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FREE ENTROPIC GROUPOIDS
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Abstiract: Free entropic groupoids and free commutative
medial groupoids are constructed.
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The theory of medial groupoids is (at least in the opi-
nion of the authors) one of the deepest non-associative theo-
ries within the framework of groupoids. (Recall that a grou-
poid is said to be medial if it satisfies the identity
xy.uv = xu.yv and a groupoid is said to be entropic if it is
a homomorphic image of a medial cancellation groupoid.) In
this paper, explicit constructions of free entropic and free
commutative medial groupoids are presented. These construc-
tions are realized by means of polynomials in at most two

commuting indeterminates over the ring of integers.

1, Preliminaries. Let us fix two symbols, say «< and ﬁ.
We denote by E the free monoid over {ot, 3} . Every element
e cE can be written in the form e = a;...&,, a; e{x, 3}
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anl nZ 0; the integer n is denoted by J'(e). The unit ele-
ment of E is 1 and we have J(1) = 0. For every nz 0, let
E, = {ecE; J(e) =nl.

Let X be a non-empty set. Then S'i is the free algebra
over X in the variety of universal algebras of the type
{+,0,x ,ﬁ} (consisting of one binary, one nullary and two
unary operatiom symbols) satisfying the identities (x + y) +
+s8=x+(y+z), x+y=y+x,x+0=x, x(x+y)=ccx+
+ xy, f(x+y)=px+ 3y, O =0, 30 =0, Elements from
SW;( are called semiterms over X. Every semiterm can be expres-

H
sed in the form s = 124 e;X;, where r is a non-negative inte-

ger, e;€ E and x; € X; this expression is unique up to the or-
der of the summands. We put A(s) = r.

Define a multiplication on wa' by st = s + 3t. The
set SWy is a groupoid with respect to this operation and this
groupoid will be denoted by Swy. Let Wy be the subgroupoid of
SWy generated by X. Elements of 'X are called terms over X.
It is easy to check that Wy is an absolutely free groupoid
over X,

Let t = %%’14 e;x; be a term over X. The set {x;;1£i<r¢
is denoted by var(t). The set {e;;14i4r} is denoted by
I¥(t). The set fe € Ejef ¢ I*(t) for some fc E} is denoted by
I(t). For every nz O, put I,(t) = B nI(t). Finally, let
J(t) = max{d(e);ec I(t)}.

1.1. lemma, Iet t be a term over X. The set P = I(t)
has the following properties:
(1) P is a finite subset of E and 1¢€P.
(2) If e,fcE and ef €P then e P,
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(3) If ecE then exc P iff e3¢ P.
Conversely, if P is a subset of B satisfying (1),(2) and (3)
and h is a mapping of the set Q = {ec P;ecc ¢ P{ into X then
the semiterm s =e§a eh(e) is a term over X and P = I(s).

Proof. Easy (by induction on A(t)).

let t be a term over X and e< I(t). Then, as one may i
check easily, there exists a unique pair (w,u) such that w is
a semiterm, u is a term and t = w + eu., Moreover, if v is a
term then w + ev is a term. We put u = t[e] .

Iet e = @j...a,¢ E. The ordered pair (Card {ija; =« ,
Carda {ija; = 3%) is called the weight of e. For every pair
(x,1) of non-negative integers, denote by Ek,l the set of all
e ¢ E of weight (k,1), For every teWy, let Ik,l(t) = ‘k,l N
NnI(t). Finally, put Pk,l(x't) = Card {ee Ik'l(t);t[ejl x §{ for

each xe X,

1.2, Proposition. Let X be a non-empty set. Denote by
llx the least congruence of 'I such that the corresponding
factorgroupoid is a medial cancellation groupoid. Then (u,v)e
€ My iff u,v €Wy and Pk,l(x'“) = Pk’l(x,v) for all xeX and
k,1>0.

Proof. See [2].

For all teWy, xcX and nz0, put P (x,t) = Card fe ¢

e I (t);t = xt.

[e]
1.3. Proposition. ILet X be a non-empty set. Denote by

Cx the least congruence of Ix such that the corresponding

factorgroupoid is a commutative medial groupoid. Then (u,v)e

€ Cy iff u,veWy and P (x,u) = P/ (x,v) for all xeX and nZ0,
Proof. See [2].
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In the following, we shall make use of the numbers (2).
Recall that these are defined as follows: (ﬁ) = 0 for all
n< 0 and every integer k; (8) =1 (g) = 0 for every k+0;
(“;") = (kf') + (E) for all n>0 and every integer k.

2. A construction of free entropic groupoids. Let X be
& non-empty set. Denote by F}; the free algebra over X in the
variety of universal algebras of the type {+,0,cc, 3§ satis-
fying the identities (x +y) +z =x+ (y+z), x +y =y +
+x, x+0=x, x(x+y) = ax+xy, Blx+y)=px+fy,
0 =0, 30 =0, xf3x = [io(;x. E?er%.element ueFy can be
written in the form u =.3, ¢ ip? x; where r, n;, m; are
non-negative integers and xiex; this expression is unique

up to the order of the summands. We define a multiplication

X
ration is a groupoid which will be denoted by FX' We can i-

on F; by uv = ocu + 3v. The set F;{ together with this ope-~

dentify the set Fy with a subset of SWy. For every element
A e |

u=3X o “f3 % x; from Fy, put d(u) = max (n; + my). This

non-negative number is called the depth of u. Finally, deno-

te by Gx the subgroupoid of Fx generated by X,

2.1. Theorem. Let X be a non-empty set. Then the grou-
poid Gx is a free entropic groupoid over X. An element

n n m
u =,y o ipgd x; from Fy belongs to Gy iff the following

two conditiors are satisfied:

. z L PPTM,
(1) If 04kx<n £07(u) then '.’§4(k‘ni )£ ().

v, Aenytmy n
(2) If O<k<n = J"(u) then 4’.§4 ( k-ng = ().

The proof of this result will be divided into seven
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2,2, Lemma. Denote by h the homomorphism of 'I onto Gx
such that h(x) = x for every x €X, If te Wy then

h(t) = Ool(e)pr(e) t where (1(e),r(e)) denotes

ee%:*(t) [el
the weight of e. For u,veWy, h{u) = h(v) iff P, ,(x,u) =
’
= k’l(x,v) for all xe X and k,1 20,
Proof. The first assertion can be proved easily by in-
duction on the length of t. The second assertion is an easy

consequence,

2.3. lemma. Gy is a free entropic groupoid over X.

Proof. This is a consequence of 2.2 and 1.2,

X on; omg
Let u = ;5 L *f3 x;€ Fy, Put c(n,k,u) =

N n-ni"'ni
= 4}:,, 4 k-n; ) for all integers n, k. Let Hy designate the

set of all ueFy such that c(n,k,u) = (2) whenever O£k <n =
= d’(u). Moreover, let Ky be the set of all ueHy such that

c(n,k,u) £ (i) whenever 0£k<4n £d(u).

2.4. lemma. The following conditions are equivalent
for every u eFx:
(1) ueHy.
(ii) c(n,k,u) = (2) for &ll n = d'(u) and k.
(iii) There exists n = d'(u) such that c¢(n,k,u) = (ﬁ) for e-
very 0<k £ d'(u).

Proof. (i) implies (ii). If either k<O or n>k then
e(n,k,u) = 0 = (E). Now, we shall proceed by induction on
2 =nu- d(u)e If m = O then there is nothing to prove. lLet
nz1. We have (@) = @21y + ™" ena @) = ¢(n-1,k=1,u),
(nf(') = c¢(n=1,k,u) by the induction hypothesis. The rest is
clear. '

(ii) implies (iii). This imﬁlication ‘i‘s evident.

i
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(iii) implies (i). We can assume that n > o (u). Let us
prove by induction on 0<k £ d(u) that c(n-1,k,u) = (n;‘).
3 = 0 for exactly
one 1<i4r; for this i we have n-n;-m;>1, and so
c¢(n-1,0,u) =1 = (n-’). Now, let kx>1. Then (m-l) = (n) -

(n-1) = ¢(n,k,u) - ¢(n-1,k=1,u) = c(n-1,k,u). The rest is

For X = 0, 1 = ¢(n,0,u) = (3), and hence n;

easy by induction on n - J(u).

2.5. lemma. c(n,k,u)é(’k‘) for every ucKy and all in-
tegers n, k.

Proof. The statement is clear, provided either n<O0 or
n>0 and k ¢{0,...,nf. Let n> 0 and 0£k<n. For n < d(u),
there is nothing to prove. For n = d'(u), the assertion follows

from 2.4,

2.6. lemma. GycKky.

Proof. Since XcKy, it suffices to show that Ky is a sub-
groupoid of rx. However, this is an easy consequence of 2.4
and 2,5.

e P |

n .
2.7. m. Let u '%:24 o {3 Xie Kx and uex. Then
ng +m>0 for every 1£i<r,

Proof. Suppose, on the contrary, that n; = my = 0 for so-

me 1< j4r, Since ueX, we have r=>2, lLet 1<p<r. Then

<nP::P)ze(npo-p,np,u)z( P"P'“P Py« (P '?%_g Byeae

n
+ ( p"p)’ since ue Ky, a contradiction.

np

2.8, m. xx.c.er
Proof. Consider an element u =L§4 o T3 7 x fromKy.
Por every 0<n £ 0'(u) and every integer k, we shall construct

by induction on n two sets A: and Q having the following
- 228 =



(1) Ap~BE = 4.

(2) card (Ap) = () - c(n,k,u).

(3) Card (Bﬁ) = Card {i;n; = k, my = n-k}.

(4) If O4£k4n then Aﬁ and B: are subsets of Ek,n-k’

First, let n = 0 = k, If ueX, then put Ag =fand B =
={@t. If ug¢X, then put Ag = {0} and Bg = ¢. Further, let
either k<O or k>n. Then we put AE = * = ¢, Finally, let
n>0 and 0£k<n. Denote by I the set of all a,...a,¢€ Ek,n-k
such that either a =c and a;...a, ;¢ Aﬁ:: or a, *(3 and
8yecey g€ :.E-'. By the ix:duction'hypotheais, Card (I) =1
= ne n- n- -1 ke n~1, _
= Card (A, 7,) + Card (A ") = () = c(n=1,k=1,u) + (L")

Cod™,y o @ _
myrm.<m k~-n. k
- c(n,k,u) + Card {ijn; =k, my = n-k}. Since (})=>e(n,k,u),

- c¢(n=1,x,u) = (i‘) - c¢(n,k,u) +

the set I can be divided into two disjoint sets A and B of
cardinalities (il) - c¢(n,k,u) and Card {i3n; =k, my= n-k},
resp. Now, it suffices to put Axkl = A and B: = B,

Denote by C the union of all the sets Akn and BE. Moreo~
ver, let D designate the uniom of all the sets Bﬁ and let Dy
be the set of all ay...ay&C such that a;...8,x ¢ C. It is
easy to see that D& Dy As for the converse inclusion, let
a = a;...a, €Dy, We have aeEk,n-k for some 0<£k<n, If m <
< o'(u) then aeA']:, and therefore aeB§ €D, If n = o (u) then
u €Ky yields Card (AZ) = (2) - c(n,k,u) =0, A: =@ and
teB‘k‘eD. We have proved that D = Dye Further, it is easy to
verify that the set C satisfies the conditions (1i,(2) and
(3) of 1.1. Moreover, Card (D) = r and there exists a bijec-

tive mapping g of D onto §1,s..,r} such that if ecB] and
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term t over X such that C = I(t) and t o7 = X (e) for every
e c D. According to 2.2, h(t) = u where h is the homomorphisn
of Wy onto Gy extending idy, and so ueGy.

Theorem 2.1 follows now immediately from 2.3, 2.6 and 2.8,

2.9. lemma. Let ue Fy, X,y,z€X and c¢,d =0, Then

u+a®pd xeHyirrur ey, «x®p%! zecn,.
2 .
Proof. Letu =%, ipt x; and n = max ( o'(u),c+a+1),
By 2.4, u + «© (Bd xcHy iff (ﬁ) = c(n,k,u) + (n;S;d) for all

k. Similearly, u + el (3‘1 y + &cﬂd-ﬂ z belongs to Hy ire

() = cln,k,u) + (n;f’_;‘z;') + (n‘i_'g"‘) for every k. The rest

is clear.
ni mi
3 = x3 Hy andn = J(u).

Then r< 20, Moreover, r = " irr ng +my = n for every 14i%r,

i
2,10, Lemma, Let u =,%, ov

In this case, (f) = Card {ijn; = k} for every k.
Proofo Easyo

U7 n. .

2.11. lemma, Lﬂu'i§4o</ 1(5 xiellxandn=d~(u).
Suppose that r = 2", Then ueGy.

Proof. By 2.10, n = ny + my for all i and (}) = Cardfi;
n; = k} for every k. However, for each 0Zk <n, we have (’;) =
= Card (Ek,n-k)’ and so there exists a bijective mapping £,
of sk,n-k onto {ijn; = k{. Put £ = fyu...uf , so that £ is
a bijective mapping of E, onto {1,...,r}. Clearly, there ex-
ists unique t e Wy such\ that I(t) = Eyu ..o VR, and t[eja Xp(e)
for every €€R . By 2.2, h(t) = u, and hence ueGy.

2.12. Remark. As it is proved in [3], every medial can-
cellationm groupoid can be imbedded into a medial quasigroup.

Using this and some results from [1], it is posaible to prove
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2.3 directly and without an application of the equational
theory of entropic groupoids.

3. A construction of free commutative medial groupoids.
Let X be a non-empty set. Denote by CFi the free algebra over

X in the variety of algebras of the type {+,0,<? s8atisfying
the identities (x +y) +z=x+ (y+2), x+y=y +x, X+
+0=x, x(x+y) = x + <y, 0 = 0, Further, define a
multiplicationm on CFi by uv = ocu + V. We obtain thus a grou-
poid CFx. Let CGx :e thg.subgroupoid of CFX generated by X.
Finally, for u =, >, o x; € CFy, define 6&(u) = max (ng31 £

i5
4£1i4r).

3.1. Theorem. Let X be a non-empty set. Then the grou-
poiad (X}x is the free commutative medial groupoid over X. An e-
fv n, 00 o
lement u =4-/§'.1 o * x; of CFy belongs to CGy iff’«gfa 2 ¥cara 1i;
ng = ki=1.

The proof of this theorem will be divided into seven lem-

3.2. Lemma. Let h be the unique homomorphism of Wy onto

CGy such that h(x) = x for every xc X, If te Wy then

- c(Ja“(e)
hit) = & trea

P (x,u) = P, (x,v) for all xeX and nzO.
Proof. Easy.

. If u,veWy then h(u) = h(v) iff

3.3. Lemma. CGy is a free commutative medial groupoid o-
ver X,
Proof. Use 3.2 and 1.3.

n
3.4. Lemma. Denote by Ly the set of all u =£§4 ocni x; &

-k R
€ CFy such that’%‘f_'.o 27" Card 4ijn; = k§ = 1. Let veCFy,
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r.y.:ex end n20., Then v + 2 xely iff v + AL
+o® zeLx

Proof. BEasy.

3.5. Lemma. OCGy<Ly.
Proof. It is easy to check that Ly is a subgroupoid of
CF

x.
r ng
3.6, lemma. Let u =,=, o * x €Ly and r = 1., Then ueX
_—— 1=1 i
and n; = 0.
Proof. Obvious.
2 n.
3.7. Lemma. Let u =.=., oC lx.elxandr?-z. Then
— =1 1
Card {i;n; = o'(u)jz2.

Proof. Easy.

3.8, Lemma. < CGy.
lema. 1yecoy -
Proof. Consider an element u =.24 o ' x; € Ly, We are
4= 1

going to show by induction on r that ueCGy. According to 3.6,
we can assume that. rZ2, Put n = o"(u). By 3.7, there are two
different numbera 14£c, d4r withn, =ng =n, Let v =
=4*Zc, « x + o™ -t X,+ It is easy to see that v e Ly. Hence
by the induction hypothesis v e CGy. Further, we have v = h(t)
for some t cWy. By 3.2, there is an ecI _,(t) with t 9 = X..

Now, it is easy to show that h(w) = u for some we Wy,
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