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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,4 (1980)

ON THE EXISTENCE OF SOLUTION OF THE EQUATION
L(x) = N(x) AND A GENERALIZED COINCIDENCE DEGREE
THEORY I.

E. TARAFDAR

Abstract: Coincidence degree theory provides a method
for proving the existence of solution of the equation L(x) =
= N(x) where L:dom Lc X—> Z is a linear Fredholm mapping of
index equal to zero and N is a (completely continuousg map-
ping which is defined on the closure of a bounded open subset
of X and takes values from Z, X and Z being Banach spaces over
the reals. In this paper we have developed a method for pro-
ving the existence of the solution of the equation L(x) = N(x)
where L is a generalized Fredholm mapping (i.e., L is linear
and kernel of L and image of L are complemented subspaces of
X and Z respectively) having the additional property that ker-
nel of L and cokernel of L are linearly homeomorphic and N is
the same as above.

Key words and phrases: Coincidence degree, Leray-Schauder
degree, admissible generalized Fredholm mapping.

Classification: Primary 4TH15, 4TA50
Secondary 4TH10, 4TA55

Introduction. Let £ and Z be Banach spaces over the re-
als. Then the operator equation L(x) = N(x) where L:dom Lc X—
—> Z is a linear mapping and N:dom Nc X—> Z is a (possibly
nonlinear) mapping represents a wide variety of problems in-
cluding nonlinear ordinary, partial and functional differen-
tial equations. When L1 exists, then this equation reduces
to x = Ile(x) which is included in the class of Hammerstein

operators and is under the scope of fixed point theory, or
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so to speak the Leray-Schauder degree theory. Extensive li-
terature for this case can be had from the survey works of
Dolph and Minty [3] and of Ehrmann [47]. When L is a noninver-
tible Fredholm mapping and is of finite index 2 0 and N is
completely continuous, Mawhin [ 9] has developed a theory cal-
led the coincidence degree for the pair (L,N), which serves
as a tool for proving the existence of solutions of the equa-
tion L(x) = N(x). Hetzer [6] has extended the concept of co-
incidence degree to the situation when L is as above and N is
a set-contraction mapping, and applied to the problem concern-
ing neutral functional differential equations (see [ 7]). For
application of coincidence degree to nonlinear differential
equation we refer to Gaines and Mawhin [ 5].

It turns out that the coincidence degree of the pair
(L,N) is zero if the index of L>O0. Thus the coincidence de~
gree plays an important role only when index of L is zero. In
this paper we have dealt with the situation when L is a gene-
ralized Fredholm mapping, i.e., L is linear and ker L (kernel
of L) and coker L (cokernel of L) are complemented subspaces
of X and Z respectively with the additional conditions that
ker L and coker L are linearly homeomorphic and ker L posses-
ses a property of the type that it (ker L) has a Schauder ba-
8is when dimker L = o© , Thus we allow ker L and coker L to
be of infinite dimensions.

With the results of this paner, tdgether with the condi-
tion (S) or (S)° (see Section 3) we have built up in our next

paper [ 107 a generalized coincidence degree for the pair (L,N).
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1. Notations and algebraic preliminaries. Let X and 2
be two vector spaces over the same scalar field am L:dom L c
c X—> Z be a linear mapping where dom L stands for the domain
of L. Ker L = L-l(O) am Im L denote respectively the kernel
and image of L. An operator P:X—> X is said to be an algeb-
raic projection if P is linear and idempotent, i.e. P2 = P,
Let P:X —> X and Q:Z —> Z be two algebraic projections. Then
the pair (P,Q) is said to be an exact pair with respect to L
or simply an exact pair if the sequence X——P; dom L-—L> Z—g—") Z
is exact,i.e. Im P = ker L and Im L = ker Q. Ip will denote
the restriction of L to ker Pn dom L. Clearly IP is an algeb-
raic isomorphism. Let KP = L;l. Then KP:Im L — dom Lnker P
is a linear mapping. For an exact pair (P,Q) of algebraic pro-

jections we have the following:

(1.1) Obviously PKp = 0 ...

(1.2) For each yeIm L, IKp(y) = L(I-P)Kp(y) = Lo(I-P)Kp(y) =
=Y eeeee

where I is the identity operator on X. For each xedom L

(1.3) KPL(x) = KPL(I-P)(x) = KPLD(I-P)(X) = (I-P)(X)eeess

Coker L denotes the quotient space Z/Im L and gr:2 —>
——> coker L the canonical surjection. We can easily see that

(1.4) Q(z) = 0¢=> z€Im Lee=> ar(z2) =0 ..0us

We will also use the well-known fact that since Im L = ker Q,
the restriction # of or to Im Q is an algebraic isomorphism.

We should point out that the same symbol I will be used
to denote the identity operator on X as well as on Z. We be-

lieve that this will create no confusion to the reader and
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will be clearly understood from the context.

Equivalence of solutions and fixed points
For proof of the following result we refer to Mawhin [9].

Proposition 1.1, Let X, Z be two vector spaces and Q. be
a gsubset of X, Let Li:dom LcX — Z be a linear mapping and N:
: Q0 —> Z be a mapping which is not necessarily linear. Furt-
her suppose that there exists a mapping < :coker L—> ker L
such that 1r-1(0) = £0%. Then x is a solution of the operator
equation L(x) = N(x) if and only if x is a fixed point of the
mapping M: £ —> X is defined by M(x) = P(x) + y o N(x) +
+ KP(I-Q)N(x), x € 2 for every exact pair (P,Q) of projecti-
ons. Clearly M(Q )c dom L.

2. Admissible generalizeé Fredholm mapping and approxima-

tiong. Unless otherwise stated, throughout the rest of the

paper X and Z will denote Banach spaces over the field of reals.

Definition 2.1. A closed subspace M of X is said to be
complemented if there exists a continuous projection (i.e.,
continuous linear and idempotent'mapping) of X onto M.

If M and K are closed subspaces of X such that MAnN ={0%
and k = M+N, then we write X = M@ N.

Definition 2.2. A linear mapping L:dom Lc X — Z is said
to be éeneralized Fredholm mapping if ker L and Im L are com-
plemented.

Remark 2.1, The class of bounded generalized Fredholm
mappings had been studied by Caradus [1l] and [2].

Definition 2.3. A linear mapping Li:dom Lc X —>Z is said
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to be an admissible generalized Fredholm mapping if L sa-
tisfies the following:

(i) L is a generalized Fredholm mapping in the sense of
definition 2,2.

(ii) There is a topological isomorphism (i.e., linear
homeomorphism) 3 of coker L = Z/Im L onto ker L.

(iii) There exists an increasing (not necessarily stric-
tly, see remark 2.2 (3)) sequence {Xhi of finite dimensional
subspaces of ker L and a éequence {Pn§ of continuous line-v
projections P, :ker L—> Xn with the properties that

(a) ”Ll_i)ngoPn(x) = x for each x e ker L;
and (b) if Pj(x) = 0 with xeker L and for some positive in-
teger j, then

Pp(x) = 0 for all positive integers m< j.

From now on by a positive integer n we shall mean n to

be the dimension of Xn.

Remark 2.2.

(1) The condition (iii) implies that ker L is separable
and hence by condition (ii) coker L is also separable.

(2) It is important to note that if ker L has Schauder
basis, then the condition (iii) holds, i.e., there do exist
sequences {Xhl and {Pné satisfying (a) and (b) of condition
(iii). For let 4x } be a Schauder basis for ker L. Let {x:} s
x; e(ker L)* be the system orthogonal to ix%, i.e. x{(xj) =
= ‘fij‘ Let for eagh positive integer n, Xn be the lirear span
of 1x),%p, .00, %}, Define P iker L—> Xy by Py(x) == x{(x)x;.
Then it is trivial to check that {P;} is a sequence of conti-

nuous linear projections with the properties (a) and (b) of
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condition (iii).

(3) If L:dom LcX—> Z is a Fredholm operaton of index
zero, i.e. dimker L = dimcoker L < co , where dim means dimen-
sion, then L is clearly an admissible generalized Fredholm
mapping. This is because we can take X, = ker L for each posi-
tive integer n. -

(4) If L:dom LcX—> Z is a linear mapping such that
ker L and Im L are closed subspaces and if ker L and coker L
are infinite dimensional separable Hilbert spaces, then L is
an admissible generalized Fredholm mapping. Since all infini-
te dimensional separable Hilbert spaces are isomorphic to 12,
4 of condition (ii) exists. The condition (iii) holds as
ker L has an orthonormal basis.

We will now develop an approximation technique for appro-~
ximating an admissible generalized Fredholm mapping by Fredholm
mappings of index zero.

Let L:dom Lc X—> Z be an admissible generalized Fredholm
mapping. Let (P,Q) be an exact pair, of continuous projections
with respect to L, which exists by condition (i) of definition
2.3, Let {Xn} and {Pn} be a pair of sequences obtained from
condition (iii) of definition 2.3 and y is a topological iso-
morphism obtained from condition (ii) of definition 2.3. The
system I = (X,,P,,P,Q, ) is said to be an associated scheme
for L.

For each positive integer n we define the mapping

Ih:dom Lc X —> 7 by setting

L,(x) = L(x) + @v'l(P-PnP)(x); x¢ dom L,

-1

where ¢ = % ““icoker L—> Im Q is the (natural) topological
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isomorphism, & being the restriction to Im Q of the natural
sui'jection ar :Z—> coker L. We note that since Im L is clo~-
sed and Z is a Banach space, coker L is a Banach space with
the usual quotient topology. Also & is continuous and ¥ is
a topological isomorphism. '’
We first prove the following: )
(A) For each positive integer n, IL; is a Predholm map~

ping of index zero with dimker Ih = dimcoker Ih = dim xn'
To prove this let n be a fixed but arbitrary positive in=-

teger, We first consider the following direct sum representa-
tions:
(2.1) ker L==(JnGXn ceses

where U, = ker P, .
Since ¢ is a topological isomorphism, it is easy to see

that Q, = v"]?n ¥ tcoker L —> w'l(gl) is a continuous projec-
tion and .
R § -1 R §
coker L = 4 (Un) ® v (&) =y (Un)® Zny
where Z, = wy"l(xn), is the corresponding direct sum represen-~

tation.
Again since § is a topological isomorphism we can as-be-

fore see that Q; =3 an:'l:Im Q— & (2,) is a contimuous pro-
Jjection and '

(2.2) In Q= & (y 1)) ® (zy) .....
is the corresponding direct sum representation.

Now we consider the following direct sum representatiome:

Using (2.1‘) and (2.2) we have respectively
(2.3) Xaker PO ker L = ker PO U, ® X secee

and Z = ker Q@ In Q = ker Q@ (¥ (U @ §(Zy) =
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(2.4) =In L@ d(w HUN @ (Zy) eeeee

We can éadily see that the following mappings

(2.5) PRPiX—> X, ...

(2.6) P - PP:X—> U, .....

(2.7) I =P P:X~—>ker POU,, .....
(2.8) QUQZ —> B(Z), ...

(2.9) Q- QR:Z—> & (¥ H(U,)), wenns

(2.10) and I - QQ:Z—> In L@ & (v 1(U ), «.on.

are all continuous projections.

We can easily prove that ker L = X
We can see without difficulty that Im I =ImLl® d ('p'-l_(Un)).
Therefore, it is immediate from (2.4) that coker Ih-eé¢(zn).
Since dim X, = dim@(zn), we conclude that L is a Fredholm
mapping of index zero with dimker L, = dimcoker L = dim X,

(B) 1% (Zn)'i is an increasing sequence of finite dimen=-
sional subspaces of Im Q. Also if Qé(z) = 0 with ze Im Q for
some positive integer j, then .Q;l(z) = 0 for all m< j, where
Q, is defined as in (A).

The first part follows from the fact that 'ixn} is an in-
creasing sequence and that ‘4’-1 and & are isomorphisms. To
see the second part let Qé(z) = 0 for some j. Then
4}%-@-1(2) = 0 which implies that Qjé-l(z) =Qas $ is an
isomorphism. Hence v‘lPJ- w@'l(z) = 0. Thus P; ¥d “1iz) =0
as 19'-1 is an isomorphism. Now by condition (iii)(b) of defi-
nition 2.3, Pm'qrq)-l(z) = 0 for all m<j. Hence Q (z) =
= Q("-r‘l?mqr)é'l(l) = 0 for all m< J.
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()  1im Q (2) = z for each z¢Im Q. Let s« Im Q. Then,
i~ m>co :
y® “(2)e ker L. Hence by condition (iii)(a) of definitiom
2.3, lUmP vyd “1(z) = ¥@~1(z). Merefore by using contimi-
m
s R -1 - ., .
ty of ¥, lim Q& (z) = limy v sz)
= 1!’_1(”»1_5).%?”1(@ “L(g)) = Q‘l(z). Finally using the comti-
. . . . - -1
nuity of ¢ , im Q(z) -W%il:oéoné (z) =
= &( lim 6 " M(2)) = § & “1(z) = 2.
m>o
(D) For each xe dom L, lim L (x) = L(x). This follows
m-»ao
from the condition (iii)(a) of definition 2.3.
In the sequel we will use L, and Q; defined in this seec-

tion without further reference.

3. Approximate equations. Qur aim is to obtain a method
for proving the existence of the solution of the operator equa-
tiom

(3.1) L(x) = N(X) evues
where L:dom Lc X—> Z is an admissible generalized Fredholm
mapping and N:C10Q — Z is a mapping not necessarily linear,
£ being a bounded open subset of X. Let T' = (X ,P ,P,Q,v)
be an associated scheme for L. We will now consider the ‘appro-

ximate equations

(3.2) L(x) = N(x) ...on

for each positive -integer n.

Let us also consider the mapping M:Cl10 —> X defined by
(3.3) M(x) = P(x) + yo N(x) + Kp(I-Q)N(x), x€ CLQ .....

. where Ky is the invarse of the restriction to ker Pndom L of
L and » is the natural surjection of 2 onto Z/Im L = coker L;
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and for each positive integer n, the mapping K :C10 —> X
defined by

(3.4) M (x) = P P(x) + ¥ oar N(x) + KPnP(I-%Q)N(x),
zeCl vecee
where KP p is the inverse of the restriction to ker PnPndom L
n

of L), ¥, is the natural surjection of Z onto Z2/(Im L &
o ‘F-l(un)) = coker L, and ¥,  is an isomorphism of coker I
onto ker L (v, always exists).

The following proposition follows from the proposition

1.1.

Proposition 3.1, x is a solution of the equation 3.1 if
and only if x is a fixed point of M, Also for positive integer
n, x, is a solution of the equation 3.2 if and only if x is
a fixed point of M,.

To see the second part we need only to observe that

(PnP,Qr;Q) ;s an exact pair of projections with respect to I‘h

Corollary 3.1, If there exists xeX such that x is a fix~
ed point of each of 1% where inj'i id an infinite sequence of
positive integers with nj —> o0 , then x is a solution of the
equation 3.1.

Proof. By proposition 3.1 we have
L, (x) = Lx) +dy " H(P-P, P)(x).
S d J
NMow the corollary follows from (D) of Section 2,

Lemma 3.1, If {un} is a sequence of points in ker L such
that Ppuy = 0 for all n and u,—> u, (—> denotes weak con~-

vergence), then u, = 0.

- 814 -




® Proof, With fixed nj it follows from (iii) (b) of defi=-
nition 2.3 that P, (w;) = 0 for all n2 ng. From the weak con-~
(V)

tinuity of ?n and the fact that u, — u,, we have Pn'o(uh)—*

-}

—~ P, (uo). Thus P, (u,) = 0. A8 n_ is arbitrary, the lemma
() ()

(+]

follows from (iii)(a) of definition 2.3.

Lemmg 3.2, If {lﬂ is an infinite sequence of positive
integers with m—> o0 such that . is a fixed point of %
for each m and N(x;)—= y, then a N(x ) = O for each m and
yeIm L.

Proof. By proposition 3.1, I‘h(ﬁn) = N(xm) for each m.
Thus for each m, N(x)eIn L = Im L® & ¥ ~1(U,) (see the
proof of (A) in Section 2). From this it follows that
ot pN(xp) = 0 and QQN(x;) = O for each m (the last equality .
follows from the fact that QN(x )® Q‘V-I(Um)). Let m = m, be
fixed but arbitrary. Then since QQN(x;) = O for all m, it fol-
lows from (B) of Section 2 that Q:;OQN(xm) =0 for all m2m,.
But since N(x )—> y and both Q and Q;'o are weakly continuous
(we will no longer repeat the argument that a continuous line-
ar mapping is weakly continuous), Qn'loQN (xp)—> QI;OQ(y). Thus }
Qn'loQ(y) = 0. Now since m, is arbitrary, Q;Q(y) = 0 for all m.
Hence by (C) of Section ZM];;?O Qn'lQ(y) = Q(y) = 0. Therefore
yeIm L by (1.4).

Proposi tion 3.2. Let X be reflexive and Q. be an open’
bounded subset of X such that Cl1Q = w-C1lQ where w=-C1Q
is the weak closure of Q. , Let L:dom LcX-—> Z be an admis-

:ble generalized Fredholm mapping and N:C1ll —> Z be a map-
ping. Further assume that '
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(i) N is weakly continuous; .

(i) either L is weakly continuous or Kp is weakly con-
tinuous, where KP is as defined before.

If there exists an infinite sequence {mj of positive in-
tegers with m —» 00 such that x, i‘a a fixed point of M, for
each m, then there is a fixed point x, of M, i.e. there is a
solutiom x, of the equatiom 3.1l.

Remark 3.1, It is well known that every convex subset Q
has the property that Clfi = »-ClQ.

Proof of Proposition 3.2. Since {xm} is a bounded se-
quence in the reflexive Banach space X, there is a subsequen-~

ce «ix‘ﬁ} of {xm} such that xmj——\ x,€ClQ = ©-ClQ . As K

is weakly continvous N(x, }—> N(xo). Hence by lemma 3.2 we
J
have

(3.5) N(xo)eIm L and arm.N(gn') =0 far each je ceees
3 J
The last equality is equivalent to

‘N(xp )eIm L & Q'l{f-l(Um_) for each j.
J J

Let for each j, N(x; ) = 75 + wp where ¥, ¢Im L and
J J o d J

“’mj" bvqr_l(Umj), [i.e., for each j, (I-Q)N(gnj) = 7mj,

(Q-Q; Q)N(x, ) = w, and Q; QN(x, )} = 0l. Since (I-Q) is we-
J J J J J
akly continuous, 7, = (I-Q)N(x, ) — (I-Q)N(x)) = N(x ) by

J J
{1.4) as N(x )e Im L by (3.5). Thus it follows that «, —> O.

J

By definition of Kp P, we can write for each Jy
m.
J

(3.6) (x, ) = V. eeeee
oy P =ty * T
where Uy € ker Pndom L and v, € Uy . [This is possible as’
J I
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Kp pN(x, )e ker P Pndom L and ker Py P = ker PO U .,

m; J 3 3 3
Thus umj + vmj§ dom L, umjeker P and vmjc Umjc dom L. Hen-
ce umje §om L]l. Again since by proposition 3.1, Lmj(xmj) =
= N(x, ), we have N(x; )eIm I and hence by (1.2)

J . J Jd
Lm-KP pN{x, ) = N(x, ). Thus for each j,
J oy J J

¥y, * @, =N( ')=L.(u.+v.)
B3 25 ", e T R

-1
I.(um‘i + vmj) + oy (P-ijP) (“mj + v )

J
Liw, ) +§>‘V‘l(v ) ceeee
“mj m; _

(3‘7)

B

But since both of 4, and L(u, ) are in Im L and both
J

as v € ker L and w € ker P.
J

of rumj and QH}.f-l(vmj) are in Q)'Ar-l(UmJ_), it follows from

(3.7) and the fact that Im Lnd ¥ 1(U, } =10} that for each

. J
Jdy

(3.8) Llu_) = and dy (v ) = @_, i.e. v, =

= ¥ Nop ) e
J
Now as ¢ and <l>°l are topological isomorphism amnd the sequen-

ce w, —> 0, it follows from the last part of (3.8) that
j -

v — 0.
3

Next, since x; is a fixed point of M, for each j, by
Jd Jd
using (3.4),(3.6) and the fact that ¥, a, N(x ) = O which
J J J

is a consequence of (3.5), we can write, for each j

3. =P P o eceee
3.9) xmj n, (x’“j) * Uy, * Y,
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Hence

(3.10) P(x ) =P Plx ) +v_ .....

a8 ijP(xmj) and vm;i are in ker L = Im P and %je xer P. Now

letting j —> c© in (3.10) we obtain

(3.11) Py Plxy )—> P(x,) .....
Jd J

as we know that X, — X amd v. — 0. Let us first consider
i ° "3
the case when L is weakly continuous. Since X is a fixed

J
point of M for each j, by proposition 3.1 we have that for
each j, L ‘me ) = N(’ﬁn-)’ i.e.
d i J

(3.12)  Lixy ) + & ¥ THE-P, P)(xy ) = Mg e e
J J J

Noting that ¢,\y'1, L are all weakly continuous and that B
is weakly continuous by hypothesis, letting j —> c0 in (3.12)
and using (3.11) and the fact that Ni(x, )— N(xo) we obtain
that L(xo) = N(xo). This proves the conglusion of the propo-
sition when L is weakly continuous.

Finally, we consider the case when KP is weakly continu-

ous., We have already obtained the following:

vmj——\ 0
(3.13) wmj—-—>~ 0 coses
and Fp.— Nixg)
J
Again, since from (3.8) for each j, Ia = 7y, and

J
umjc ker Pndom L, it follows readily that Kp ij = umj. From

this, together with (3.13) and the fact that K, is weakly con-

tinuous, we obtain that u, — KpN(x ). Hence letting j—
J
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in (3.9) and using (3.11) and the fact that v, —> O and the
' Jd

above limit we obtain that x, = P(x,) + KN(x,) = P(x)) +
+yarN(x,) + KPN(xo) as in view of (3.5) and (1.4) we have
#N(x,) = Q (and hence v a M(x,) = 0). Thus x, = M(x,). This
completes the proof of our propositiom (the last part follows

from the proposition 3.1).

Proposition 322.- Ilet L be an open bounded subset of X
(not necessarily reflexive). lLet L:dom LcX—> Z be an admis-
sible generalized Fredholm mapping and N:Clfl —4. Z be a map-
ping. Further assume that

(i)° N is continuous;

(ii)” either L is continuous or Kp is continuous.

If there exists an infinite sequence {m} of positive in-
tegers with m —>co such that x is a fixed point of ‘ﬁn for
each m and x;—> X,. Then x, is a fixed point of M and is, the-
refore, a solution of the equation 3.1l.

Proof. The proof is exactly the same as that of proposi-
"tion 3.2 if we replace everywhere the weak convergence —> by
convergence —> and use the continuity in place of weak conti-
nuity.

To define the coincidence degree in our next paper [10]
we will need the following assumptions which are given in the

definition below:

Definition 3.1. The triple (L,N,Q) is said to satisfy
the condition (S) if the following condition holds:
If{m} is an infinite sequence of positive integers with m —
—>00 such that x is a fixed point of M, for each m, then

there exists a subsequence {ﬁn} of ix,} such that xml—-? e
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for some x € aoa .

The triple (L,N,{l) is said to satisfy the conditiom
(S)° if the following condition on @ holds:
If {m} is an infinite sequence of positive integers with
m—foo such that if for each m; x € 80 and is a fixed

point of M; and x  —~ x,

» then x ¢ o4 .

Remark 3.2, Clearly the condition (S) implies the con-
ditiom (S)°.

We will now make some remarks on conditiom (S) and (S)°.
(1) PFor each positive integer n, let S, =ixeClQ :x =
= lln(x)f . If U s, is relatively compact, then clearly the
conditiom (S) holds.
(2) If [dom Ln( (J S))] is relatively compact, then the
condition (S) holds. This is because S c C10 n dom L for each
n.
(3) 1If (30 ndom Ln( VJ §))) is weakly closed, then it is
clear that the condition (S)° holds. The condition (S)’ ob-
viously holds if 80 is weakly closed. However, 3 is not,
in general, weakly closed. For example, let X be an infinite
dimensional uniformly convex Banach space and Q = {xe X:
il x)l <1}. T™en 80 is not weakly closed (e.g., see Kelley
and Namioka ([81, p. 161-162)),
(4) The condition S obviously holds if the sequence iy is
collectively completely continuous, that is U M (C10) is

relatively compact and M is continuous for each n.

Corollary 3.2, Let X, ,L and K be as in proposition
3.3 satisfying the conditions (i) and (ii)  of propositiom
3.3 and also let (S) hold. If there exists an infinite. se-
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quence {m} of positive ‘integers with m —» oo' such that for
each m, x; is & fixed point of M and x, € 30 , then there
exists a fixed point x, of M such that x, < an .

Proof. By condition (S) there exists a subsequence {x }
of { x;} such that x; — x € Cl . Now by propositiom 3.3,
X, is a fixed point of M, Also since xmje afl for ea?h J
and 20) is closed, x, € 30 . This completes the proof.

Corollary 3.3. Let X,Q ,L and N be as in propositiom
3.3 satisfying (i) and (ii')'. Also let (S) hold. If O &
¢ (I-N)(30n dom L), then there exists an integer m >1 such
that 0 & (Ih-m)(a.nr) dom L) for all positive integers m= m,
or equivalently G¢ (I-M )(80 ) for all mZm .

Proof. This follows from proposition 3.1 and corollary
3.2,

Corollary ;3.1_. Let X,Q ,L and N be as in proposition
3.2 satisfying the conditioms (i) and (ii) of proposition 3.2,
and also let (S)° hold.

If there exists an infinite sequence {m3} of positive in-
tegers with m —>o such that for each m, t is a fixed point
of M) and x; € an , then there exists a fixed point x, of M
with x, € 2.0 .

Proof. Following the proof of ihe proposition 3.2 we ob-
tain a subsequence {xm.} of {x } such that x;, —~ x  and x,
is a fixed point of M. Since xm'j € 301 , by condition (S)’

X, € ol . This completes the proof.

Corollary 3.5. let X,1.L and N be as in propositiom 3.2
s .isfying the conditions (i) and (ii) of proposition 3.2. Al-

80 let (S)” hold. If O4& (L-N) (9% n dom L), then there exists
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an integer m > 1 such that O ¢ (L -N)(31 n dom L) for all

positive integers m2m , or equivalently ¢ (I-l.)(a—o- ) for

all m2> mo.

£1]

[2]

[3]

4]

[6]

[

{8l

Proof. The corollary follows from corollary 3.4.
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