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COMMENTATIONES MATHEMATltAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

ON THE EXISTENCE OF SOLUTION OF THE EQUATION L(x) = N(x) 
AND A GENERALIZED COINCIDENCE DEGREE THEORY, II 

E. TARAFDAR 

Abstract: In this paper we have built up a coincidence 
degree theory for a pair (L,N) where L:domLcX—> Z is an ad­
missible generalized linear Fredholm mapping and N is a map-
ing which is defined on the closure of a bounded open subset 
of X and takes values in Z, X and Z being Banach spaces over 
the reals. This coincidence degree is a generalization of the 
coincidence degree due to Mawhm. It has been shown that this 
generalized coindidence degree possesses most of the properties 
of a degree. 

Key words and phrases: Leray-Schauder degree, admissible 
generalized fredholm mapping, generalized coincidence degree, 
k-set contraction. 

Classification: Primary 47H15, 47A50 

Secondary 47H10, 47A55 

Introduction?. Let X and Z be real Banach spaces. Mawhin 

C9J has developed a coincidence degree theory for the pair 

(L,N) where L:domL£X—> Z is a linear Fredholm mapping of in­

dex equal to zero and N:C1JC1 — > Z is a mapping where CU2 is 

the closure of a bounded open subset of X. This degree serves 

as a tool for proving the existence of solution of the equati­

on L(x) = N(xX. 

The purpose of this paper is to build up with the help 

of the results obtained in [123 a coincidence degree for the 

couple (L,N) a coincidence degree where L is an admissible 
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generalized Fredholm mapping and N la as above. It is shown 

that this generalized coincidence degree has moat of the pro­

perties of Leray-Sehauder degree. 

1. k generalized coincidence degree for the pair (L,N). 

For definitions of an admissible generalized Fredholm mapping 

L and an associated scheme rCX^jP ,P ty) we refer to section 

2 of H12]. The symbols Kp M, tf ,Kp pt--n»*
l
nf T j ^ n which will be 

n 
used throughout this paper have the same meanings as explained 

in section 2 of C12J while the definitions of conditions (S) 

and (S)* have been given in Section 3 of H12J. 

In this section we will define the generalized coinciden­

ce degree for the pair (L,N). 

We will do this in two different cases - the general case 

when XI is an open bounded subset of a Banach space X and the 

special case when il is an open bounded subset of a reflexive 

Banach space X with the property that Clil =- <-o-Clil • For 

this we will have to consider for each case a separate set of 

assumptions. 

Let us now consider the first set of assumptions: 

(a) X is a Banach space and SI is a bounded open subset of X. 

(b) L:domLc X — > Z is an admissibllfi generalized Fredholm map­

ping and N:C1£ — > Z is a mapping. P * (X^P^PjO, y ) is an 

associated scheme for L. 

(c) For each positive integer n, JrRN is continuous and 

^ n ( C i n ) is bounded. 

(d) For each positive integer n, Kp p(I-Q^ Q)N is completely 

continuous .(i.e. Kp p(I-Q' Q)N is continuous and Kp i>(I-Qj! Q) 

N(ClfL) are relatively compact in X ). 
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(e) N is continuous. 

(f) Either L is continuous, or Kp i9 continuous. 

(g) The condition (S) holds for the triple (L,N,H). 

(h) 0^(L-N)(a .Xln domL). 

The second set of assumptions is as follows: 

(a)' X is a reflexive Banach space and XL is a bounded open 

subset of X with the property that ClU = c^-ClH (in particu­

lar is an open bounded convex subset), 

(b)' Same as (b). 

(c)' Same as (c). 

(d)' Same as (d). 

(e)' N is weakly continuous. 

(f)' Either L is weakly continuous or Kp is weakly continuous, 

(g)' The condition (S)' holds for the triple (L,N,&). 

(h)' Same as (h). 

Remark 1.1. (i) Clearly the condition that 'N is conti­

nuous and N(C1H) is bounded' implies the condition (c). 

(ii) We can also show that if Kp and N are both continu­

ous, then Kp p(I-Qn Q)N is continuous for each positive inte-
n 

ger n. 

Lemma 1.1* If the triple (L,N,il ) satisfies either (a) to 

(d) or (a)' to (d)', then for each positive integer n, M^iClQ.-* 

—> X is completely continuous. 

Proof. By assumption (c) (or (c)') T n ^ n ^ *s c o n < t i n u o u a 

and Y:n
5Tn^^---^ being a bounded subset of a finite dimensio­

nal subspace is relatively compact. PnP is linear and continu­

ous and P P(C1H ) is a bounded subset of a finite dimensional 

subspace (Clfi being bounded by assumption). Hence P P is com-
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pletely continuous. By assumption (d) or (d) Kp p &~Q~ Q)N 
n 

is completely continuous. Thus it follows that l̂L is comple­

tely continuous and the lemma is proved. 

If for a positive integer m, 0 4̂  (I-M^K £il ) then by vir­

tue of the lemma 1.1, the Leray-Schauder degree of I-M on II 

is well-defined. We will denote by d(I-M_,n,0) the Leray-

Schauder degree of I-M on XI over 0. 

We are now in a position to define a generalized coinci­

dence degree of the pair (L,N). To do this we will employ a 

device introduced by Browder and Petryshyn El] and 12] (see al­

so Fitzpatrick [3D in a context entirely different from that 

of ours. In the following definition Z' will denote the set of 

all integers (positive, negative and zero) together with + 00 

and - 00 . 

Definition 1.1. If the triple (L,N,I1) satisfies either 

(a) to (h) or (a)' to (h)', then we define d((L,N),il) a gene­

ralized coincidence degree of the pair (L,N) on -0. with res­

pect to r as follows: 

d((L,N),Xl) s^teZ'j there exists an infinite sequence 

4ml of positive integers with m -+ co such that for each m, 

d(I-Mm,il ,0) is well-defined and d(I-Mm,H ,0) -» tj. 

Thus d((L,N),Xl) is a subset of Z'. Hence as in Browder 

and Petryshyn [1] our degree d((L,N),H) depends on r . 

Lemma 1.2» If the triple (L,N,X1 ) satisfies either (a) 

to (h) or (a)' to (h)', then d(L,N,il ) is well-defined and, in 

particular, a nonempty subset of Z'. 

Prccf. Noting that conditions (i)' and (ii)' in Corol­

lary 3.3 (the conditions (i) and (ii) in Corollary 3.5) of 
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[12] are respectively the same as in the conditions (e) and 

(f) (the conditions (e)' and (f)' ) we obtain by Corollary 

3.3 (Corollary 3.5) of [12] an integer mQ> 1 such that 0 ^ 

<fc (I-M )(6il ) for all m^ni . Hence in view of lemma 1.1 m o 
d(I-M ,il ,0) is well-defined for all m>mQ. Now if 

4d(I-M .H .0):m>m^5 is bounded then it is clear that there m' • oJ 

is an infinite sequence im-} with m.? m for each 5 and m.~^ 

—> co such that d(I-M ,i2 ) = t, a finite integer for all j. 

Hence t £ d( (L,N), il). On the other hand, if { d(I-Mm,il ,0) :m > 

> mA is unbounded, then there exists an infinite sequence 

\n.] of positive integers with n .> m for all j and n. —> oo 
j J o :j 

such that d(I-M ,il ,0)-v + co or - oo . Hence in this case 

+ co or - oo e d((L,N),-Q.). Thus in either case d((L,N),il ) is 

nonempty. This completes the proof of the lemma. 

We now prove the following properties of the coincidence 

degree. 

Theorem 1.1 (Existence theorem). If the triple (L,NtJl) 

satisfies either (a) to (h) (or (a)' to (h)' ) and d((L,N) ,il )4= 

+ -10$, then there exists an element x e. il such that x is a 

solution of the equation L(x) = N(x). 

Proof. Since d( (L,N),fl-)4**0$, there exists an infinite 

sequence {m] of positive integers with m —> oo such that 

d(I-Mm,U ,0) —> t4-0 where t e d((L,N), U ). Clearly we can find 

an infinite subsequence i m-j of -111 such that d(I-M ,iX,0)4-0 

for each j. Hence for each j, by properties of Leray-Schauder 

degree there exists x ^ e il such that xffl . =
 M

m . ^ x
m , ) - Hence 

by proposition 3.3 (respectively proposition 3.2) of 112J the­

re is a point x e Clil such that x^ is a solution of L(x) = 

o 0 
= N(x). However, by (h) (respectively by (h) ) x cannot 
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belong to dSl . Hence xQ a IX . Thus the theorem is proved. 

Theorem 1.2. (Borsuk theorem. ) If the triple (L,N,JX) 

satisfies (a) to (h) (or ( a ) ' to ( h ) ' ) , il is symmetric with 

respect to the origin and contains it and N is an odd mapping, 

i.e. N(-x) = -N(x) for each xeClil , then d( (L,N) ,JQ ) * iQ$ and 

is odd in the sense that if the integer t e d( (L,N),il) is fi­

nite, then t must be an odd integer. Thus, in particular, the­

re is a solution x e SI of the equation L(x) = N(x). 

Proof. d((L,N),il) is well-defined, i.e., nonempty. Let 

te d((L,N),il). Then there exists an infinite sequence im} of 

positive integers with m —> co such that dd-M^iz,0) is well-

defined for each m and dd-M^jil , 0 ) — > t. If t + + <*> or -co , 

then it follows that there is a subsequence -Cm.3 of {m? such 
J 

that d(I-M ,il,0) = t for each j. However, since ̂ 11 the ope-

j 

rators (other than N) involved in the definition of M^ are li­

near and N is odd, M is an odd mapping for each positive inte­

ger n. Hence by the corresponding property of Leray-Schauder 

degree d(I-M fSl ,0) is nonzero and odd. Thus t is an odd in-

teger. Thus t is an odd integer, + co or - oo . Hence the the­

orem is proved. 

Theorem 1.3. (Additivity theorem.) (oc) If the triple 

(L,N,jQ.) satisfies (a) to (h) and if SL^ and -&2 are open with 

il = H 1 u . Q . 2 a n d H^ilg-rcf) f then d((L,N)f JQ ) c d((LfN)f 11^ + 

+ d((L,N),il2). 

(£) If the triple (L,N, il ) satisfies (a)' to (h)' and 

if SL1$ &2 are open with SI s x ^ u SI Jl n H g = <f> , and 

CljD. i =co-Clili, i-=l,2, then d((L,N)fil )c d((L,N)f Si^) + 

+ d((L,N),il2). 
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The equality both in (oo) and (ft>) holds if either of 

the right hand side is a singleton integer. In the above for 

two subsets A and B of Z' we define A + B = -I t = t-.+ tpit.. e A 

and tp£ B} and we use the convention that + co + (- oo ) = Z*. 

Proof. Since £L^C\ il2 = cj> , it follows that 3.0.-^ d Jl s 

= BH , Hence by virtue of (h) and (h)' in either of the cases 

(06) and {(I ), 0<£(L-N)(3.-lir. domL), i=l,2. In case (06) it 

follows easily from (g) that (L,N,il^), i=l,2 satisfy the con-' 

dition (S). We now prove that in case ((I ), (L,N,il.), i=l,2 

satisfy (S)'. Let for each n, xn€ &-&i be a fixed point of VL 

restricted to CLil-̂  and xn~--*- xQ. Then since CLii-̂  = <-v>-Clil.., 

xQ€ ClXL-^ Also by (g) ' xQ e dll . Now if xQ 4 3-^, then xQ 

would belong to -0.-, and x € 3 iL 2 # But this would then imply 

that Sl^n ilp^ <£ • Hence we conclude that x e 8JQ,. Thus 

(L,N, ilx) satisfies (S)'. Similarly (L,N, iL2) satisfies (S)'. 

Thus in either of the cases (00) and ((Z ), d((L,N), il.), i=l,2 

are well-defined. The rest of the argument covers (oĉ ) and (/3 ) 

s imult ane ously. 

Let ted((L,N)J2. Then there exists an infinite sequence 

-fnx of positive integers with n —> co such that d(I-IkL,il ,0) 

is well-defined for each n and dd-1^,-1 ,0)—> t. By additivi-

ty property of Leray-Schauder degree we have 

d(I-Mn, H1,0) + dU-M^il^O)—* t. 

The rest of the proof is exactly the same as in the correspon­

ding case of Browder and Petryshyn (ElJ,p. 223). However, we 

will include the proof for completeness. Now if d(I-lL,---n,0)7> 

-/> ± co , then we can find a subsequence {nA of in] such that 
J 

d(I-Mn>, il-pO) = t± for each j. Hence dd-l^ , -Q.2,0) = t-tx» t2 

0 J 
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for each j. Thus ti€ d(L,N), -&-_), i=l,2 and t = t-, + t 2 £ 

6 d((L,N), £ix) + d((L,N), D-2). Next, let dd-M.^, -3^,0) — » 

— > - oo . If t is finite, then we must have d(I-Mn, il2,0)-^ 

— > ? oo ,so that t = +co + (- co ) e d((L,N), -0^) + 

+ d((L,N), il2). If t = ± co f then we have t = ± co - t 2 for 

all t2€ d((L,N), il2) by convention and thus t e d( (L,N), H-^) + 

+ d((L,N),il2). The only possibility that remains is t - + co, 

in which case d( (L,N), £l2,0) — ^ £ co and t e d((L,N), il-j) + 

+ d((L,N),il2). 

To complete the proof, let for the sake of definiteness 

d( (L,N), il-.) = i t-,7 where t-, is an integer. Then we can assu­

me the existence of an integer n0<2" 1 such that d(I-M ,-&,,0) = 

= t- for all n i n . 
l o 

Therefore d(I-Mn,Xz,0) - d(I-Mn, H 2 , 0 ) — ? t^. 

From this it follows that the equality holds whenever either 

of the right hand side is a singleton. Thus the theorem is pro­

ved. 

One of the important properties of degree theory is the homo-

topy invariance property. In order to prove this we will need 

to prove few lemmas. 

Let L be an admissible generalized Fredholm mapping and 

N:ClXlx £0,13-^ Z be a mapping, where SI is an open bounded 

subset of X. We define the mappings: M:C1£^ £ 0,11 —^ X by 

M(x,t) = P(x) + ipr N(x,t) + Kp(I-Q)N(x,t), 

and for each positive integer n, M iClH*. £ 0,13-^ X by 

Mn(x,t) = PnP(x) + Y n ^ n N ( x , t ) + Kp p(I-Qn Q)N(x,t). 

n 

For each fixed t e E0,1"J we denote by M. and M . respectively 
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the mappings Mt(x) = M(x,t) :Clil —» X and Mn t ( x ) = Mn(x,t): 

:C1X1 —> X. Also for fixed te 10, 11 let us denote the mapping 

N(x,t):ClI> --> Z by Nt. 

Lemma 1.3. Let X, £1 and L be as in (a)' and (b) ' and 

let N:C1&^ [0,13—> Z be a mapping such that 

(0) whenever xn—--xeCli2 , xneClfl and tn —-> te£0,l], 

tn6 CO,11 

we have N ^ n * ^ ) — ^ N(x,t); 

(00) Either L is weakly continuous or Kp is weakly conti­

nuous • 

If there exists an infinite sequence \m} of positive integers 

with m —> QD such that xw is a fixed point of U . for each 
m ^ m,t_ 

* m 
m and t —-*• t, then there exists a point x £ Cin such that x„ m ' r o o 

r-> 

i s a f ixed point of M.. 
Proof. Since X i s r e f l e x i v e , we can find a subsequence 

ixm \ of \ x \ such t h a t xm —=- x„ e CIA . By (0) N(xm , t m )—-* 1 m. m m • o ^ m •' m • 
J J J J 

—=-- N ( x 0 , t ) . By propos i t ion 3 .1 of 1.12] i t follows t ha t 

V V = K <V = N(xm tm ) . Thus N(x t >«lm L = 
J J D - j J J J J J J 

= ImL © 4> Y "* (U ) for each j. From this it follows that 
J JtmS(xm.»tm.) = ° and *m. Q ^i.'^.1 = ° f o r e a c h J-

J J J J J 

Now proceeding exactly as in the proof of lemma 3.2 of 1123 we 

can prove that N(x , t )c ImL. 

Let for each j, N^m.'Sn^ = rm. + ^m • ' w h e r e rm £ ImL 
J J J J J 

and CJ €. i y " (Um )• As in the proof of proposition 3.2 of 

12 , (I-Q) N(x ftm.) = rm> for each j. Hence rm.--*-N(x t) 
j J J J 

by (1.4) as N(x ,t) € ImL. Thus ^>m#—-- 0. Now proceeding ex-
J 
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actly as in the proof of proposition 3.2 of [12} we can pro-

ve that x is a fixed point M^. 

Lemma 1.4. Let X,H and L be as in (a) and (b) and let 

N:Clfi >c L0,13 — > Z be a mapping such that 

(0)' Whenever x^—9- % CliL, ^e C1Q. and tn—-> t e 

€£0,13, tn£L0,ll we have Ntx^,^) — > N(x,t); 

(00)' Either L is continuous or Kp is continuous. 

If there exists an infinite sequence -im] of positive integers 
r>J 

with m --> co such that x_ is a fixed point of -L t for each 
m ^ m 

m and x —> x and t — > t, then x is a fixed point of M^. 

Proof. The proof is exactly the same as that of lemma 

1.3 except that we replace everywhere the weak convergence —-> 

by convergence — > and use the continuity in place of weak con­

tinuity. 

Let us now consider the following two sets of assumptions: 

Ci) X and JQ. are as in (a), 

(ii) L is as in (b) and N:Clilx C 0,13~-> Z is a mapping. 
n*> 

(iii) For each positive integer n,^ nN is continuous and 
<rrN(Cl£ix r_ 0,13) is bounded. 

(iv) For each positive integer n, K-, p(i-0 Q) N is complete-
n ii 

ly continuous. 

(v) Same as ( 0 ) ' in lemma 1 .4 . 

(vi ) Same as ( f ) . 

( v i i ) I f there e x i s t s an i n f i n i t e sequence {m} of pos i t ive 

integers with m—>oo such that for each m, x i s a f ixed 
point of M„ . and t_—> t , then x _ — > x ^ e C i y . . * n-tt_ m ' m o m ~ 
( v i i i ) (L(x) - N ( x , t ) ) ^ 0 for any x e d& and any t € [ 0 , l ] , 

and 
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( i ) ' x and £L are as in ( a ) ' 

( i i ) Same as ( i i ) above, 

( i i i ) ' Same as ( i i i ) above, 

( i v ) ' Same as ( iv) above, 

( v ) ' Same as (0) in lemma 1 .3 . 

( v i ) ' Same as ( f ) ' . 

( v i i ) ' I f there e x i s t s an i n f i n i t e sequence -im} of posi t ive 1 

i n t e g e r s with m —-> 00 such tha t for each m, x e d£L i s a f i ­
xed point of M_ + and x •—-*- x^ and tTO—> t , then x_ e Oil • 

* m tt„, m o m ' o 
* m 

( v i i i ) ' Same as ( v i i i ) above. 

Theorem 1.4. (Homotopy invariance theorem.) If the tri­

ple (L,N,il) satisfies (i) to (viii), or (i)' to (viii)', then 

d((L,N.),il ) is independent of ten0,11. 

Proof. Under hypotheses it is clear that d((L,Nt),JX) is 

well-defined for each fixed te10,13. We first prove that the­

re exists an integer n > 1 such that 0 £ (I-M .JiBSL ) for all 

integers n> n and for all te CO,13. If possible, let us suppo­

se that this is not true. Then we can find a sequence in A of 
J 

positive integers with n . — > co and a sequence it \f t e 
3 nj i 

e. [0,13 with tn ̂ —> t (passing to a subsequence if necessary) 

such that Oe (I-M + ) OIL) for all j. From this we obtain 

J'no 
a sequence {XL \ , x € CIIL such that JL is a fixed point of 

3 3 0 
M . for each j. Now in case of (i) to (viii) , it follows 

that x —-* x C1X1 (if necessary passing to a subsequence) as 

Clii is bounded and X is reflexive. Hence by lemma 1.3 x is 

a fixed point of M. and by (vii) x e dll . In case of (i) to 
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to (viii), it follows from the condition (vii) and lemma 1.4 

that there is a fixed point x of Mt with x e d£L . Thus in 

either case (I-5i£t)(x0) = (L(xQ) -
 <N(x(),t) = 0, xQ e d£L which 

is a contradiction. Hence we have an integer n Q > l such that 

0<£(I-Mn t ) O X L ) for all integers n > n Q and all t6t"0,l]. Now 

from the homotopy invariance property of Leray-Schauder degree 

we obtain that d(I-Mn t,H,0) is independent of t for all n *£ 

r n . It is thus clear from this and from the definition of 

d((L,Nt),il) that d((L,Nt),Xl) is independent of t. 

Corollary 1.1. d((L,N),il) depends on L,il,r and the 

restriction of N to 3-C1 • 

Proof. See [41, p. 22. 

Theorem 1.5 (Excision p r o p e r t y ) . 

(1) I f the t r i p l e (L ,N , i l ) s a t i s f i e s (a) to (h) and i f 

£l <z £L i s an open subset such tha t (L-N) (0) c & , or 

(2) I f the t r i p l e (L ,N, i l ) s a t i s f i e s ( a ) ' to ( h ) ' and i f - & 0 c H 

i s an open subset such tha t ClU = co - C l H and (L-N)" (0)c 

c i l . then o7 

d((L,N),H) = d((L,N),_aQ). 

Proof. The proof is omitted. 

2. Extension of continuation theorem. Mawhin [9] (see 

also Gaines and Mawhin £4]) has extended the well-known Leray-

Schauder continuation theorem in the frame of coincidence de­

gree. In this section we will extend this theorem in the setting 

of our generalized coincidence degree. 

To this end let L:domLc X —> Z be an admissible generali­

zed Fredholm mapping and N*:C10.»<[O,1] —> Z be a mapping and 
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let the triple (L,N*,I1) satisfy either the conditions (i) 

to (vi) or the conditions (i)' to (vi)* of section 1. We al­

so write N*(-,l) = N^(-) = N. For yelmL, let us consider the 

family of equations 

(2.1) L(x) = t N*(x,t) + y, t6C0,Uf  

and for each positive integer n, the family of equations 

(2.2) ^(x) = t N*(x,t) + y, teCO.ll. ..... 

We first prove the following lemma. 

Lemma 2.1. Let n be a positive integer. Then for each 

t 6 CO,13, the set of solutions of the equation (2.2) coincides 

with the set of solutions of the equation 

(2.3) Ln(x) =-0^ Q N*(xft) + t(I-Q^ Q) N*(x,t) + y, ... 

and for t =- 0, each solution of the equation (2.3) is also a 

solution of the equation (2.2). 

Proof. Let t4^0. First we suppose that x is a solution 

of the equation (2.2). Then since yxjelil^ = ImL® <j> f ~1(Un) 

we have by (1.4) of C12J 0^ QI^(x) = 0. Hence 0^ QN*(x,t) = 0. 

It now follows that x is a solution of the equation (2.3). Next, 

let x be a solution of the equation (2.3). Then by the same re­

ason given above 0^ Ql^tx) = 0. Thus the equation (2,j) redu­

ces to the equation (2.2), i.e. x is a solution of the equation 

(2.2). 

Finally if t = 0 and x is a solution of the equation (2.3), 

then by (1.4) of C12] as before Qn Q N*(x,0) = 0. Hence the e-

quation (2.3) reduces to Î tx) = y. Thus x is a solution of the 

equation (2.2). 

Remark 2.1. It is trivial to see that if we use yne -Cn---̂  
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in the equation (2.2), the lemma (2.1) still holds. 

Theorem 2.1. (Continuation theorem.) Let the triple 

(L,N*,.£.L) be as above. Further assume that 

(1) L(x) + t N*(x,t) + y for every x €. 3-0- n domL and e-

very t e (0,1); 

(2) There exists a positive integer nQ such that 

^ n N*(x>°)4=0 for every x e L^-fyS n 9-QL ; 
o 

(3) there exists a positive integer m0 such that 

d(jrm N^C-jO/t^^yJ, XL n I^-tyJ-0) + 0 for all positive 

integers m> m , where the last number is the Brouwer degree at 

0 e coker 1^ of the continuous mapping or N*(*,0) from the af-

fine finite dimensional topological space L~ iy] = iT 4yJ (see 

remark below) into coker L^ (for details see Gaines and Mawhin 

(143, P. 27); 

(4) The triple (L/N,il ) satisfies the condition (vii) (respec­

tively (vii)') of section 1, where N:ClJlx CO,13 —=> Z is defi­

ned by N(x,t) =- t N*(x,t) + y, (x,t)e ClSL~L0,n. 

Then for each t e CO,13 the equation (2.1) has at least 

one solution in XI and the equation 

L(x) =- N(x) + y 

has at least one solution in Cl-Cl • 

Before we attempt to prove this theorem it is important 

to note the following remark: 

Remark 2.2. 

(p) By definition of 1^, doml^ =- domL for each positive 

integer n. AIBO since yelmL, it follows that for each positi­

ve integer n, l£ -Cy3 * I» iyj . 

(q) (2) implies that for each positive integer n-n 0, 
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tfn N*(x,0)4=-0 for every xc L fy$ ̂  ail and that 

*v N*(x,0)=4-0 for every xe iT^y} n 3-0- . This follows 

from B of section 2 of £123. 

Proof of Theorem 2.1. If there exists x c 9il r> domL 

such that L(x) = N*(x,l) + y = N(x) + y, then the first part 

of our theorem holds. We suppose that 

(2.4) L(x)4-K(x) + y for all xe9iln domL 

In view of assumption (1) 

L(x)4=tN*(x,t) + y for each x c 9-0. n domL and each t e (0,1). 

On the other hand if t = 0 , our equation (2.3) is equivalent to 

QN*(x,0) = 0, L(x) = y 

i.e. 

(2.5) jrN*(x,0) = 0 (by(l.4)), x = L"^yJ 

Thus by assumption (2) vide (q) above, there is no solution of 

(2.5) in dSl . Hence L(x) -t=t N*(x,t) + y for each x e 9 H n domL 

and each t e £ 0,1] . 

Let N(x,t) = t N (x,t) + y. Then we can easily verify, that 

all the conditions of Theorem 1.4 hold for the triple (L,N,iI) . , 

Hence as in the proof of Theorem 1.4 we can find a positive in­

teger n1 such that O^CI-M^ t) (3D. ) for all n^n x and all t s. 

eC.0,13 where, as before, 

¥n,t ( x ) = P n P ( x ) + Yn*n lt ( x ) + KPnP
(I-<^ «> »t(x)* 

Thus by proposition 3.1 of L12] for each n2r n, 

(2.6) yx)4-N(x,t)-Nt(x) 

for each x e 9fl n domL and each te CO,ll. Let m-, = max(n0,n-0>j 

Let n = n be a fixed but arbitrary positive integer with **-^ 

Let us consider the mapping N:C1H x L0,1 J—> Z defined by 

-51-



N(x,t) * QS Q N*(x,t) + t(I-Q^ Q) N*(x,t) + y. 

Then by lemma 2.1 and (2.6) it follows that I-fi(x)4-N(x,t) for 

each x c dXL n domL and each t e£0,lj. Hence 0<£(I-M- t)(31l ) 

for each t €,10,13 , where 

**K t ( x ) = PflP(x) + ^rl ̂ n N t ( x ) + KP-P(I"QS Q ) N t ( x ) 

which i s completely continuous for each t e t 0 , 1 3 . Hence by the 

homotopy mvar i ance of Leray-Schauder degree d(I-M t ,D_ ,0 ) i s 

independent of t and i s equal to i t s value a t t = 0 . 

Now dtt-Mp 0 , i - . , 0 ) = dd-P-jP - ?<%*% N*(-,0) - Kp p y , a , 0 ) 

where 

NJ (O = N*(-,0). 

Proceeding exact ly as in Gaines and Mawhin (L4] ,p . 28) we prove 

t h a t d ( I - % 0,JC1,0)=t--0. I f kerL- M O * , then by the same argu­

ment as given in Gaines and Mawhin (C43,p. 28) we have t h a t 

d(I-M~ Q , i l , 0 ) = 1. We assume tha t Ke rL^^ iO l . Then by using 

the invar iance property of Leray-Schauder degree , we have 

( 2 . 7 ) d ( I - % > 0 , £ , 0 ) = d d - P ^ P - Y H * - - N * ( . , 0 ) - V p y , i L , 0 ) 

= d(i-pBp - r ^ n N* (# + KB-py»0)» - KR.py + ^ »°> 

= d (d -p -p - f n ^ n N * ( * + Kp.py»0) ) /Ker Ifi» ( - K p - p y + i l ) n 

n n n 
n KerL-,0) 

= d ( < - Y B * f c N*(- + Kp^py,0)/KerLn , (-Kp_py + Xl)n Kerl^.O) 

= ± d ( t f N*(. + Kp p y ^ / K e r - U . , (-Kp^py + IX )n KerL~,0) 
n ii t\ 

* ± d(ar-fi N^( . ,0) / I^ 1 (y) , a n L^Cy)^) 

Where we have used the multiplication property cf Brouwer 
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degree and the fact that degree of a linear isomorphism is 

equal to ±1. Hence by assumption (3) and (2.7) it follows 

that d(I-M~ 0,Ii,0)4-0. Thus dU-M- t,11)4=0 for all t £[0,13 

and all n£ m-̂ . 

Let tofiC0,U be fixed but arbitrary. Then since we have 

already proved that d(I-IT . , XL ,0)^0 for all n>m, it fol-
' o x 

lows from the existence property of Leray-Schauder degree that 

for each m:m1 there exists a fixed point xn of Mn t . Hence 

by proposition 3.1 of [123 for each ni: m-. we have 

W = °n « N*< xn.V + »o(K Q ) N* ( xn.V + '' 

Thus by lemma 2.1 for each n£" m-̂  -^(xn)
 = tQ

 N*(xntt0) + y. 

Hence by condition (S) (respectively (S)') of the triple 

(L,t Nf + y,il) derived from hypothesis (4) it follows that 
0 xo 

there is a point x e Clil such that L(xQ) = t N(x ,t ) + y. 

But since we have already seen that x cannot belong to ^Sl, 

it follows that x e £1 and L(xQ) = t0N(x0,t0) + y. This com­

pletes the proof. 

When X is reflexive, we can state a continuation theorem 

in the following form which does not involve the concept of 

generalized coincidence degree. 

Theorem 2.2. Let the triple (L,N*,H ) satisfy the condi­

tions (i)' to (vii)' of section 1. Further assume that there 

exists an infinite sequence \m} of positive integers with 

m —-> co such that for each m, 

(1) L^(x)4-t N*(x,t) + y for every x £ BSl n domL and e-

very t e (0,1); 

(2) jrm N*(x,0)=#C for every x £ iT^yi n ail; 

(3) &i*mX*i*,0)/l£{y)t a n ^ , 0 ) ^ 0 , 
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Then for each te[0,13 the equation (2.1) has at least 

one solution in C1XL . 

Proof. Clearly for each fixed mf the continuation theo­

rem IV.I in Gaines and Mawhin ([43, p. 27) is applicable to 

the equation 

(2.8) I^x) = t N*(x,t) + y 

Hence by this theorem for each te [0,13 there is a solution 

x e CUL of the equation (2.8). 

Let t €.10,13 be arbitrary. Then by what we have said be­

fore, there is a solution x e C1J1 of the equation luCx) * 

= t^ N*(x,t,J + y for each m. Since X is reflexive and ClfL is o * o v 

bounded, there is a subsequence i*m} of 4xm\ such that 

xm — ^ xrt € cm.. 
i 

Replacing N(x) by t N(x,t ) + y in proposition 3.2 of 112] 

we can easily see that x is a solution of the equation L(x) = 

= t N(x,t) + y. Since t is arbitrary, the theorem is proved. 

As in Mawhin [93 (also Gaines and Mawhin £4.1) we can now 

deduce the following existence theorems, the proofs of which 

being in the same line as in [43 are omitted. 

Theorem 2.3. Let the (L,N,il) satisfy either (i) to 

(viii) or (i)' to (viii)' of section 1 and let H be symmetric 

with respect to the origin and containing it. Further suppose 

that N(-x,0) = -N(x,0) for each x e C1H . Then for each t £ 

e [0,13 the equation L(x) = N(x,t) has at least one solution 

in H . 

Theorem 2.4. (Krasnosel'skii Theorem [73.) Let the trip­

le (L,N,H) satisfy (a) to (f) (respectively (a)' to (f)' ) of 

section 1. Let SL be symmetric with respect to the origin and 
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containing it. Further assume that 

(1) the triple (L,N,X1 ) satisfies the condition (vii) 

(respectively (vii) ) of section 1 where N:ClIIx T-0,11 —:> Z 

is defined by 

N(x,t) = j - — ; (N(x) - t N(-x)), (x,t)e CISle CO,ll; 

(2) (L-N)(x)-^ t (L-N)(-x) for each x e BSl n domL and each 

t e [ 0 , l ] . 

Then the equation L(x) = N(x) has at least one solution in-O--

Theoren 2.5. Let the triple (L,N,^l) satisfy either (i) 

to (viii) or (i)' to (viii)' of section 1. Let for some t„ e 
o 

€.1.0,11, d((L,N. ),il)#r40J. Then for each teC0,ll, the equa-
zo 

tion L(x) = N(x,t) has a solution in SL . 

Proof. The proof follows from Theorem 1.4 and Theorem 

1.1. 

3. A generalized coincidence degree for k-set contractive 

perturbations of admissible generalized Fredholm map­

pings 

The concepts of Kuratowski measure introduced by Kuratow-

ski [81 and Hausdorff-ball measure introduced by Gol'denstein, 

Gohberg and Markus [53 are well known. For definition of k-set 

contraction with respect to these two measures and their pro­

perties we refer to Gaines and Mawhin [41. 

As in section 1, if we consider the same two sets of as­

sumptions with both (d) and (d)' renlaced by the following con­

dition: 

(d) for each positive integer n, there exists a non-ne­

gative real number k n<l such that Kp p(I-Q^ Q)N is a kn-set 
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contraction; then we easily see that with the triple (L,N,1> ) 

satisfying either (a),(b),(c) and (d) or (a)',(b)',(c)' and 

(d), the mapping l^iCliL—> X is a k -set contraction for each 

positive integer n and therefore the degree d(I-BCn,--l,0) is 

well-defined provided 0 4-(I-l^K ail ). Here d(1-1^,11,0) is the 

degree obtained by Nussbaum £103 and [113 with respect to Kura-

towski measure and by Vainikko and Sadovskii L133 with respect 

to Hausdorff-ball measure. 

Thus if the triple (L,N,il) satisfies (a) to (h) or (a)' 

to (h)' with both (d) and (d)' being replaced by (d), we can de­

fine d((L,N)fil), a generalized coincidence degree of the pair 

(L,N) on IX with respect to F in the same way as in definition 

1.1 by replacing dd-M^iX ,0) by d(I-M^.11,0) and can show that 

this degree has the same properties as proved in Theorems 1.1 -

1.4 by using the corresponding properties of d(I-M ,11,0). This 

will then be the extension of Hetzer's result £10J to our situ­

ation. 

Remark 3*1» Degree theory presented here is applicable at 

least to the equation L(x) = N(x) where L is a closed self-ad­

joint operation on a Hilbert space H, Kp is compact and N is a 

k-set contraction with k < l . Application to such case and the 

existence of periodic solution of the wave equation 

2., 

will appear elsewhere. 

u ^ L u = N ( , 
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