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COMMENTATIONES MATHEMATICAE UNIVERSITATlS CAROLINAE 

22,2 (1981) 

FREE ENTROP1C GROUPOIDS 
Jaroslav JEŽEK. Tomáš KEPKA 

Abstract: Free entropic groupoids and free commutative 
medial groupoids are constructed. 

Key words: Free groupoid, medial groupoid. 

Classification: 20N99, 08B20 

The theory of medial groupoids is (at least in the opi­

nion of the authors) one of the deepest non-associative theo­

ries within the framework of groupoids. (Recall that a grou­

poid is said to be medial if it satisfies the identity 

xy.uv * xu.yv and a groupoid is said to be entropic if it is 

a homomorphic image of a medial cancellation groupoid.) In 

this paper, explicit constructions of free entropic and free 

commutative medial groupoids are presented. These construc­

tions are realized by means of polynomials in at most two 

commuting indeterminates over the ring of integers. 

1t Preliminaries. Let us fix two symbols, say cc and /3. 

We denote by B the free monoid over {ocf (3} . Every element 

e e E can be written 5n the form e « a^**^, a^ e{cc f fil 
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and n ^ O j the integer n is denoted by cf(e). The unit ele­

ment of E is 1 and we have cT(1) * 0. For every n £ 0 , let 

Bn * * e e E f ^t*) * n ^ 

Let X be a non-empty set. Then SW~ is the free algebra 

over X in the variety of universal algebras of the type 

-i + f0to£ f ft\ (consisting of one binary, one nullary and two 

unary operation symbols) satisfying the identities (x + y) + 

• » * x + (y + z ) , x • y * y + x, x + 0 = x, oc(x + y) * ocx • 

• ocyt (b(x + y) « /J x • /3y, ooO * 0, /JO • 0. Elements from 

SWX are called semiterms over X. Every semiterm can be expres-

sed in the form s * - ^ eixi> w n e r e r is a non-negative inte­

ger, e^€ E and x. e Xf this expression is unique up to the or­

der of the summands. We put 5t(s) = r. 

Define a multiplication on SW-̂  by st » ocs + ft t. The 

set SWy is a groupoid with respect to this operation and this 

groupoid will be denoted by SW^. Let W x be the subgroupoid of 

SW^ generated by X. Elements of W~ are called terms over X. 

It is easy to check that W« is an absolutely free groupoid 

over X. 

Let t * ̂ S ^ e^x. be a term over X. The set ix* ;1 ^ i ^ r ? 

is denoted by var(t). The set \e^;% £±£r} is denoted by 

I*(t). The set -Je eEjef cl*(t) for some f e E j is denoted by 

I(t). For every n £ 0 , put InCt) « ^ n l ( t ) . Finally, let 

oT(t) « max{cT(e);e€l(t)}. 

*•*• l£3S&* *** t be a term over X. The set P = I(t) 

has the following properties: 

(1) P is a finite subset of E and t eP. 

(2) If e,f e E and ef e P then e eP. 
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(3) If e £ I then toceP i f f e(3 e P. 

Conversely, if P is a subset of ̂  satisfying (t),(2) and (3) 

and h is a mapping of the set Q »fee P;eo6 4 *$ ifcto X then 

the semiterm s * ^^ eh(e) is a term over X and P « 1(a). 
e e Q> 

Proof. Easy (by induction on <7t(t))# 

Let t be a term over X and eel(t). Then, as one may 

check easily, there exists a unique pair (w,u) such that w is 

a semiterm, u is a term and t = w • eu. Moreover, if v is a 

term then w • ev is a term. We put u » t ^ • 

Let e • S p i ^ e E , The ordered pair (Card fija^ *<*] , 

Card 4i;a^ = (hi ) is called the weight of e. For every pair 

(k,l) of non-negative integers, denote by E. -. the set of all 

e e E of weight (k,l). For every teW x, let 1̂ . 1(t) * M^ ̂  n 

nl(t). Finally, put Pk £(x,t) » Card«£eelk i ( t ) ; t . - e 1 * x| for 

each x e X. 

1.2. Proposition. Let X be a non-empty set. Denote by 

M x the least congruence of Wx such that the corresponding 

factorgroupoid is a medial cancellation groupoid. Then (u,v)e 

e Mx iff u,veWx and Pk ĵ x,**) = Pk -^(xjv) for all xeX and 

k,l>0. 

Proof. See £23. 

For a l l teWx , xcX and n £ 0 , put Pn(x,t) * Card fe e 
C I n ( t ) J t t e J "«*• 

1#3. Proposition. . Let X be a non-empty set. Denote toy 

C x the least congruence of W x such that the corresponding 

factorgroupoid is a commutative medial groupoid. Then (u,v)£ 

e c x iff u,veWx and Pn(x,u) * Pn(xfv) for all xeX and a > 0 * 

Proof. See L23. 
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In the following, we shall make use of the numbers (£). 

Recall that these are defined as follows: (]*) * 0 for all 

n < 0 and every integer kj (Q) » 1; (jj - 0 for every k^O; 

(n^) * (k
n
t) • (£> for all n > 0 and every integer k. 

2. A construction of free entropic groupoids. Let X be 

a non-empty set. Denote by FY the free algebra over X in the 

variety of universal algebras of the type {+,0,06, tS j satis­

fying the identities (x + y) + z * x + (y + z ) , x + y s - y + 

• xt x + 0 » x, oo(x + y) » ocx • coy, /3 (x + y) « fix • /3 y, 

06O * 0, /30 = 0f oc/3x * /3ocx. Every element u e F ' can be 

K n. m. A 

written in the form u S ^ S ^ 06 /3 x x^ where r, n^, m^ are 

non-negative integers and x. e X\ this expression is unique 

up to the order of the summands. We define a multiplication 

on F* by uv a oc u + fh v. The set P x together with this ope­

ration is a groupoid which will be denoted by Px» We can i-

dentify the set F Y with a subset of SW Y. For every element 

vt n*^A oc /3 x£ from P x # put d*(u) = max (n^ + m ^ ) . This 

non-negative number is called the depth of u. Finally, deno­

te by Q x the subgroupoid of P x generated by X. 

£•!• theorem. Let X be a non-empty set. Then the grou­

poid G x is a free entropic groupoid over X. An element 

u *̂ -f«/j 00 (3 x.^ from P x belongs to G x iff the following 

two conditions are satisfied; 
tv is-n • -m. (t) If O^k^n^oГ(u) then .2. ( . i

 x)ѓ:(Ъ. 
ť = 7 JŁ—Пi JK 

(2) If O^k^n * c/Ҷu) then .2, (
 v
 „ Ч - Æ). 

The proof of this result will be diviđed into even 

łemш a S
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2»2» l^™i* denote by h the hoaomorphism of Wj onto GL* 

such that h(x) * x for every x eX# If tef^ then 

h(t) » eS*(t) °° 1 ( e )
r3

r ( e ) treJ w h e r e (1^)»r(e>) denotes 

the weight of e. For u,veWx, h(u) = h(v) iff P^ ^(x^) • 
38 Pk -^(Xjv) for all x c X and k,lz0. 

Proof. The first assertion can be proved easily by in­

duction on the length of t. The second assertion is an easy 

consequence. 

2»3» Lemma. Gx is a free entropic groupoid over X. 

Proof. This is a consequence of 2.2 and 1.2. 
K n. m. 

Let u = ji?/fcO (h x-e F^. Put c(n,k,u) » 
K n-n*-a. " 

« ^f*/f ( jc-n# ) for all integers n, k. Let H x designate the 

set of all ueF„ such that c(n,kfu) « (
n) whenever O ^ k ^ n * 

* cf(u). Moreover, let K x be the set of all ueH^ such that 

c(n,k,u)^(£) whenever 0 ̂ k ^ n ^ cT(u). 

2»4• Lemma. The following conditions are equivalent 

for every ueP„: 

(i) u e H r 

(ii) c(n,k,u) » (£) for all n^cf(u) and k# 

(iii) There exists n ̂  cT(u) such that c(n,k,u) » (£) for e-

very O^k ^ cf(u). 

Proof, (i) implies (ii). If either k < 0 or n>k then 

c(n,k,u) = 0 « (£). Now, we shall proceed by induction on 

a s n - cf(u). If i = 0 then there is nothing to prove. Let 

« > 1 . We have (n) « <£j) + (n*!) and (nlJ) « c(n-1 fk-1 fu), 

(n£ ) = c(n-.1,k,u) by the induction hypothesis. The rest is 

clear. 

(ii) implies (iii). This implication is evident. 
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(iii) implies (i). We can assume that n x ^ u ) . Let us 

prove by induction on 0£k -̂  cf(u) that c(n-1„kfu)
 a (n£ ). 

For k » 0f 1 * c(nfOfu) « (Q), and hence n^ * 0 for exactly 

one l^i-^r; for this i we have n-n^-rn^ 1, and so 

cCn-lfOfu) * 1 • C ^
1 ) . Now, let k>1. Then i\%) • (£) -

- (J*|) u c(nfkfu) - c(n-1,k<-1fu) • c(n-1fkfu). The rest is 

easy by induction on n - cT(u). 

2«5. lemma. c(nfk,u)£(£) for every ucKg and all in­

tegers nf k. 

Proof. The statement is clear, provided either n^O or 

n>0 and k <H0f ...fnl. Let n> 0 and 0£k-=m. For n ^ oT(u)f 

there is nothing to prove. For n^<^(u), the assertion follows 

from 2.4. 

2-6* Lemma. G x ~ *"X* 

Proof. Since X£.K~, it suffices to show that L, is a sub-

groupoid of F-». However, this is an easy consequence of 2.4 

and 2 .5 . 
it n^ nb 

2.7. Lemma. Let u *%?tf °& P> * i e K x a n d u e X » T h e n 

n^ • :m.>0 for every 1^i-4r . 

Proof. Suppose, on the contrary, that n* * m* » 0 for so­

me l^rj^r. Since u£X, we have r>2. Let l^p^r. Then 

( ^ ) > c ( n p 4 m p , n p f u ) ^ ( n P ^ ^ " ^ ) • fr*\^*} - 1 • 

n -frm^ 
• ( F

X L
p ) f since ue K~f a contradiction. 

2.8. Leimma, K Y - ° X ' 
A ni "i 

Proof. Consider an element u a ^ ^ <** p x^ from Kj. 

For eveapy 0_£ n £ cT(u) and every integer kf we shall construct 

by induction on n two sets m£ and B£ having the following 
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(!) A*nBg*0. 
(2) Card (A£) « (£) - c(n,k,u). 

(3) Card (B£) « Card iUn± « k, n^ « n-k}. 

(4) If 0^k--n then A£ and B£ are subsets of E k n^k* 

First, let n « 0 = k. If u e X, then put A^ « 0 and B » 

= -£0}. If uejrX, then put A^ « 10} and B£ « 0. Farther, let % 

either k < 0 or k>n. Then we put A £ « B^ « 0. Finally, let 

n > 0 and O^k^n. Denote by I the set of all a | . . . a n e B . f c .^ 

such that either an « co and a.j •. •*n„m) & A^I or e^ « /3 and 
a1**#a»-1 e *k • B y ^ e induction hypothesis, Card (I) « 

« Card (Aj£{) • Card (A£~ !) « (£|) - c(n-1,k-1fu) + (n~*) -

- c(n-1fkfu) « (£) - c(n,k,u) + . S fT^"*1) • (2) -

- c(n,kfu) + Card 4i»n^ « k, m^ « n-k}. Since (%)? c(nfk,u)f 

the set 1 can be divided into two disjoint sets A and B of 

cardinalities (£) - c(nfk,u) and Card-Cifn^ « k, a^« n-k}„ 

resp. Now, it suffices to put A£ « A and B^ « B. 

Denote by C the union of all the sets A £ and B^. Moreo­

ver, let D designate the union of all the sets B£ and let D Q 

be the set of all a-j.-.a^C such that aj.-.a^ ^ C. It is 

easy to see that D^D Q. As for the converse inclusion, let 

a « a|...an6D0. We have a6 II -̂  for some O-^k^n. If » <. 

-=: cf(u) then aeA^, and therefore a e ^ D . If n « cT(\x) then 

u e K x yields Card (A^) « (£) - c(nfk,u) = 0 , A£ « 0 and 

&eB^£D. We have proved that D = DQ. Further, it is easy to 

verify that the set C satisfies the conditions (1),(2) and 

(3) of 1.1. Moreover, Card (D) « r and there exists a bijec-

tive mapping g of D onto 41,... ,r} such that if e c B£ and 
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term t over X such that C • I(t) and ttBl
 m *g(e)

 for e v e ry 

e e . D . According to 2.2, h(t) • u where h is the homomorphism 

of Wx onto (*x extending idx, and so U6(*x» 

Theorem 2.1 follows now immediately from 2.3, 2.6 and 2.&. 

2»9« 1&8B&* Let ueP x, xfy,zeX and c,d-?0. Then 

u • oCC(b* x c H Y iff u • o6
C+1/3d y + o 6 C I 3 d + 1 * € K r A /t, n, m. 

Proof. Let u "^/f^ oo */2> x xi and n * a ax ( of(u),c+d+t). 

By 2.4, u + o6C f3d x e H x iff (£) « c(n,k,u) + (\%d) *or all 

k. Similarly, u • occ+1 £ d y • c*0/^*1 z belongs to H x iff 

(£) = c(n,k,u) • ( n ^ 7 1 ) • ( n^ - 1) for every k. The rest 

is clear. 

2.10. Lemma. Let u = j ^ co * ft * x^ H x and n » oT(u)# 

Then r£ 2*1. Moreover, r = 2*1 iff n^ • n.̂  • n for every 1 ̂ -i^r. 

In this case, (n) =- Card^ijn^ * kj for every k. 

Proof. Easy. 
to n± aL 

2.11 • Lemma. Let u " ^ ^ oo x I3 x^e H x and n » c/Xu). 

Suppose that r « 2 n. Then ue(*x. 

Proof. By 2.10, n » n^ + m^ for all i and (£) « Card-fti 

n^ - k} for every k. However, for each O^k^n, we have ln) » 

* Card (E^ n ^ ) , and so there exists a bijective mapping f^ 

of \ n-k onto 4i;n.£ -» k U Put f « f 0u...uf n, so that f is 

a bijective mapping of ̂  onto -\1,...,r}. Clearly, there ex­

ists unique t e. W x such that I(t) * l^u...ul^ sad t[€- = *f/e\ 

for every e e \ « By 2.2, h(t) * u, and hence ueQ-g. 

2.12. 1-SSSSk* ^s it is Proved in [33, every medial can­

cellation groupoid can be imbedded into a medial quasigroup. 

Using this and some results from L1]f it is possible to prove 
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2.3 directly and without an application of the equations 1 

theory of entropic groupoids. 

3. A construction of free commutative medial groupoida. 

Let X be a non-empty set. Denote by CF« the free algebra over 

X in the variety of algebras of the type {+fOfoci satisfying 

the identities ( x + y ) + z » x + (y + z), x • y = y • x, x • 

• 0 = x, cc(x + y) * ocx + o6yf ooO = 0. Further, define a 

multiplication on CFX by uv
 s ocu • oGv% We obtain thus a grou-

poid CFX# Let CGX be the subgroupoid of CFX generated by X» 
«, n. 

Finally, for u s . 2 . oo * x^e CF^, define £(u) s max (n.^1 £ 
^ i ^ r ) . 

3*1 • Theorem. Let X be a non-empty set. Then the grou-

poid 0GX is the free commutative medial groupoid over X. An e-

lement u = ^ ? ^ cc x x^ of CFX belongs to CGX iff -Z. 2 *Card { i| 

n± » kj » 1. 

The proof of this theorem will be divided into seven lem­

mas. 

3.2. Lemma. Let h be the unique homomorphism of Wx onto 

CGX such that h(x) = x for every xcX. If t e Wx then 
die) 

h(t) = -S x <* t_,. If u,veWY then h(u) » h(v) iff 
eel* Ct) Lej A 

Pn(x,u) = Pn(xfv) for all xeX and nrO. 

Proof. Easy. 

3.3. Len-ma. CGX is a free commutative medial groupoid o-

ver X. 

Proof. Use 3.2 and t.3. 

4t ni 3»4. Lemma. Denote by Lx the set of all u *.Sj oC *.££" 

e CFX such that. 2 Q 2~
k Card -iijxij » k£ s 1. Let v eCFx, 
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x»ytt el and n £ 0 . Then v • cc11 xeh^ iff v • oc11** y • 

+ oon+1 z eLy. 

Proof. Easy. 

3*5. Lemma. OG-^L^. 

Proof. It is easy to check that L-> is a subgroupoid of 

cғ r 
n, n. 

3-6. Lemma* Let u - . - S °0 x^eLj.. and r = 1. Then U6X 

and n^ » 0. 

Proof. Obvious. 
•*- n. 

3 . 7 . Lemma. Let u * . 2 , oo x x. e Ly a»d r ^ 2. Then 
^ g. /- X A. 

Card U ; n t » or(u)}2:2. 

Proof. Easy. 

3 . 8 . Lemma. LX£CGX. 

Proof. Consider an element u s.^u °° x^c -^ *e a r e 

going to show by induction on r that ueCG^. According to 3.6, 

we can assume that rZ*2. Put n * o^(u). By 3.7, there are two 

different numbers t^c, d^r with nc
 s nd = n. Let v

 s 

"^^Ha00 x xi * o6n""1 xc»
 Jt is ea8y t0 8ee that v e L X # Hence 

by the induction hypothesis veCG-^. Further, we have v « h(t> 

for some teW^. By 3.2, there is an eeln-|(t) with tj-^ * xc» 

ffow, it is easy to show that h(w) * u for some weW^. 
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