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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,1 (1981)

ON THE EXISTENCE OF SOLUTION OF THE EQUATION L(x) = N(x)
AND A GENERALIZED COINCIDENCE DEGREE THEORY, I
E. TARAFDAR

Abstract: In this paper we have built up a coincidence
degree theory for a pair (L,N) where L:domLc X —> Z is an ad-
missible generalized linear Fredholm mapping and N is a map-
ing which is defined on the closure of a bounded open subset
of X and takes values in Z, X and Z being Banach spaces over
the reals. This coincidence degree is a generalization of the
coincidence degree due to Mawhin., It has been shown that this
generalized coincidence degree possesses most of the properties
of a degree.

Key words and phrases: Leray-Schauder degree, admissible
generalized edholm mapping, generalized coincidence degree,
k-set contractiqn.

Classification: Primary 4TH15, 47A50
Secondary 4TH10, 47A55

Introductiom. Let X and Z be real Banach spaces. Mawhin
[ 97 has developed a coincidence degree theory for the pair
(L,N) where L:domL& X - 2 is a linear Fredholm mapping of in-
dex equal to zero and N:C1Q —> Z is a mapping where C1Q is
the closure of a bounded open subset of X. This degree serves
as a tool for proving the existence of solution of the equati-
on L(x) = N(x).

The purpose of this paper is to build up with the help
of the results obtained in [12] a coincidence degree for the

couple (L,N) a coincidence degree where L is an admissible
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generalized Fredholm mapping and N is as above. It is shown
that this generalized coincidence degree has most of the pro-

perties of Leray-Schauder degree.

1. A generalized coincidence degree for the pair (L,N).
For definitions of an admissible generalized Fredholm mapping

L and an associated scheme r‘(xn,Pn,P,v) we refer to section
2 of [12]. The symbols K, M, ’KPnP'I‘h’"n' Yy Which will be
used throughout this paper have the same meanings as explained
in section 2 of [12] while the definitions of conditions (S)
and (S)° have been given in Section 3 of [121.

In this section we will define the generalized coinciden-
ce degree for the pair (L,N),

We will do this in two different cases - the general case
when Q. is an open bounded subset of a Banach space X and the
special case when (1 is an open bounded subset of a reflexive
Banach space X with the property that Clfl = «»-ClQ . For
this we will have to consider for each case a separate set of
assumptions,

Let us now consider the first set of assumptions:

(a) X is a Banach space and Q. is a bounded open subset of X.
(b) L:domLc X — 2 is an admissible generalized Fredholm map-
ping and N:C1Q —> 2 is a mapping. I' = ()S,\,Pn,P,O,yr) is an
associated scheme for L,

(¢c) For each positive integer n, ar,N is continuous and

ar (C1lQ) is bounded.

(d) For each positive integer n, KPnF(I"Qt; Q)N is completely
continuous .(i.e. KPnP(I'Qr; Q)N is continuous and K?np(I-Q;1 Q)
N(C10Q ) are relatively compact in X ).
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(e) N is continuous.
(f) Either L is continuous, or Kj is continuous.
(g) The condition (S) holds for the triple (L,N,Q).
(h) 04(L-N)(22 n domL).
The second set of assumptions is as follows:
(a)” X is a reflexive Banach space and Q is a bounded open
subset of X with the property that C1Q = «w-610 (in particu-
lar is an open bounded convex subset).
(b) " Seme as (b).
(e)’ Seme as (c).
(d)° Seme as (d).
(e)” N is weakly continuous.
(£)° Either L is weakly continuous or Kp is weakly continuous.
(g)” The condition (S)’ holds for the triple (L,N,Q),
(h)* sSame as (h).

Remark 1.1. (i) Clearly the condition that ‘N is conti-
nuous and N(C1Q ) is bounded’ implies the condition (c).

(ii) We can also show that if Kp and N are both continu-
ous, then KPnP(I-Q; Q)N is continuous for each positive inte-

ger n.

Lemma 1.1, If the triple (L,N,Q ) satisfies either (a) to
(d) or (a)’ to (d)°, then for each positive integer n, M, :ClQ->
—> X is completely continuous.

Proof, By assumption (c) (or (c)”) ¥ TN is continuous
and w}anN(Clll) being a bounded subset of a finite dimensio-
nal subspace is relatively compact. PnP is linear and continu-
ous and P P(C1Q) is a bounded subset of a finite dimensional

subspace (C1{l being bounded by assumption). Hence PnP is com-
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pletely continuous, By assumption (d) or (d)° KPnp (I-Q, QN
is completely continuous. Thus it follows that Mn is comple-
tely continuous and the lemma is proved.

If for a positive integer m, O ¢ (I-M )(&0 ) then by vir-
tue of the lemma 1.1, the Leray-Schauder degree of I-M on (.
is well-defined. We will denote by d(I-M;,0 ,0) the Leray-
Schauder degree of I-Mm on Q over O,

We are now in a position to define a generalized coinci-
dence degree of the pair (L,N). To do this we will employ a
device introduced by Browder and Petryshyn [1] and [2) (see al-
so Fitzpatrick [ 31) in a context entirely different from that
of ours. In the following definition Z° will denote the set of
all integers (positive, negative and zero) together with + oo

and - .

Definition 1.1. If the triple (L,N,{l) satisfies either
(a) to (h) or (a)” to (h)’, thenwe define d((L,N),{) a gene-
ralized coincidence degree of the pair (L,N) on Q with res-
pect to I' as follows:

d((L,N), Q) ={teZ’; there exists an infinite sequence
im%¥ of positive integers with m — c© such that for each m,
a(I-M ,9 ,0) is well-defined and a(I-M_,0,0) — t}.

Thus d((L,N),Q ) is a subset of Z°. Hence as in Browder

and Petryshyn [ 1] our degree d((L,N), Q) depends on I" .

Lemma 1.2, If the triple (L,N,Q ) satisfies either (a)
to (h) or (a)” to (h)”, then d(L,N,N ) is well-defined and, in
particular, s ncnempty subset of Z°.

Prccf. Noting that conditions (i)’ and (ii)’ in Corol-

lary 3.3 (the conditions (i) and (ii) in Corollary 3.5) of
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[12]) are respectively the same as in the conditions (e) and
(f) (the conditions (e)” and (f)° ) we obtain by Corollary
3.3 (Corollary 3.5) of [12] an integer m =1 such that O &
& (I-Mm)(aﬂ_ ) for all m= m,. Hence in view of lemma 1.1
a(I-M ,0 ,0) is well-defined for all m=m . Now if
1a(I-M ,Q ,0):m2 m 3 is bounded then it is clear that there
is an infinite sequence {mj} with mjz m, for each i and mj——>
—> @ such that d(I—Mm,_Q) = t, a finite integer for all j.
Hence t < d((L,N),0). On the other hand, if {a(I-M ,0,0):mZ
z m°§ is unbounded, then there exists an infinite sequence
-{na.§ of positive integers with nJ-Z n, for all j and nJ- — 00
such that d(I-Mn,_Q,O)—v» + 0 or - . Hence in this case
+c0 or -c € 4((L,N),Q), Thus in either case 4((L,N),Q) is
nonempty. This completes the proof of the lemma.

We now prove the following properties of the coincidence

degree.

Theorem 1.1 (Existence theorem). If the triple (L,N,Q)
satisfies either (a) to (h) (or (a)” to (h)” ) and a((L,N),Q )+
+10%, then there exists an element x € Q such that x  is a
solution of the equation L(x) = N(x).

Proof. Since d((L,N),9 )+ 10}, there exists an infinite
sequence {mj of positive integers with m — 00 such that
a(I-M ,Q,0) — t=+0 where ted((L,N), ). Clearly we can find
an infinite subsequence {mj} (:f im} such that d(I—Mmj,_Q,O)#O
for each j. Hence for each j, by properties of Leray-Schauder

degree there exists x ¢ 2 such that xmj =M

3 (xm'). Hence
by proposition 3.3 (respectively proposition 3.2) of [12] the-
re is a point x e C10 such that x  is a solution of L(x) =

= N(x). However, by (h) (respectively by (h)’ ) x, canrnot
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belong to 801 . Hence X, € 2 . Thus the theorem is proved.

Theorem 1.2. (Borsuk theorem.) If the triple (L,N,0)
satisfies (a) to (h) (or (a)” to (h) " ), © is symmetric with
respect to the origin and contains it and N is an odd mapping,
i.e. N(-x) = -N(x) for each xeC1, then d((L,N),Q )%+ 103 and
is 0dd in the sense that if the integer ted((L,N),Q ) is fi-
nite, then t must be an odd integer. Thus, in particular, the-
re is a solution x; & O of the equation L(x) = N(x).

Proof. d((L,N),€Q) is well-defined, i.e., nonempty. Let
te d((L,N),Q ). Then there exists an infinite sequence im? of
positive integers with m — o such that d(I-M;,02,0) is well-
defined for each m and d(I-M;,0,0)— t. If t4+o or -» ,
then it follows that there is a subsequence -imj% of {m¢{ such
that d(I-Mm_,_Q,O) = t for each j. However, since gll the ope-
rators (othgr than N) involved in the definition of M, are li-
near and N is odd, Mn is an odd mapping for each positive inte-
ger n. Hence by the corresponding property of Leray-Schauder
degree d(I-Mm',_Q ,0) is nonzero and odd. Thus t is an odd in-
teger. Thus t is an odd integer, + co or - . Hence the the-

orem is proved.

Theorem 1.3. (Additivity theorem.) (o¢) If the triple
(L,N, ) satisfies (a) to (h) and if 0, and Q, are open with
Q= 0,00, and 2N L, =¢ , then a((L,N), Q) cal(L,N), Q)+
+a((LN),0,).

() If the triple (L,N,) satisfies (a)’ to (h)’ and
20 Mn 2y =9, and
Cloy = @ -C1Ry, i=1,2, then a((L,N),0)c a((L,N), 2,) +
+ a((L,M), Q5).

if 0., 2, are open with Q= Qlu Q
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The equality both in (c¢) and ((3) holds if either of
the right hand side is a singleton integer. In the above for
two subsets A and B of 2" we define A + B =4t = t; + tyitjec A
and tye€ B} and we use the convention that + @ + (- ) = Z°,

Proof., Since _th .(12 =¢ , it follows that 3,V 6_0_2=
= 80 ., Hence by virtue of (h) and (h)’ in either of the cases
(e¢) and (2, 04¢(L-N)(3Qyn domL), i=1,2. In case («) it
follows easily from (g) that (L,N,Q.), i=1,2 satisfy the con-
dition (S). We now prove that in case (#), (L,N,Q;), i=1,2
satisfy (S)°. Let for each n, x €90, be a fixed point of M,
restricted to CLQ; and x,— x,. Then since CLQ; = «-C1Q,,
X € C10 .. Also by (g)° X, € 80 . Now if x_ ¢ 30,, then x
would belong to D‘l and X, € 8.(),2. But this would then imply
that er\ _(12# ¢ . Hence we conclude that x, € a_Ql. Thus
(L,N, 2,) satisfies (S)". Similarly (L,N,0,) satisfies (S5)’.
Thus in either of the cases () and (3), 4((L,N), ), i=1,2
are well-defined. The rest of the argument covers () and (f3)
simultaneously.

Let te€d((L,N)2. Then there exists an infinite sequence
in} of positive integers with n —> @ such that a(I-M_,0,0)
is well-defined for each n and d(I-¥ ,Q ,0)—> t. By additivi-
ty property of Leray-Schauder degree we have’

a(I-M,,0,,0) + a(I-M, 0,,0) —> t.
The rest of tfxe proof is exactly the same as in the correspon-~
ding case of Browder and Petryshyn ([1],p. 223). However, we
will include the proof for comple teness. Now if d(I—%,ﬂl,O)ﬁ
~> T , then we can find a subsequence {nj§ of {n} such that

a(r-m, ,0,,0) = t; for each j. Hence d(I-Mnj,.Qz,O) = t-ty= t,
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for each j. Thus t,e¢ d(L,N), ), i=1,2 and t = ty + ty €
€ d((L,N), Q) + a((L,N), 0,). Next, let d(I-Mn,O.l,O)—%
— * @ , If t is finite, then we must have a(1-M ,9,,0)>
—> ¥ 00 , s0 that t = +@ + (- )ed((L,N),.Ql) +
+a((L,N), 2,), If t = ¥ , then we have t = * o - t, for
all t,e d((L,N),.Qz) by convention and thus te d((L,N),0,) +
+ d((L,N), Q). The only possibility that remains is t = ¥ oo,
in which case d((L,N), 2,,0)— Fo and ted((L,N),0,) +
+ d((L,N),ﬂz).
To complete the proof, let for the sake of definiteness
d((L,N),Ql) = {tﬁ where ty is an integer. Then we can assu-
me the existence of an integer n 2 1 such that d(I-Mn,ill,O) =
=t for all nZno.

Therefore d(I-M ,Q,0) - d(I-M ,0,,0)—> t;.
From this it follows that the equality holds whenever either
of the right hand side is a singleton. Thus the theorem is pro-
ved.
One of the important properties of degree theory is the homo-
topy invariance property. In order to prove this we will need
to prove few lemmas.

Let L be an admissible generalized Fredholm mapping and
ﬁ':Clnx [0,1)— Z be a mapping, where  is an open bounded

subset of X. We define the mappings: ﬁ:ClS).x[O,l"J —> X by
M(x,t) = P(x) + yo N(x,t) + K(I-0N(x,t),
and for each positive integer n, ﬁn'.Cl_QxIO,ll—vX by

M (x,t) = P P(x) +y, o Nlx,t) + Kp p(1-4y ON(x,t).

respectively

For each fixed t € [0,1] we denote by ﬁt and M
’
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~ ~ ~
the mappings Mt(x) = Xle(x,t.):Cljl—'9 X and M t‘(x) = Mn(x,t):
’
:C1Q —> X, Also for fixed te [0, 1] let us denote the mapping

~ ~
N(x,t):10 — Z by N,.

Lemma 1.3. Let X,Q and L be as in (a) and (b)” and
let N:C1 Q< [0,1]1—> Z be a mapping such that

(0) whenever x — xeClQ , x € Cl0 and t, — tel0,1],

t,e0,1]

we have f\f(xn,tn)é N(x,t);

(00) Either L is weakly continuous or Kp is weakly conti~-

nuous.

If there exists an infinite sequence im% of positive integers
with m — ®© such that Xn is a fixed point of Mm,tm for each
mand t — t, then there exists a point X, € Cl1Q such that X,
is a fixed point of ﬁt‘

Proof. Since X is reflexive, we can find a subsequence

~
{xmj7; of {x % such that xmj——x x,€Cl0 . By (0) N(xmj,tmj)——\
— ’ﬁ(xo,t). By proposition 3.1 of [12] it follows that
L (x ) =N (x ) =Nx ,t ). Thus N(x Wt )eIm =
mJ. mJ- tmj m.:i m'J mj mJ mJ- I&nj

= InL ® ¢ “1(U_ ) for each j. From this it follows that
J

~ d ~ .
a\'mN(xm‘,tm_) =0and Q QN(x ,t ) =0 for each j.
J J J J
Now proceeding exactly as in the proof of lemma 3.2 of [12] we
can prove that N(xo,t)e ImL,
Let for each Jj, N(x stp ) =ry + wp , where ry e ImL
m;’ my m m my
and @ & ¢y'1(um_). As in the proof of proposition 3.2 of
J
~
12 , (I-Q) N(ij"’mj) = rmj for each j. Hence rmj——\» N(xo,t)
by (1.4) as 'ﬁ(xo,t)elmL. Thus e, —~ O. Now proceeding ex-
J
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actly as in the proof of proposition 3.2 of [12] we can pro-

ve that X, is a fixed point ﬁt'

Lemma 1.4. Let X,Q and L be as in (a) and (b) and let
N:C10 < [0,11—> Z be a mapping such that

(0) Whenever x, —> x Cl0, x e ClQ and t,—> t €
€00,1], t,€10,1] we have ﬁ(xn,tn)'c» fﬁ(x,t);

(00)" Either L is continuous or Kp is continuous.

If there exists an infinite sequence im} of positive integers
with m —> oo such that Xn is a fixed point of Mm ty for each

m and Xp—> X, and >t then x, is a fixed pomt of “t'
Proof. The proof is exactly the same as that of lemma
1.3 except that we replace everywhere the weak convergence —>
by convergence —> and use the continuity in place of weak con-
tinuity.
Let us now consider the following two sets of assumptions:
(i) X and L2 are as in (a).
(ii) L is as in (b) and N:ctax<t 0,11-—> Z is a mapping.
(iii) For each positive integer n,:frn&/ is continuous and
arN(C1Q =< [0,11)is bounded.
(iv) For each positive integer n, KPnp(I—Q,; Q) N is complete-
ly continuous.
(v) Same as (0)° in lemma 1.4.
(vi) Saeme as (f).
(vii) If there exists an infinite sequence {im} of positive
integers with m — 00 such that for each m, X is a fixed
point of ﬁm,tm alx:d ty—> t, then x) —x € c1Q .
(viii) (L(x) - N(x,t))$0 for any x€ dQ and any te [0,1],
and
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(i) x and Q are as in (a)”’

(ii) * Same as (ii) above.

(iii)* Same as (iii) above.

(iv)® Same as (iv) above.

(v)’ Seme as (0) in lemma 1.3.

(vi)” Seme as (f)°.

(vii)’ 1If there exists an infinite sequence im} of positive
integers with m—co such that for each m, x; ¢ 9 is a fi-
xed point of Mm,tm and x —~ X, and t —> t, then x € o0 .

(viii) " Same as (viii) above.

Theorem 1.4. (Homotopy invariance theorem.) If the tri-
ple (L,N,Q) satisfies (i) to (viii), or (i)’ to (viii)’, then
d((L,N;),0) is independent of te[0,1].

Proof. Under hypotheses it is clear that d((L,ﬁt),.Q-) is
well-defined for each fixed te€[0,1]. We first prove that the-
re exists an integer noz 1 such that 0¢(I-ﬁn’t7( 3. ) for all
integers n> n, and for all te [0,1). If possible, let us suppo-
se that this is not true. Then we can find a sequence {nji of

positive integers with n.

j —> oo and a sequence {tnjl, tnj-e

e [0,1) with t, —> t (passing to a subsequence if necessary)
J
such that Oe (I'% ¢ ) (3fL) for all j. From this we obtain
J*'n;
a sequence ix, i, X, € ClQ such that x, is a fixed point of
J J J

?Mln_ ¢ for each j. Now in case of (i)’ to (viii)’, it follows
i**n

J

that x, — x, C1Q. (if necessary passing to a subsequence) as
J

C1f) is bounded and X is reflexive. Hence by lemma 1.3 x_ is

o
a fixed point of ﬁt and by (vii)’ x, € 0L . In case of (i) to
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to (viii), it follows from the condition (vii) and lemma 1.4
that there is a fixed point x, of i; with x, € 3. , Thus in
either case (I'ﬁt)(xo) = (L(x,) - ﬁkxo,t) = 0, x, e 3Q which
is a contradiction. Hence we have an integer n,=1 such that
0¢(I-Mn’t)(a.()_ ) for all integers nzn  and all te[0,1]. Now
from the homotopy invariance property of Leray-Schauder degree
we obtain that d(I-Mh’t,Sl,O) is independent of t for all n =
zn,. It is thus clear from this and from the definition of
d((L,ﬁt),Sl) that d((L,ﬁ;),Il) is independent of t.

Corollary 1.1, d((L,N),Q) depends on L,Q ,I" and the
restriction of N to 3£ .

Proof. See [4], p. 22,

Theorem 1.5 (Excision property).
(1) If the triple (L,N,Q) satisfies (a) to (h) and if
Q,c O is an open subset such that (1-N)"1(0) Q , or

(2) If the triple (L,N,0) satisfies (a)  to (h)’ and if Q,cQ
is an open subset such that C1Q = w- lelo and (L—N)-l(o)c

cQ.o, then
d((L,N),Q) = d((L,N),SLo).

Proof. The proof is omitted.

2, Extension of continuation theorem. Mawhin [9] (see

also Gaines and Mawhin [4]) has extended the well-known Leray-
Schauder continuation theorem in the frame of coincidence de-
gree. In this section we will extend this theorem in the setting
of our gzeneralized coincidence degree.

To this end let L:domLc X —> Z be an admissible generali-

zed Fredholm mapping and N*:C1Qx[0,11—> Z be a mapping and
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let the triple (L,N*,Q ) satisfy either the conditions (i)

to (vi) or the conditions (i)’ to (vi)’ of section 1. We al-
s0 write N¥(-,1) = Nf(') = N, For ye ImL, let us consider the
family of equations

(2.1) L(x) = t N¥x,t) +y, tel0,1], .....

and for each positive integer n, the family of equations

(2.2) L (x) = t N(x,t) +y, tel0,11. ..... .
We first prove the following lemma.

Lemma 2.1. Let n be a positive integer. Then for each
te(0,1), the set of solutions of the equation (2.2) coincides

with the set of solutions of the equation
(2.3) Ly(x) =@, Q N¥(x,t) + t(I-Q Q) N¥(x,t) +y, ...

and for t = O, each solution of the equation (2.3) is also a
solution of the equation (2.2).

Proof, Let t+ O, First we suppose that x is a solution
of the equation (2,2). Then since L (x)e InL, = InL® ¢21f-l(Un)
we have by (1.4) of [12] Q QL (x) = 0. Hence Q; QN™(x,t) = O.
It now follows that x is a solution of the equation (2.3). Next,
let x be a solution of the equation (2,3). Then by the same re-
ason given above Q; QL,(x) = 0. Thus the equation (2,3) redu-
ces to the equation (2,2), i,e. x is a solution of the equation
(2.2).

Finally if t = O and x is a solution of the equation (2,3),
then by (1.4) of (12] as before Qé Q N*(x,0) = O. Hence the e-
quation (2.3) reduces to Ih(x) = y. Thus x is a solution of the

equation (2,2),

Remark 2.1. It is trivial to see that if we use Yp€ Imly
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in the equation (2.2), the lemma (2,1) still holds,

Theorem 2.1. (Continuation theorem.) Let the triple
(L,N*,Q) be as above. Further assume that

(1) L(x)#t N¥(x,t) + y for every x € 32 n donL and e-
very t ¢ (0,1);

(2) There exists a positive integer n, such that

arno N*(x,0)+0 for every x e U Hy3n 80 ;

(3) there exists a positive integer m, such that

alarp N*(-,O)/L;l{y} y L;’ll{y} ,0)4£0 for all positive
integers m= m,, where the last number is the Brouwer degree at
0 ¢ coker Ih of the continuous mapping T N*(-,O) from the af-
fine finite dimensional topological space L'l-iy§ = I;l{ﬁ (see
remark below) into coker L (for details see Gaines and Mawhin
(T41, p. 27);
(4) The triple (L,N,Q ) satisfies the condition (vii) (respec-
tively (vii)’) of section 1, where N:C1Q=(0,11—> Z is defi-
ned by N(x,t) = t N¥(x,t) +y, (x,t)e C1O=L0,1].

Then for each t €[0,11 the equatiom (2.1) has at least
one solution in Q and the equation

L(x) = N(x) + y

has at least one solution in C10 .

Before we attempt to prove this theorem it is impoptant
to note t};e following remark:

Remark 2.2.

(p) By definition of L,) domL = domL for each positive
integer n. Also since ye ImL, it follows that for each positi-

ve integer n, I;l{yi = L'liyi .

(@) (2) implies that for each positive integer nZng,
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v N¥(x,0)4 O for every xe L-l{yi ~ 3. and that

ov N*(x,0)+ 0 for every xe L-l-iy} A &0 . This follows
from B of section 2 of [12].

Proof of Theorem 2.1. If there exists x ¢ 80 n domL

such that L(x) = N*(x,1) + y = N(x) + y, then the first part

of our theorem holds. We suppose that

(2.4) L(x)4+R(x) + y for all x € 82 A domL

In view of assumption (1)

L(x)4 tN*(x,t) + y for each x € 3Q ~ domL and each t e (0,1).

On the other hand if t = 0, our equation (2,3) is equivalent to
QN¥(x,0) = 0, L(x) =y

i.e.

(2.5)  ar N*(x,0) = 0 (by(1.4)), x = L Yy}

Thus by assumption (2) vide (q) above, there is no solution of
(2.5) in 2% . Hence L(x) 4t N¥(x,t) + y for each x € 30 n donL
and each te€l0,1].

Let N(x,t) = t N (x,t) + y. Then we can easily verify. that
all the conditions of Theorem 1.4 hold for the triple (L,N,{),
Hence as in the proof of Theorem 1.4 we can find a positive in-
teger n, such that Oé(I—ﬁn’t)(aQ ) for all nZn, and all te

€ [0,1] where, as before,
Mn,t(x) = PnP(x) + wyn:n'nNt(x) + KPnP(I-Qn Q) Nt(x).
Thus by proposition 3.1 of [12] for each n ny

(2.6) L (x)N(x,t) = Ny (x) .....

for each x € 900 n domL and each te [0,1]. Let m, = max(ng,D4,
Tet n = n be a fixed but arbitrary positive integer with szml

Let us consider the mapping ff:Clﬂx[O,l]——) Z defined by
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Rix,0) = @ Q M (x,t) + t(I-Q; Q) N¥(x,t) +y.

Then by lemme 2.1 and (2,6) it follows that Iﬁ(x)#ﬁ(x,t) for
each x € dQ. n domL and each t e[0,1]. Hence OQ’;(I-ﬁﬁ gla )
’

for each t (0,11, where
A - ( A P A
Mﬁ,t(’() = PpP(x) + yoop No(x) + K’PﬁP(I'Qﬁ Q) N, (x)

which is completely continuous for each t €[0,1]1. Hence by the
homotopy invariance of Leray-Schauder degree d(I-i\dn t,_()_,O) is
4
independent of t and is equal to its value at t = O,
Now d(I-Mﬁ'o,_Q,O) = d(I-PRP - ¥y 7y N*(.,0) - KPnPy,Q.,O)
where

N (-) = N&(-,0).

Proceeding exactly as in Gaines and Mawhin ([ 4],p. 28) we prove
that d(I-Mﬁ,O,_Q.,O)+O. If kerly ={0%, then by the same argu-
ment as given in Gaines and Mawhin ([4],p. 28) we have that
d(I-Mﬁ O,S).,O) = 1, We assume that Kean—-i:iO}. Then by using

’

the invariance property of Leray-Schauder degree, we have

(2.71)a(1-llg 5, 2,0) = a(I-BgP - yp oy NX-,0) - Kp_p¥s 2 ,0)

= d(I-P-ﬁP - Y Tn N*(o + KPﬁPy’O)’ - Kp_ﬂpy + 0 ,0)

= A((I-PyP = ¥ 75 NF(. + Kp_py,0))/Kerly, (-Kp py +2)n
N Kerls,0)

= d((-yg 7y N*t(. + KPﬁPy'O)/Keth’ (—Kpﬁpy +9)n KerL ,0)

"
1+

alar N*&(, + Kpnpy,O)/KerIﬁ, (- PﬁPy +90)n Kerig,0)

[
I+

alwo NRGCLO/IN ), e )00 ..

Where we have used the multiplication nroperty cf Srouwer
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degree and the fact that degree of a linear isomorphism is
equal to *1. Hence by assumption (3) and (2.7) it follows
that d(I-ﬁﬁ’o,.Q,O)+0. Thus d(I-ﬁﬁ’t,.Q.)#O for all t €[0,1]
and all n= m, .

Let t e £0,11 be fixed but arbitrary. Then since we have
already proved that d(I-ﬁn’t »f1,0)+0 for all nzm, it fol-
lows from the existence propgrty of Leray-Schauder degree that
for each nz my there exists a fixed point Xp of ﬁn,to' Hence

by proposition 3.1 of [12] for each nZ m, we have
=0’ *® -0’ K

Lh(xn) 0, QN (xn,to) + to(I Q, O N (xn,to) + ¥
Thus by lemma 2.1 for each nZm) L (x ) =t/ N"(xn,to) + Y.
Hence by condition (S) (respectively (S)°) of the triple
(L,tON:“ + y,0 ) derived from hypothesis (4) it follows that

o
there is a point x e C1Q such that L(x,) = tN(x ,t0) + y.

But since we have already Seen that x_. cannot belong to 8%,

o
it follows that x e Q and L(xo) = t N(x,,t,) + y. This com-
pletes the proof.

When X is reflexive, we can state a continuation theorem
in the following form which does not involve the concept of

generalized coincidence degree.

Theorem 2,2, Let the triple (L,N*,Q ) satisfy the condi-
tions (i) to (vii)’ of section 1. Further assume that there
exists an infinite sequence i{m} of positive integers with
m —> o such that for each m,

(1) L (x)4t N¥(x,t) + y for every x € 30 n domL and e-
very te (0,1);

(2) o, N¥(x,0)%C for every xe L'léy} N 80

(3) alary N (,0/5:My), an 2liy3,0) +o0.
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Then for each te[0,1] the equatior (2.1) has at least
one solution in ClQL .

Proof, Clearly for each fixed m, the continuation theo-
rem IV.I in Gaines and Mawhin ([ 4], p. 27) is applicable to

the equation
(2.8) L(x) = t N¥(x,t) +y .....
Hence by this theorem for each t € [0,1] there is a solution
x,€ ClQ of the equation (2.8).

Let toeLO,l_‘l be arbitrary. Then by what we have said be-
fore, there is a solution Xn€ Cl1) of the equation I.h(x) =
=t, N*(x,to) + y for each m. Since X is reflexive and ClQ is

bounded, there is a subsequence {xmi"& of {xm§ such that
xmi-——\- X, € ciqa .

Replacing N(x) by t N(x,t ) + y in proposition 3.2 of [12]
we can easily see that x is a solution of the equation L(x) =
= toN(x,t) + y. Since t  is arbitrary, the theorem is proved.

As in Mawhin [9] (also Gaines and Mawhin [4)]) we can now
deduce the following existence theorems, the proofs of which

being in the same line as in [4) are omitted.

Theorem 2,3. Let the (L,'ﬁ',ﬂ.) satisfy either (i) to
(viii) or (i) to (viii)’ of section 1 and let QL be symmetric

with respect to the origin and containing it. Further suppose
that ﬁ(-—x,d) = -N(x,0) for each xeC10 . Then for each t €
€ [0,1] the equation L(x) = N(x,t) has at least one solution
in O .

Theorem 2.4. (Krasnosel’skii Theorem [71.) Let the trip-
le (L,N,Q) satisfy (a) to (f) (respectively (a)’ to (£)° ) of

section 1. Let £l be symmetric with respect to the origin and
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containing it. Further assume that
(1) the triple (L,ﬁ,(l) satisfies the condition (vii)
’ » o)
(respectively (vii)’) of section 1 where N:C10=<10,11-—>2

is defined by

A

N(x,t) = ;2% (N(x) - t N(=x)), (x,t)e Cl2eL0,1];

(2) (L-N)(x)# t(L-N)(-x) for each x € 5. n domL and each

t €[0,1].

Then the equation L(x) = N{(x) has at least one solution in Q.

Theorem 2.5. Let the triple (L,ﬁ,sx) satisfy either (i)
to (viii) or (i)” to (viii)’ of section 1. Let for some ty €
e 10,11, d((L,ﬁto),_Q):;:{O}. Then for each te [0,1]1, the equa-
tion L(x) = N(x,t) has a solution in .,

Proof. The proof follows from Theorem 1.4 and Theorem

3. A generalized coincidence degree for k-set contractive
perturbations of admissible generalized Fredholm map-

ings

The concepts of Kuratowski measure introduced by furatow-
ski [87 and Hausdorff-ball measure introduced by Gol ‘denstein,
Gohberg and Markus [5) are well known. For definition of k-set
contraction with respect to these two measures and their pro-
perties we refer to Gaines and Mawhin [41.

As in section 1, if we consider the same two sets of as-
sumptions with both (d) and (d)° renmlaced by the following con-
dition:

(d) for each positive integer N, there exists a non-ne-

gative real number k <1 such that Kpnp(I-Qé QN is a k -set
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contraction; then we easily see that with the triple (L,N, Q)
satisfying either (a),(b),(c) and () or (a)’,(b)",(c)” and
(E), the mapping In:CISL——> X is a kn-set contraction for each
positive integer n and therefore the degree 3(I-Mn,jl,0) is
well-defined provided O ¢ (I-M )(90 ). Here 3(1-%,.0.,0) is the
degree obtained by Nussbaum [10] and [11] with respect to Kura-
towski measure and by Vainikko and Sadovskii [13] with respect
to Hausdorff-ball measure.

Thus if the triple (L,N,0. ) satisfies (a) to (h) or (a)’
to (h)’ with both (d) and (d)° being replaced by (d), we can de-
fine 4((L,N),Q ), a generalized coincidence degree of the pair
(L,N) on ©. with respect to I' in the same way as in definition
1.1 by replacing a(I-M;, 9 ,0) by d(I-M_,0,0) and can show that
this degree has the same properties as proved in Theorems 1.1 -
1.4 by using the corresponding properties of 3(I-Mm,fl,0). This
will then be the extension of Hetzer s result [10] to our situ~

ation.

Remark 3.1. Degree theory presented here is applicable at
least to the equation L(x) = N(x) where L is a closed self-ad-
joint operation on a Hilbert space H, KP is compact and N is a
k-set contraction with k<1l. Application to such case and the

existence of periodic solution of the wave equatiom

3%y %
- = N( t,
512 | 8t2 xitw)

will appear elsewhere.
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