it follows by a result of W.G. Brown - see e.g. [1, § 12]
that
py,3(MZ (1 + o(1) $n*/3
We conjecture thatthe equality holds in (0).

Now we prove

Theorem 5: Let a,b be given positive integers and < =

= a*b=2
-1 then

‘n 2=
pa’b(n)Z'c LQJ for n sufficiently large and

absolute constant c.

1
[ q!bi]EWJ
(Here we show c = —Q*%EZEZL— , where e = 2,71 ...

is the base of natural logarithm but shall not make any at-
tempt to find the best ¢ with the above property.)
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Note that the above theorem improves the inequality 12.1 in
f13.

In the proof of the above theorem we shall use the fol~-
lowing theorem of J. Spencer, which is a consequence of a
theorem of L., Lovdsz - see L6].

First we introduce the following notions: Let £ be a
probability space and AjyAy,e00,A) events. The graph 7" with
vertex set {1,2,...,n}% is called dependence graph of
181,850 A0} 12 41,51 ¢ 7 4ff 45 and Ay are mutually inde-
pendent. P(A;) is a probability of A;. The following is an

easy consequence of Theorem 1.3 from [6].

Theorem 6: Let A, By (Led , Ke X ) be events in a
probability space Q. with dependence graph I' . Let N(L,¥)
be the number of vertices of type ¥ adjacent in " to a ver-
tex corresponding to L. Set N,p = max {N(L,X); Lesfi and
let NAA’ NBA’ NBB be defined analogously. Suppose that to each
event AL(BK) there is associated some y; =y (zg = z) such that
yP€ap) <1, zP(Bp)< 1

Loy > yP(Al)N,, + zP(BIN,p

£nz > yP(Ap )Ny, + zP(By)Npp
then
B>
PR (B0 70
Here by T we denote the event complementar to A.

() heo : We employ the probabilistic method.
Skippose, we are given positite integers a,b (without loss of
generality assume azb>2). For a given sufficiently large n
(this will be specified later) let G be a random subset of
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Vi<V, (V;,V, are disjoint sets |V;| = IV,l =18] = m), whe-
re the elements of & (arcs) are chosen independently, each

-£ -
with probabillty p = c,m where €= 9———3312 and ¢, =
w?x_
= [.0 1 a/+g,.] . Set
a b b v
L =LVl %<v,1%0 [v1° < va]a
(where [Vi]a denotes the set of all a-element subsets of V;;
[V,)? is defined similarly), and ¥ =V, -
To every L € ¥ (i.e. to pair (S,T) e & ) associate the event
Ay, that SxT < G . Similarly to every K ¢ X (i.e. to veVl)
associate the event By that the number of arcs of G  incident

to v is at most %9 - here e = 2,71 ... is the base of natural

logarithm.

Then we have

(1) P(AL) = pab for every Le
and

(2) P(B)< exp (2 - 1)pn]

(2) follows by Cherno:f inequality (see [1)}, 3.7 ) using ele-

mentary computation

- my_Jeq_ ym=j_. _ m(1=-p) mpy .
(P(BK) —éﬁ (j)p (1-p) £ exp L{m k)log-i;-in + k log 1=
< exp [(% - 1)pm])

_ ipm
for k = LE—J)
Let ) be now a probability space with events Ay Le 5% and

By, K e X and let Nya» ¥aps Npp» Npp be the numbers defined
in Theorem 6. Then

b a+b=-2
NAAéZGb(a Vo< —§i o7 ©

BA_cm‘l)cm) + (@b L—-—(a + b)
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N,p % Max {a,b} = a

Npp = 0
The theorem states now: if there exist positive y,z such
that
(3) yP(ap)< 1, zP(By) <1
b
2ab ¢ .

-2=ab€ -E
(4) e!).);’?m yn?*P 2=abe , ., exp[co(g -V~ %]
(5) (a+b) 2P

Lnz> —a‘m‘ﬁ‘ yma+b—l-abg

then there exists G € & such that

i) the valency of arbitrary vertex v eVl is more than
c
2o 1-£
el

ii) SxT is not a subset of G for any choice of (S,T)e
ed.

Set y =1,1
z = exp [0,2 [ l-sJ
2ab cgb

€1 T Te-D) 1 {p-1)7 Y

_ (a+b)
C2 =@l bl ¥
then (3),(4),(5) become
(3 1,1 pab< 1, exp [co(-g- - é)ml“6]<l
, -€ -
(4) £n1l,1>e¢m +aexp[c°(§-§) mt |
(59 O,2c°m1-e’7 ¢, cgb n!™®

which is satisfied for mZm (a,b) (where m (a,b) is an abso-

ute constant depending on a and b only)
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It follows now from (i) and (ii) that there exists Ge G

which fulfils ‘fPHIK’a'b, 'xb’ai) and,moreover, has more than
¢

{o]

n°"% arcs. This proves our Theorem.

°f

It follows from (O) that P, >(n) = (1 + o(1))8"1/2,3/2
?
This can be slightly improved, as shown by the following

Proposition 7@

(M z(1 +o(1))2 \/9-3-—5@3-—-
n) = + 0
Pa,2 (lva) + 2)3

We omit the tedious proof which is based on the convenient
modification of the digraph, used in [4] for the proof of (0).
3/2

Note that the above proposition shows Py 22 ¢t where
?
ca-—# 2 as n —» oo . However, in Theorem 9 we show Pg.2 E3
?
£ c; n3/2 where c; tends to infinity as a —> 00 . We believe
that the upper bound in Theorem 9 is closer to true and
. = 3/2 =
conjecture: pa,Z(“) = (1 +0(1))d, n where Q’l_}g d, = @

(6) Theorem 8: pa’b(n) £nb + (a=1)1/P f2-1/D

Proof: Let (X,«) be an ordering with the property

P UK, 1KYy, g3) such that [ X} = n. Let x),%5,000,%, be in=
degrees of all vertices of (X,R) = Red(X,<). Since every sub-
set £ of X with |Z| = b can be contained in at most a~1 neigh-~
borhoods of vertices of X we have

Ty X ;N

Yetornd ()

2 (e

Using elementary computation this can be converted to (6) (as
m

pa’b(n} é';'§4 x4)
For b = 2, we can strengthen the above theorem. Namely, we

prove the following:
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Theorem 9: p, ,(n)=(1 + o(l))% Va - 1 n}/2
3

Proof: Let €, denote the minimal number such that re-
duct of every ordering (X,%), 1X} = n having property
({1(18,2"1»2,&%) a>1 has at most

i ) 2 g L 3/2
pa’z(n) = (1 + E,n) 3 Ya ln
arcs., We show that lim € = 0, Let 1 >e >0 be given and
m—>o0
let (X,< ) be an ordering with property ?({%wl,jégwlr), Suppose
g2 “F

that X = {0,1,...,n-1% and that the natural order of integers
extends that of (X,£).

Set (X,R) = Red(X,£); we show that
IRI<(1+ e §Va- 10220 +6)% Va - 102

if n is large enough.

Let x,5%),0.05%,_; be indegrees of vertices 0,1,2,...,n-1.

Set m = & n, where « = TeG , and for J, m< j<n let the number
of arcs of the form (i,j), O£ 1< p-1 be denoted by ¥4 the num-
ber of arcs of the form (i,j), m<i be denoted by z 5.

Then, analogously, as in Theorem 8, we have

%;(xi) 5 (Zj)é(a - 1) (;)

4 2 *é=ah
and hence
'!'!-4 2 fn,-4 ) 2
L.Zo X3 +;,%m, vy la - Lo

where'ij_:xi-land'i‘j:yj-l

Set A
-
= (%)% = 62(a - 1)p? = 32(a - 1) 2n?
A =0 1
Then
! 2y 2
ég-m yJ‘:(l - 8°)n°(q ~ 1)

-

3
[
EN

m
As the number of ares of (X,R) is -‘Zoxi *;}Z (.YJ- +2z;)

v =
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we have by Cauchy-Schwarz inequality that

IRI4n+68Va-1 m3/2+ (1—62)1/2 Va - 1 (n—m)l/2m+

=\Va-1 (1 + ¢ )%-(n—m)yzé n +

n-m
s Vol n¥%(s & (re,_ ) (1-00)3/2)
6 <ocll?

because by an easy computation O = o0 .

Thus we get

(7) Py o(ml€n +Va-l n¥2 , Py 2((1=ot)n)
’ a,

Moreover, by Theorem 8

(8)  p, p(m%2 0+ V(eD) n¥2c 2 Vam1 n¥/2

-
for nx n,

Let n be so large that
(9 % n¥/2z (2no)3/2, c%é% n¥/2 a1
and let t be the largest integer that

(10) (1 -o:a)thno

(11) Then we have clearly (1 -Oﬂ)tnéZno

Combining (7),(8),(9),(10) and (11) we get
Py, 2(n) 4;;4-0 (1-c)tn + Va1 MW;%; (1-oct?
+ pa’z((l-oo)tn)ﬁ- B.Val n¥/2 I—_—(fic—)m +
+2Vari(1-ot3/2 .22 84 2 \/a_-_i(2n°)3/2 +

— .3/2 o <
+ \Va-1n <
1-(1-3"2 o¢ + (342)062)

c &+ G+ yiyms ) Vel /%< 1re)§ Vol 02
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The first inequality is obtained by t-1 iteratioms of (1).

Notice that in the proofs of Theorems 8 and 9 we used
only facts that the ordering (X,<£) fulfils either -’.P({Jfa’b}
or {P({Jcb'a}). Thus the following holds:

Corollary 10: For every a,bZz2, aZbd

1/b 2-1/b
p€{3(:e,b})(n)» D({J(b la-g)(n)é nb + (a=-1) n
’

p«xa,zﬂ(n): P({xz a})(n)é(l + 0(1)) %\/a ~1n?
?

Note: Theorems 8 and 9 hold also if, more generally,
transitive reduct of ordered set is replaced by the transiti-
ve reduct of directed graph.

We mention in closing one application of Theorems 3 and 8.
We say that an acyclic directed graph has the property D, or
L, or J(G) if its transitive and reflexive closure is a dist-
ributive lattice, or a lattice, or it has the property ?(g,).
A directed graph has the property D, or L, or P(G.) if ita
quotient graph by the decomposition into strongly comnected
components has the property D, or L or J’((éz).

Corollary 13: If a directed graph (X,R) has the proper-
ty D (or :P({dca,b,xb’,u for a4b then there exists an al-
gorithm constructing its transitive closure in O(IXIZol'og X)
(or 0(x31/8)resp.) time.

Corollary 12: If a directed acyclic graph (X,R) has the
property D (or Aﬂ’(ﬂ(a,b,ﬂ(b’ai) for a&b then there exists
an algorithm constructing its transitive reduct (i.e. the

transitive reduct of its transitive and reflexive closure) in
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o€1x12 10g 1X1), (or 0(!Xl3'l/a resp.) time.

The proof follows from Theorems 3 and 8 if we use the

result in [3].

£1l
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