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SOME RESULTS ON INVERSE SPECTRA |.
M. G. TKACENKO

Abstract: In this paper, we consider the following qu-
estion: when a homeomorphism of limit spaces of two inverse
spectra is induced by an isomorphism of cofinal subspectra?
We prove two gpectiral theorems which generalize a number of
A.V. Arhangel‘skii‘s, S.A. Pasynkov s and E.V. 3%epin’s re-
sults. Some related questions are considered, too.
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Introduction. In 1976 E.V. Séepin proved the fundamental
result which was named the spectral theorem for compacts (see
[1], Theorem 2). Since this result was obtained, some new ver-
sions of this theorem have appeared. The most interesting of
them, as we see it, were proved by A.V. Arhangel ‘skil' { 2Jand
B.A. Pasynkov [3]. Another approach (via uniform spaces) to
the S%epin’s theorem was created by W. Kulpa [8]. In the first
part of the paper we present one general assertion with a clear
proof which implies Arhangel ‘skii’s and Pasynkov’s results men-
tioned above. It should be noted that the main idea of the
proof of our spectral theorem was casted by the reasoning of

R. Engelking (see [4], Theorem 1).



In what follows, all spaces are assumed to be complete-
ly regular if there are no other assumptions, Instead of
"inverse spectrum" we write briefly "spectrum". We assume
that all spectra under consideration consist of topological
spaces and Spectral projections (including limit ones) are

continuous and onto.

§ 1. Spectral theorem for spaces similar to compacts. We

shall recall some necessary notions.

Definition 1. Let (A,<) be a directed set of indices
and S; ={X_ ,p!}}o‘ pear Sz = iy, ’q{i‘ec,/}cA be spectra. For
every ove A let us fix a continuous mapping @ X —> Y_ .

I. A family {g : o« & A§ is said to be a morphism of a
spectrum Sl to a spectrum Sz if @y p£= qﬁ o gaﬂ for each
o, 3 & A such that o« 2 f3.

II. A morphism {¢ _:o¢ € A} is said to be an isomorph-
ism if g, is a homeomorphigm of X onto Y, for every e A.

Definition 2, Let § be an ordinal end S = {X_ ,pﬁgq‘lﬂ<g
be a well-ordered spectrum.

I. A spectrum S is said to be continuous if for every li-
mit oc¥< € & space X, is naturally homeomorphic to & limit
of a spectrum S -{X ,pdfu Pew® (the last means that a
diagonal product A4 p t X< oc“} is a homeomorphism of Xcd*
onte Lim S )e

II. A continuous spectrum S is said to be regular if g
is a regular cardinal and w(ch)<§ for every of¢ < g -

Now Stepin’s spectral theorem for compacts can be formula-

. = 9§ /3
ted as follows: Let S = iX ,p/’ ‘ic,ﬂ<b‘ and T = 1Y, ,qwid B<z be
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regular spectra consisting of compacts with homeomorphic 1li-
mits. Then there exists a closed cofinal subset A € © such
that the spectra S, = -{Xd_ ’p'f}cc)ﬂe pand T, = -[Yd ’QZ}QC,/;EA
are isomorphic.

Let © be an infinite cardinal. We write V. (X) 2 = if
for every open cover ¥ of a space X there exists a subcover,
y’c 7y such that ly'| < © .

In [2], A.V. Arhangel ‘skil proved the following theorem:
Let a space X of a regular weight © > K, be a limit of regu-
lar spectra S = {X_ ,pf?x)p<t
quotient projections and V£ (™) 2z for every n € @ , Then

and T =4{Y ,qﬁid.‘,k.: with

there exists a closed cofinal subset A € ¢ such that the spec-
tra SA and TA are isomorphic.

In [3], B.A. Pasynkov showed that if a space X is a limit
of a regular spectrum S = -[Xw ,pfi"ﬂ;‘ﬁ with closed projec~
tions then V£ (X) £ 2 , With the aid of this result Pasyn-
kov proves that for every regular spectra S = {Xec ,pc/é _f,(’p“_.and
T = {Yoc ,qfid)/;‘..t with closed projections and homeomorphic 1li-
mits there exists a closed cofinal subset A € z such that the
spectra SA and TA are isomorphic.

We shall show that it is possible to exclude the rest-
rictions on projections of spectra in Arhangel ‘skil ‘s and Pa-
synkov s results. But we need to retain the condition V.2 (X)z
4 4 which is inherent tc both of them. Before formulating
our main result (Theorem 2) let us discuss the following que-
stion. When a space can be represented as a limit of a well-
ordered spectrum consisting of spaces of smaller weight? The-
re are many spaces which do not admit such a representation.

For example, the space T( cul) (countable ordinals with the or-
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der topology) is "bad" in this sense. Indeed, if the space
T(ey) is a limit of a spectrum S = ix, 'pa/c’;ec,ﬂ<wl consis-
ting of spaces of a countable weight then a countable compact-
ness of T("ﬁ) implies that X is compact for each o< @,.
However, a limit of a spectrum consisting of compacts is com-
pact, that is a contradiction.

The following theorem shows when does the desired repre-

sentation exist.

Theorem 1. Let T > & be a regular cardinal and VL (X)
< T = w(X)., Then a space X is.homeomorphic to a limit of some

well-ordered spectrum S = {X where w(X )< ¥ for

TE]
AR %c,p<t’
every £ < T »

Proof. Let us assume that X is a subspace of Tychonoff

cube I° . There exists a family {A : ¢ <3 such that 1) A &

EAﬁ yX<f=x ; 2) Aﬂ =dyﬂ A for every limit ordinal
P<T;3IA i<z andd4)T= U A .

A
Let 4 be a natural projection of I° onto I~ and o>
A
be a natural projection of I ” onto I % yX<@B<wT , For

every &« < put X = a7, (X); a topology on X, is induced

from IA“‘ For each oc, 3 with o« < 3 put P :rﬂlx

. ’ P T 1 Xp .
So we have defined a well-ordered spectrum S = {X ’Pf;f,c,p<‘c
such that w(X_)£|A_|. ¥ < v for every « <7 . Let ¢ be
a diagonal product of a family of mappings {n’wl x<Td.
let Y = }_i_.g S and p, be a limit projection of Y onto X,
o« < T . Then L4 is a continuous mapping of X to Y. Now we
shall show that ¢ is a homeomorphism of X onto Y.

I. @ is a monomorphism.

Indeed, let x,y € X and x+4y. Then there exists an ordinal
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o*< ~ such that X w(x) & 7 «(y). The equality Pa°P=
= :[.’c,i X implies that ¢ (x)+ @ (y).

II. ¢ is an epimorphism.

Let ye Y. For every o« < ¥ put E . =Xn :L:’(p,c (y)). Then E,
is a non-empty closed subset of X and E < F; for B<ut<T ,
The inequality UL (X) £ « implies that F =_ ), F 4+ A . Let
x€F. Then n, (x) = p_ (x) for every o < © , hence @(x) =
= y. Consequently ¢ (X) = Y.

III. The mapping g"l is continuous.
let ye Y, ¢(x) =y and @ be an open neighbourhood of x in X.
Then there exist an ordinal o« < ¥ and an open subset V&X,
such that xe€ Xr\Jt.'c-lV €0 . Put W= p;l V. The equality @ (x)=
= y implies that ye ¥ and 9-1(1) = Xnig‘-l V<O ., Thus the
theorem is proved.

It should be noted that a mapping ¢ is a homeomorphism
of X onto a dense subset of Y if the condition V£ (X) € © is
not assumed. In connection with this fact it seems to be natu-
ral to introduce the following definition (see also [61, p.
1059).

Definitiom 3. a) We shall eay that a spectrum S = {X_
1,
space X o* is naturally homeomorphic to a subspace of gg S *

p<g is almost continuous if for every limit o™ < § a
)

where S . = {X_ 'pc/z}o(,ﬂ<cc* (then this subspace is dense in
2_15 Sx*. because projections of a spectrum S are assumed to be
onto).

b) We shall say that an almost continuous spectrum S is
almost regular if ? is a regular cardinal and w(Xoc )< E for

everyoc<§.
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An almost continuity of a spectrum S means that for eve-

*  and

ry limit ordinal o« *< § the family -i(;{z‘* )0 <
O is open in X { forms a base of a space X » -

In some sense the notion of an almost continuous spect-
rum is better than the notion of a continuous one. It is con-
firmed by the following facts:

a) each completely regular space X of regular weight « >
> &, with V£(X) << is a limit of an almost continuous spec-
trum consisting of completely regular spaces of smaller weights,
but

b) not every such a space X can be represented as a limit
of a regular spectrum.

Indeed, the spectrum constructed in the proof of Theorem 1

is almost continuous. Namely, from the condition A=
= U+ A, which holds for every limit o™ < T , we obtain that
the family {(p;‘* )10 <c* and O is open in X_3 forms a
base for Xw* .

However, the €& -product of £1 many of the discrete dub-
letons is an example of Lindeldf space of weight aﬁl which is
not representable as a limit of a continuous spectrum consist-
ing of spaces of a countable weight. This fact easily follows
from Theorem 2 which is the main result of the first part of

the paper.

Theorem 2. Let a space X of a regular weight < > £
with VA2 (X) « ¥ be a limit of each of two almost regular spec-

tra S ={X°€,pf}d,ﬁ<,u and T =4y ,qﬁg Then there ex-

<,p<t *

ists a closed cofinal subset A &1 such that the spectra SA=

= Ik = I 5 ;
AX . ,p, §d’(,€ aand T, =4Y ,qd,{‘)ﬁeA are isomorphic.
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The general idea of the proof of this theorem is a fac-

torizatiom of continuous functions on X.

ILemma 1. Let a space X of a regular weight 7z > Ho with

v A (X) £« be a limit of a well-ordered spectrum S = {X_ ,

pﬂ} and f be a continuous function on X. Then there ex-
* o s T
ist an ordinal o« < = and a continuous function £, on X,

such that f = f. e p. , where p_ is a limit projection of X
onto X_ .

Proof. For every i ¢ @ let 7 be a countable open co-
ver of R by intervals of length <1/i. Fix i € @ , Since f is
continuous, for every xe X there exist an ordinal o¢(x)< % and
an open subset @x:-: X (x) Such that the set f(p;%x) @x) is con-
tained in some member of 7 ;. The inequality V£ (X) £ v imp-
lies that there exists a subset K; < X with |K;| < v such that

Wy = -Lp;]('x) @x:xeKi} is a cover of X, Put A; = {w(x)ixe Kif.

Now put A =“.‘éJm A;. Then {Al=<® because * is a regular
cardinal and |A;l £ 1Kl < © for each ie @ . Consequently
there exists an ordinal o« < such that 3 < o« for every Be
€ A. We claim that x,ye€ X and p,, (x) = p (y) implies £(x) =
= f(y).

Indeed, let py (X) = py, (y) and i€ . As Pp (x) = Ps (y)
for every (3 € A; and («; is a cover of X, there is a point z €
€ K; such that x,ye p;:(lz)@z and the set f(p;%z) 0,) is contain-
ed in some member of ;. Consequently |f(x) - f(y)|<1/i. The
last inequality is valid for each i€ w hence f(x) = f(y).

Now we shall define a function f, on X, . Let X, € X,
x€X and p, (x) = x, . Put £, (x,) = f(x). This definition is

correct because a value £ (x_ ) does not depend on a choice
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of a point xe g;lx‘ . From the definition of the functiom f_

it follows that £ = f_ o p_ . It remains to show that £, is
continuous. Let x € X_ , Xx€X and Py (x) = X . Let % be an
open neighbourhood of a point f_ (x, )(= £(x)). Then there ex-
ists a number i 6  such that St,a.i (£(x)) < % . Moreover,
there exists a poimt s<K; such that xe p;_]‘“’) 6, and a set
f(p;%’) @,) is contained in some member of a cover ;. It is
obvious that i’(p;%z)az)i St,a.i(r(x)) U . A8 x(z)eA;, we
conclude that «<£(z)<o¢c . Put V = (p:(z))'le,. Then ye V and
the equality £ = £ o p, implies that f (V) = f(p;]'V) =

= f(p;:(l',) Gz) € U . Thus the lemma is proved.

Corollary 1. Let X be Lindeldf subspace of a product
‘TJA X, and f be a continuous function on X. Then there exist
a countable subset Bc A and a continuous function fB on JI’B(X)
such that f = fpo (op X).

Remark. Let X be LindelBf subspace of a product JJA X,
and £ be a continuous mapping of X to a space Y with a G4 -dia-
gonal. Then there exist a countable subset B& A and a mapping
fp: ¥g(X) —> Y such that £ = fpo (FplX), This was noted by M.
HuSek (see [71, Thearem 10). But fy is not necessarily continu-

ous in this case.
N

Lemma 2, Let a space X of a regular weight <« > Ko with
VAL (X) 4<% be alimit of a well-ordered spectrum S = {X_
p£§¢,ﬁ<1, . Let also £ be a continuous mapping of X to a space
Y of weight <<’ ., Then there exist an ordinal «* < v and a
continuous mapping £* :X_, —» Y such that f = t*o | I
Proof, Put A= w(Y). A space X is completely regular, hen-

ce there exists a family 1g,:«c <A} of continuous functions
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on Y which separates points and closed sets of Y. For every
o« <A put Y,=@ .o £. Then ¥y, is continuous for every
o < A , According to Lemma 1 for every cc < A there exist
an ordinal B(o¢) < = and a continuous function g on Xg()
ageh that 4, = g ° Pa(eg* Put A= {B ()it <AJ . Then
1Al £ A | hence there exists an ordinal ot* < ¥ such that
A S x* ., For each ct < A putf,{,SgwopF;(‘x). ILet?= ‘
=A{f : ot <A} be a diagonal product of a family of func-
tions {f, et <A ¥, @=Alg it <A} and £* = 9'10?.
Then the mappings % and @ are continuous and ¢ is a homeo-
~orphism of Y onto @(Y) because of a choice of a family {g, :
:ot <A3, Hence a mapping £* : o+ —> Y is continuous. It re-
mains to show that £* o P = f, or equivalently, %o Pox =

= @ o f. But the last equality follows immediately from the
fact that f o0 P, = ¥, = P o f for each o < A . Thus the
lemma is proved.

We will say that a spectrum S = {X with a 1i-

ot ’pfgd,ﬁ<-‘b’
mit X has the factorization property, shortly FP, if for each
continuous mapping £f:X —> Y to a space Y of weight << there
exist an ordinal o¢ <<« and a continuous mapping f_ :X, —> Y
such that £ = f o P » where p is a limit projection of X
onto X .

So, Lemma 2 states that a spectrum S = 41X 'pfi.(,p<c of

a regular length v > #  with a limit X satisfies FP if V.2 (X)4
é c [ ]

Iemma 3. Let a Space X of a regular weight v« > #, be

a limit of ea!;h of two almost regular svectra S = -\xac ,p££1p<t,
and T = -\,Yd,q‘}d’p(u having FP. Then for every oc < ¢ there
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exist an ordinal o® < ¥ with o £ «* and a homeomorphism

* » = -
@* of )‘(x,‘ onto Yd.'* such that ¢@” o P+ =9 .«
Proaf., Let us fix an ordinal o < & , Put By =< -
Since q is a continuous mapping of X onto Y and the weight

o
of ¥ is less than T , Lemma 2 implies that there exist an

Po

ordinal < © and a continuous mapping ¢ :X?,—-; Y{3 such
: o
that g o;o)? © Py o Put o¢, = max 4{50,7?; and @, =
= Qo py . It is obvious that quo = Qg pooo. Applying Lem-
ma 2 W-times we construct increasing sequences of ordinals
it i e wf and {P :iewf where By=cc; £B < T for
each i € @ , and sequences of continuous mappings {¢;:i ew?,
iy.:i e w?¥ , where @,:X —>Y s > X and
¥ ’ E21 o By’ L& ﬂi*‘l" oy
*
@;ep,. =q YVioq =p . Put ¥ = gup{e,:icwi(=
el S R R C VS ] i
= sup -iﬂi:i € w$ ). Since speetra S and T are almost continu-
ous, without any loss of generality one cen assume that X (Y_)
is a subspace of lim S, (l}l‘ T. resp.) for every limit ordinal
o < = , where S = {Xp ,pgip)a&* and T = {Yﬂ ,qgéﬂ)a,«,c. For
- o ot o~ oc*
every 1 € & put ¢; = Cfio P,.. and Vi = ’qfio qﬂ . Put also
i i
* = s i ~ .
g = AT 4 ew} ana y*= Alay i e wN\{0}. Then ¢*
is a continuous mapping of Xd* to lim ‘1;(* and y*is a conti-
nuous mapping of Y . to lim S , ., We claim that ¢* is a ho-
meomorphism ‘of X « onto ¥ , -

(1) Let xe X, Put x¥ = Pv (x) and y* = e (x). Let us

]

show that @*(x*) =y* and y*(y*) = x*. We have: x¥e X,
B0
and y*e Y « %0 Gix*) = ’c}'ip“* (x) = qipdi(x) ='qﬂi(X) =
¥ .
=q;;i (y*) for each i € &> . Hence an almost continuity of a

spectrum T implies that ¢* (x™*) = y*, The same arguments
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imply the equality y*(y¥) _ x* , Thus (X LeX and
y¥Y eX L. MR
ow ISR«

(2)  y¥og* =id and @Yo y¥ =4
Xq',“ ¥ ¥ ldY“*

Indeed, let x*e X . | Choose a point x€ X such that
P_ v (x) = x*, Put y*= 9, x (x). The item (1) implies that
Q"(x’*) = y* and \V*(y”‘) = x¥, Consequently yr*o q:’* =

= idy . The same reasoning shows that @™ o g =
o

. 1dzo” .
The items (1) and (2) imply that ¢* is a homeomorphism

of X o onto Y . and w* p

IO P This completes our

proof.
Let all suppositions of Lemma 3 be satisfied. Put A =
= {£ < ¥ : there exists a homeomorphism ¢ of X, onto Y

such that op.=q_ 3} . Then Lemma 3 implies the following.
9 9P, T,

Lemma 4. The set A is a closed cofinal subset of © .

The conclusion of Theorem 2 immediately follows from Lemma 4.

In connection with Cprollary 1 the following question
naturally arises. Let X be a subspace of the Tychonoff product
g;iZA X, and X contains a dense Lindeldf subspace . Is it
true that every continuous function on X depends at most on
countably many coordinates? The answer is negative even in a
case of a separable space X.

Example I. ILet cw be the set of all finite ordinals
with the discrete topology. In the space Coml with the usual
Tychonoff topology we define two non-empty gisjoint sets Fo
l:x(t)40 for

every oc€ <o, and there exists (3 € <, such that x(f) =1}

and F; by the followingway. Put F_ ={xew

and F; =4x € @ :x(cc)+1 for every oc € w; and there exists
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(€ @, such that x((3) = 0}. From the definition it follows
that [Foln Fy = A and rontrll = A , Consequently, disjoint
sets Fo and 1'1 are clopen in the space X = rourl. Let £ be a
function of X which equals to zero on !‘o and one on Pl. Obvi~
ously, £ is continuous. For every subset T ¢ @y let T p be

[A)
the natural projection of @ 1
= (w\ioH)T am Hp(F)) = (w\113 )T for each countable T¢<
c w '

1.

Hence arT(Fo)r\ :!I'T(Fl) = (w\10,13 )T. Thus the functiom

T
onto w . Then m’T(Fo) =

f depends on uncountably many coordinates. One can easily pro-
ve that the sets Po and Fl are separable, Hence the space X

is separable, too. So X contains a dense LindelBf subspace.
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