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COMMENTAŢЮNES MATHEMATICAE UNІVERSITATIS CAROUNAE 

21,4 (1960) 

ON THE EXISTENCE OF SOLUTION OF THE EQUATION 
L(x) « N{x) AND A GENERALIZED COINCIDENCE DEGREE 

THEORY I. 
E. TARAFDAR 

Abstract: Coincidence degree theory provides a method 
for proving the existence of solution of the equation L(x) = 
= N(x) where L;dom Lc X —> 2 is a linear Fredholm mapping of 
index equal to zero and N is a (completely continuous) map­
ping which is defined on the closure of a bounded open subset 
of X and takes values from Z, X and Z being Banach spaces over 
the reals. In this paper we have developed a method for pro­
ving the existence of the solution of the equation L(x) = N(x) 
where L is a generalized Fredholm mapping (i.e., L is linear 
and kernel of L and image of L are complemented subspaces of 
X and Z respectively) having the additional property that ker­
nel of L and cokernel of L are linearly homeomorphic and N is 
the same as above. 

Key words and phrases: Coincidence degree, Leray-Schauder 
degree, admissible generalized Fredholm mapping. 

Classification: Primary 47H15, 47A50 

Secondary 47H10, 47A55 

Introduction. Let X and Z be Banach spaces over the re­

als. Then the operator equation L(x) = N(x) where L:dom LcX~ 

— > Z is a linear mapping and N:dom N c X — > Z is a (possibly 

nonlinear) mapping represents a wide variety of problems in­

cluding nonlinear ordinary, partial and functional differen­

tial equations. When L""
1
 exists, then this equation reduces 

to x = L~ K(x) which is included in the class of Hammerstein 

operators and is under the scope of fixed point theory, or 
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so to speak the Leray-Schauder degree theory. Extensive li­

terature for this case can be had from the survey works of 

Dolph and Minty C 33 and of Ehrmann C43« When L is a noninver-

tible Fredholm mapping and is of finite index > 0 and N is 

completely continuous, Mawhin I 93 has developed a theory cal­

led the coincidence degree for the pair (L,N), which serves 

as a tool for proving the existence of solutions of the equa­

tion L(x) = N(x). Hetzer U63 has extended the concept of co­

incidence degree to the situation when L is as above and N is 

a set-contraction mapping, and applied to the problem concern­

ing neutral functional differential equations (see 173). For 

application of coincidence degree to nonlinear differential 

equation we refer to Gaines and Mawhin E53» 

It turns out that the coincidence degree of the pair 

(L,N) is zero if the index of L>0. Thus the coincidence de­

gree plays an important role only when index of L is zero. In 

this paper we have dealt with the situation when L is a gene­

ralized Fredholm mapping, i.e., L is linear and ker L (kernel 

of L) and coker L (c©kernel of L) are complemented subspaces 

of X and Z respectively with the additional conditions that 

ker L and coker L are linearly homeomorphic and ker L posses­

ses a property of. the type that it (ker L) has a Schauder ba­

sis when dimker L = co . Thus we allow ker L and coker L to 

be of infinite dimensions. 

With the results of this paoer, together with the condi­

tion (S) or (S)' (see Section 3) we have built up in our next 

paper 1103 a generalized coincidence degree for the pair (L,N), 
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1. Notations and algebraic preliminaries. Let X and: Z 

be two vector spaces over the same scalar field and L:dom Lc 

c X —> Z be a linear mapping where dom L stands for the domain 

of L. Ker L = IT (0) and Im L denote respectively the kernel 

and image of L. An operator P:X—> X is said to be an algeb-
2 

raic projection if P is linear and idempotent, i.e. P = P. 

Let P:X —> X and Q:Z —-> Z be two algebraic projections. Then 

the pair (P,Q) is said to be an exact pair with respect to L 
P L Q, or simply an exact pair if the sequence X-—> dom L — > Z-—> Z 

is exact, i.e. Im P = ker L and Im L = ker Q. 1^ will denote 

the restriction of L to ker Pn dom L. Clearly 1^ is an algeb­

raic isomorphism. Let Kp = l£ . Then Kp:Im L —-> dom Laker P 

is a linear mapping. For an exact pair (P,Q) of algebraic pro­

jections we have the following: 

(1.1) Obviously PKp = 0 ..... 

(1.2) For each y <= Im L, LKp(y) = L(I-P)Kp(y) = Lp(I-P)Kp(y) = 

= y ..... 

where I is the identity operator on X. For each xedom L 

(1.3) KpL(x) = KpLU-PMx) * KpLD(I-P)(x) = (I-P)(x) 

Coker L denotes the quotient space Z/Im L and oriZ — > 

^ coker L the canonical surjection. We can easily see that 

(J.4) QU) = 0<*=£> 2 6 Im L <=> or(z) = 0 

We will also use the well-known fact that since Im L = ker Q, 

the restriction jf of or to Im Q is an algebraic isomorphism. 

We should point out that the same symbol I will be used 

to denote the identity operator on X as well as on Z. We be­

lieve that this will create no confusion to the reader and 
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will be clearly understood from the context. 

Equivalence of solutions and fixed points 

For proof of the following result we refer to Mawhin [93. 

Proposition 1.1. Let X, Z be two vector spaces and IL be 

a subset of X. Let L:dom L c X — > Z be a linear mapping and N: 

:H—> Z be a mapping which is not necessarily linear. Furt­

her suppose that there exists a mapping nf :coker L —> ker L 

such that Y " (0) = *££>$. Then x is a solution of the operator 

equation L(x) * N(x) if and only if x is a fixed point of the 

mapping M:H—> X is defined by M(x) = P(x) + fafH(x) + 

+ Kp(I~Q)N(x), x e-CI for every exact pair (P,Q) of projecti­

ons. Clearly M(li )c dom L. 

2. Admissible generalized Fredholm mapping and approxima­

tions. Unless otherwise stated, throughout the rest of the 

paper X and Z will denote Banach spaces over the field of reals. 

Definition 2,1. A closed subspace M of X is said to be 

complemented if there exists a continuous projection (i.e., 

continuous linear and idempotent mapping) of X onto M. 

If M and S are closed subspaces of X such that MnN = 10} 

and X * M+N, then we write X = M<$> N. 

Definition 2.2. A linear mapping L:dom Lc X —> Z is said 

to be generalized Fredholm mapping if ker L and Im L are com­

plemented . 

Remark 2.1. The class of bounded generalized Fredholm 

mappings had been studied by Caradus [13 and [2]. 

Def in i t ion 2 . 3 . A l i n e a r mapping L:dom LcX—>Z i s sa id 
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to be an admissible generalized Fredholm mapping if L sa­

tisfies the following: 

(i) L is a generalized Fredholm mapping in the sense of 

definition 2.2. 

(ii) There is a topological isomorphism (i.e., linear 

homeomorphism) f of coker L == Z/Im L onto ker L. 

(iii) There exists an increasing (not necessarily stric­

tly, see remark 2.2 (3)) sequence {X^l of finite dimensional 

subspaces of ker L and a sequence {Pn^ of continuous lin^r 

projections Pn:ker L—> X^ with the properties that 

(a) lim Pri(x) = x for each x e ker L: 

and (b) if P-(x) = 0 with xeker L and for some positive in-
J 

teger j, then 

P (x) = 0 for all positive integers m<j. 

From now on by a positive integer n we shall mean n to 

be the dimension of 3C.. 

Remark 2.2. 

(1) The condition (iii) implies that ker L is separable 

and hence by condition (ii) coker L is also separable. 

(2) It is important to note that if ker L has Schauder 

basis, then the condition (iii) holds, i.e., there do exist 

sequences IX^ and i?nl satisfying (a) and (b) of condition 

(iii). For let <£x \ be a Schauder basis for ker L. Let ix£i > 

x*e(ker D* be the system orthogonal toix^, i.e. x^(x.) * 

= of. ., Let for ea^h positive integer n, X^ be the linear span 

of {xlfx2,...,xnK Define Pn:ker L —> X^ by Pn(x) ^0, X^{x)x^. 

Then it is trivial to check that i^u\ is a sequence of conti­

nuous linear projections with the properties (a) and (b) of 
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condition (iii)* 

(3*) If L:dom LcX—> Z is a Fredholm operator of index 

zero, i.e. dimker L =- dimcoker L < co , where dim means dimen­

sion, then L is clearly an admissible generalized Fredholm 

mapping. This is because we can take X^ = ker L for each posi­

tive integer n. 

(4) If L:dom LcX—-> Z is a linear mapping such that 

ker L and Im L are closed subspaces and if ker L and coker L 

are infinite dimensional separable Hilbert spaces, then L is 

an admissible generalized Fredholm mapping. Since all infini-
2 

te dimensional separable Hilbert spaces are isomorphic to 1 , 

Y" of condition (ii) exists. The condition (iii) holds as 

ker L has an orthonormal basis• 

We will now develop an approximation technique for appro­

ximating an admissible generalized Fredholm mapping by Fredholm 

mappings of index zero. 

Let L:dom Lc X—•> Z be an admissible generalized Fredholm 

mapping. Let (P,Q) be an exact pair, of continuous projections 

with respect to L, which exists by condition (i) of definition 

2.3. Let iXJk and C P ^ be a pair of sequences obtained from 

condition (iii) of definition 2.3 and f is a topological iso­

morphism obtained from condition (ii) of definition 2.3. The 

system V » (-̂ ,Pn,P,Q, if) is said to be an associated scheme 

for L. 

For each positive integer n we define the mapping 

Î :dom L c X — » Z by setting 

I^(x) *- L(x) 4- 4>y"1(P-PnP)(x), xcdom L, 

where $ s 5f -coker L—-> Im Q is the (natural) topological 
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isomorphism., or being the restriction to In Q of the natural 

surjection sf :2—-> coker L. We note that since la L is clo­

sed and Z is a Banach space, coker L is a Bans eh space with 

the usual quotient topology* Also sr is continuous and SF is 

a topological isomorphism.f 

We first prove the following: 

(A) For each positive integer n, 1^ is a Fredholm map­

ping of index zero with dimker I„ « dimcoker 1^ » dim 3^. 

To prove this let n be a fixed but arbitrary positive in­

teger- We first consider the following direct sum representa­

tions; 

(2.1) ker L « ü n Ф J^ 

where U
n
 « ker P

n
. 

Since f is a topological isomorphism,, it is easy to see 

that Q
n
 * f ~T>

n
 tf :coker L —> tjr"1

^) is a continuous projec­

tion and 

coker L » r"
1
^) ® r""

1
^)

 s
 r"

1
^)© Z

n> 

where
 Z

B
 - Y ~ (*n̂ »

 i s t h e
 corresponding direct sum represen­

tation* 

Again since $ is a topological isomorphism we can as-be­

fore see that Q^ * $ Q
n
$ :1m Q —> $ (Z

n
) is a continuous pro­

jection and 

(2.2) Im Q » ф (ү'x(V )ì ф ф(Z > 
n "

 w
 ^* n' 

is the corresponding direct sum representation. 

How we consider the following direct sum representations; 

Using (2.1) and (2.2) we have respectively 

(2.3) X * ker P $ ker L = ker P ® U
n
0 X^ ..... 

and Z * ker Q e Im Q » ker Qa $( Y"
1
^
1
!!*) © $ <

2
»> * 
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2.4) = Im L ® $ (Y"-<Un)i © $(Zn> ( 

We can easily see that the following mappings 

(2.5) *n*iX~-* V 

(2.6) P - P nP:X~*U n, 

(2.7) I - PnP:X-~> ker P ® Un, 

" (2.8) Q^QsZ—* *(Z n), 

(2.9) Q - Q^Q:r^—> $ ( I K - 1 ^ ) ) , 

(2.10) and I - Q^Q:2—> Im L *© $ (T f r"" 1 ^) ) , 

are all continuous projections. 

We can easily prove that ker 1^ = XL. 

We can see without difficulty that L B I ^ - I B L © $> (y (Un)). 

Therefore, it is immediate from (2.4) that coker L---£§>(Z ). 

Since dim X^ = dim$(Zn), we conclude that 1^ is a Predholm 

mapping of index zero with dimker 1^ - dimcoker 1̂  « dim XL. 

(B) -t$(Z >1 is an increasing sequence of finite dimen­

sional subspaces of Im Q. Also if Q^(z) = 0 with ze Im Q for 

some positive integer j, then Q^z) - 0 for all m<j, where 

Q^ is defined as in (A). 

The first part follows from the fact that i X^} is an in­

creasing sequence and that y ~ and $ are isomorphisms. To 

see the second part let Q!j(z) s 0 for some j. Then 

$ 0 * . $ " ^ ) » 0 which implies that Qj$"1(z) = 0 as $ is an 

isomorphism. Hence Y ^ P ^ f ̂ ^(z) s 0. Thus P_.«ar$ (z) * 0 

as f*~ is an isomorphism. Now by condition (iii)(b) of defi­

nition 2.3, PjaY<3>"
,'1U) * 0 for all m< j. Hence QL^(Z) * 

» $(Y""1PmY)$"
1<») * 0 for all m < j . 
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(C) lim Ol(z) « z for each z e l m Q. Let z e l m Q. Then v 

-if§~ ( z ) e k e r L. Hence by condition ( i i i ) ( a ) of d e f i n i t i o n 

2 . 3 , l im P_<ur<£~ (z) » y $ " ( z ) . Therefore by using cont inui -
^ - 1 - 1 - i - 1 

ty of -f , l im 0^$ (z) -» limiir Pw -y $ (z) » 

s i f - 1 ( l im P ijr$ ^ ( z ) ) = $ ( z ) . Final ly using the c o o t i -

nuity of 6 , l im Ol(z) a l im ^ Q ^ ^ C a ) * 

= $ ( lim 0. $ ~ X ( z ) ) « $ $ ^ ( z ) = Z. 

(D) For each xedom L, lim I^(x) = L(x) . This fo l lows 
m-+co n 

from the condition (iiiMa) of definition 2.3. 

In the sequel we will use 1^ and 0/ defined in this sec­

tion without further reference. 

3. Approximate equations• Our aim is to obtain a method 

for proving the existence of the solution of the operator equa­

tion 

(3.1) L(x) = N(x) 

where L:dom LcX—> Z is an admissible generalized Bredholm 

mapping and NiClil —> Z is a mapping not necessarily linear f 

XI being a bounded open subset of X. Let V =- C--L,Pn,P,Q,y) 

be an associated scheme for L. We will now consider the appro­

ximate equations 

(3.2) I^Cx) = N(x) 

for each positive integer n. 

Let us a l so consider the mapping M i d i l —> X defined by 

( 3 . 3 ) M(x) = P(x) + i f t fN(x) + Kpd-Q)N(x), x e CIA 

where Kp is the. invarse of the restriction to ker Pndoa L of 

L and Jf is the natural sur jection of Z onto Z/Im L = coker L; 
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and for each positive integer n, the mapping 1^:01X1 — > X 

defined by 

(3.4) M^x) = PnP(x) + ¥ n^ nN(x) + Kp pd-Q^QJNU), 

zeClil 

where Kp p is the inverse of the restriction to ker PJPodom L 
w 

of I-u, &n is the natural sur jection of Z onto Z/(Im L ® 

€> $ Y ~ ^ n ^ = coker *Vi> and fn *s an * s o m o rP ni s m o:f coker L 

onto ker 1^ ( y n always exists). 

The following proposition follows from the proposition 

1.1. 

Proposition 3.1. x is a solution of the equation 3.1 if 

and only if x is a fixed point of M. Also for positive integer 

n, J^ is a solution of the equation 3.2 if and only if x^ is 

a fixed point of M^. 

To see the second part we need only to observe that 

(PnP,Q^Q) is an exact pair of projections with respect to 1^. 

Corollary 3.1. If there exists xe X such that x is a fix­

ed point of each of 1^ where in A is an infinite sequence of 
w 

positive integers with n • —-» co , then x is a solution of the 

equation 3.1. 
Proof. I_y proposition 3.1 we have 

L. (x) = L(x) +$Y~1(p"*Pn p)<x>* 
5 i 

How the corollary follows from (D) of Section 2. 

Lemma 3.1. If i^} is a sequence of points in ker L such 

that P-^ = 0 for all n and un—=-* uQ (—^ denotes weak con­

vergence), then u0
 s 0. 
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• Proof. With fixed nQ it follows from (iii)(b) of defi­

nition 2.3 that Pn (u^) = 0 for all n>nQ. Prom the weak con­

tinuity of Pn and the fact that u —-*- u0, we have Pn (tO—** 

o o 
-^ Pn (uQ). Th.ua Pn (uQ) = 0. As n0 is arbitrary, the lemma 

o o 

follows from (iii)(a) of definition 2.3. 

Lemma 3.2. If -tm} is an infinite sequence of positive 

integers with m —> oo such that r^ is a fixed point of M^ 

for each m and N(xm)—*-- y, then nr^^\) = 0 for each m and 

y 6 Im L. 

Proof. 3y proposition 3.1, -^(-^Q) * ^^x
m) f o P «ach m. 

Thus for each m, N(xffl) til I^-Ii L © $ f ttJa) (see the 

proof of (A) in Section 2). Prom this it follows that 

tfj-jN^) = 0 and Q^QN(xm) * 0 for each m (the last equality . 

follows from the fact that ON (x^) © $ T ~1 (Um)). Let m * mQ be 

fixed but arbitrary. Then since QmQN(xm)
 B 0 for all mt it fol­

lows from (B) of Section 2 that Q^ QN(xm) = 0 for all m£m0. 

But since Ntx^—*- y and both Q and Q^ are weakly continuous 

(we will no longer repeat the argument that a continuous line­

ar mapping is weakly continuous), 0^ QN(xm)-—--• 0^ Q(y). 2:hus 
o , o 

Ql Q(y) = 0. Now since mQ is arbitrary, QmQ(y) = 0 for all m. 
o 

Hence by (C) of Section 2 lim QmQ(y) * Q(y) = 0. Therefore 

yc Im L by (1.4). 

Proposition 3.2. Let X be reflexive and IX be an open' 

bounded subset of X such that Clll » cu-ClH where o-ClXl 

i s the weak closure of JQ- . Let L:dom L c X - > Z be an admis-

j.ble generalized iredholm mapping and N:Clil—> Z be a map­

ping. Further assume that 
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(i) N is weakly continuous; 

(i4) either L is weakly continuous or Kp is weakly con­

tinuous, where Kp is as defined before. 

If there exists an infinite sequence im] of positive in­

tegers with m —> oo such that ^ is a fixed point of M^ for 

each m, then there is a fixed point xQ of M, i.e. there is a 

solution x of the equation 3.1. 

Remark 3.1. It is well known that every convex subset SI 

has the property that Clil * o> -C1X1 • 

Proof of Proposition 3*2* Since -Ix^ is a bounded se­
quence in the reflexive Banach space X, there is a subsequen­
ce ix^J of ixj such that xm#—-*- xQ e Clil = <a-Cl.fl . As N 

:j :j 

is weakly continuous N(x ) — * - N(x ). Hence by lemma 3.2 we 
i 

have 

(3 .5) N(xn) e l m Land ot m N(x ) = 0 for each j 

The l a s t e q u a l i t y i s equ iva len t t o 

. N(xtll ) e Im L © $ T ^ t t L ) fo r each j . 
^i mj 

Let for each jf NCx,., ) s ?m + <am where xm € Im L and 
mj J • J 5 

^ m.* H " 1 ^ ^ [i.e., for each j, (I-Q)N(x^ ) « y f 

W-Sft.W 1 1^^ " c*>m. and Q^.QHC-C,.) " 03. Since (I-Q) is we-
«J J «J «3 «J 

akly continuous, Qrm. * H - Q ) « ^ , ) - * (I-Q)N(x0) « N(xQ) by 
n.4) as N(x_)elm L by (3.5). Thus it follows that c> —-*• 0. 

o , «j 
By definition of Kp P, we can write for each j, 

m j 

(3.6) K j , ^ ) "V**.. 
ttj J J O 

where t-^ € ke r Pndom L and ^ , 6 U • EThis i s poss ib l e as 
*J J J 
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Kp pWx^ ) e ker Pm P A dom L and ker Pffl P * ker P ® U 

Thus tL. + T € dom L, ii e k e r P and T e U c dom L. Hen-
i o i o o 

ce u c dom L ] . Again since by proposition 3.1, I- (at ) » 
0 i 0 

s N(x ), we have N(x ) e l m L and hence by (1.2) 

^ . ^ F ^ V * * N ( V > # ^ ^ f o r e a c h j» j m. j j 

rm. + «B . sN^m .> a L
m>m . + v } 

mo "j "a mo mo "j 

(3.7) = L(um> * Tm) • $ Y ~ 1 < W B * > t V + rm) 
o J o 3 o 

- Wu.,.) + * T " 1 ^ a . ) 
a o 

as v e ker L and u e ker P. 
"j ffl0 
But since both of -y and L(u^ ) are in Im L and both 

md mj 

of to and ^ Y ^ ^ m * are in ^ Y * " 1 ^ )» it follows from 
0 0 0 

(3.7) and the fact that Im Lni> Y-^ttJ > = *0} that for each 

o 
J, 

(3.8) L(u ) » 7 and J Y ' ^ V * = *V» *••• V * 
"0 0 0 0 0 

= Y * " 1 ^ , . ) 
J 

Now as Y a*1** $~" ŝ e topological isomorphism ani the sequen-

mo 

Next, since x̂ ^ is a fixed point of 11^ £ 0 * each j, by 
0 j 

using (3.4), (3.6) and the fact that fm sr N(x ) * 0 which 
mi md mi 

is a consequence of (3.5), we can write, for each j 

'3.9) xm - P P(x m >) + u^ + T  
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Hence 

(3.10) P(xm.) -P.Pfa^.)
 + v m . 

as P^ P(xw ) and v. are in ker L = Im P and VL,, e ker P. Now 

letting j —-> co in (3.10) we obtain 

(3.11) V*<.V>---P<*0> 
0 J 

as we know that x_ ------- xA and v ---*• 0. Let us first consider 
m. o m. 

the case when L is weakly continuous. Since x^ is a fixed 
i 

point of II for each j, by proposition 3.1 we have that for 
each j, L (x ) « N(x^), i.e. 

(3.12) L(x ) + ̂ T" 1CP-P mP)(x m ) = N(x ). ..... 

Noting that $,Y , L are all weakly continuous and that N 

is weakly continuous by hypothesis, letting j —» co in (3.12) 

and using (3.11) and the fact that N(XL^ )—*- N(x ) we obtain 

that L(x ) = N(x ). This proves the conclusion of the propo­

sition when L is weakly continuous. 

Finally, we consider the case when Kp is weakly continu­

ous. We have already obtained the following; 

(3.13) i o>m^ 0 

and I T m — - N(x0) 
V 

Again, since from (3.8) for each j, Lu = /arm. and 

u c ker Pndom L, it follows readily that K- j = u . irom 

this, together with (3.13) and the fact that Kp is weakly con­

tinuous, we obtain that um#--
J-- KpBrCx0). Hence letting j-—> oo 

J 
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in (3.9) and using (3.11) and the fact that v ------- 0 and the 

i 
above limit we obtain that xQ * P(xQ) + KpN(x0)

 a P(xQ) + 

+ yorN(x0) + KpP(xQ) as in view of (3.5) and (1.4) we have 

#N(x0) = 0 (and hence if # N(xQ) * 0). Thus xQ = M(xQ). This 

completes the proof of our proposition (the last part follows 

from the proposition 3.1). 

Proposition 3.3. Let SI be an open bounded subset of X 

(not necessarily reflexive). Let Lidom L c X — > Z be an admis­

sible generalized Predholm mapping and NtCl.il—> 2 be a map­

ping. Further assume that 

(i)' N is continuous; 

(ii)' either L is continuous or Kp is continuous. 

If there exists an infinite sequence im\ of positive in­

tegers with m *—>• oo such that Xĵ  is a fixed point of M^ for 

each m and xm-—> xQ. Then xQ is a fixed point of M and is, the­

refore, a solution of the equation 3.1. 

Proof. The proof is exactly the same as that of proposi­

tion 3.2 if we replace everywhere the weak convergence —---» by 

convergence — > and use the continuity in place of weak conti­

nuity . 

To define the coincidence degree in our next paper [103 

we will need the following assumptions which are given in the 

definition below: 

Definition 3.1. The triple (L,N,H) is said to satisfy 

the condition (S) if the following condition holds; 

If {ml is an infinite sequence of positive integers with m—> 

— > oo such that x^ is a fixed point of M^ for each m, then 

there exists a subsequence ^x^l of "E-%3 such that x ^ — > xQ 
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for some x0€ C1.Q. . 

The triple (L,N,Xl ) is said to satisfy the condition 

(S)' if the following condition on dJl holds: 

If 4 m} is an infinite sequence of positive integers with 

m —> oo such that if for each m; ^ e dSl and is a fixed 

point of Mjg and .x^—-* x0, then xQ € 9SI . 

Remark 3.2. Clearly the condition (S) implies the con­

ditio© (S)'. 

We will now make some remarks on condition (S) and (S)'. 

(1) For each positive integer n, let Sn - U e C1X1 :x = 

» M^x)} .If U Sn is relatively compact, then clearly the 

condition (S) holds. 

(2) If Cdom L A ( U Ŝ JJ is relatively compact, then the 

condition (S) holds, ©lis is because Snc Clil A dom L for each 

n. 

(3) If (Silndom Ln( VJ Ŝ ,)) is weakly closed, then it is 
nv n ^ * 

clear that the condition (S)' holds. The condition (S)' ob­

viously holds if SSL is weakly closed. However, QSl is not, 

in general, weakly closed. For example, let X be an infinite 

dimensional uniformly convex Banach space and SI - -fxeX: 

: il x )l < 1}. Then 911 is not weakly closed (e.g., see Kelley 

and Namioka tf8J, p. 161-162)). 

(4) The condition S obviously holds if the sequence -tM^ is 

collectively completely continuoue, that i3 U U^iClSi ) is 

relatively compact and VL ia continuou3 for each n. 

Corollary 3.2. Let X9SL ,L and K be aa in propoaition 

3.3 9atiafying the conditions (i)' and (ii)' of proposition 

3.3 and also let (S) hold. If there exist3 an infinite^ae-
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quence *m} of positive Integers with m—> oo such that for 

each m, x^ is a fixed point of N^ and x^ e 9H , then there 

exists a fixed point x of M such that xQ e B£L • 

Proof. By condition (S) there exists a subsequence -CILJ 

of {x^l such that XL —> x € CU1 . Now by proposition 3.3, 

xQ is a fixed point of M. Also since x^ € BSL tor each j 

and 3il is closed, xQ c BSl . This completes the proof. 

Corollary 3.3. Let X,Ii ,L and N be as in proposition 

3.3 satisfying (i)' and (ii)'. Also let (S) hold. If 0 ^ 

4 (Ir-N)OHri dom L), then there exists an integer m 0>l such 

that O^djj.-KJOHn dom L) for all positive integers m>m o f 

or equivalently Q+ (1-1^)0-0. ) for all m£m 0. 

Proof. This follows from proposition 3.1 and corollary 

3.2. 

Corollary 3.4. Let X,D. ,L and N be as in proposition 

3.2 satisfying the conditions (i) and (ii) of proposition 3.2, 

and also let (S)' hold. 

If there exists an infinite sequence {ml of positive in­

tegers with m—>co such that for each m, x^ is a fixed point 

of Mĵ  and xm e 9SL , then there exists a fixed point xQ of M 

with xQ c 8-0. . 

Proof. Following the proof of the proposition 3.2 we ob­

tain a subsequence fx̂ .J of -fx̂ } such that xm ------ xQ and xQ 

is a fixed point of M. Since x_ c 811 , by condition (S) 
i 

xQ e Bit . This completes the proof. 

Corollary 3.5. Let X,il,L and N be as in proposition 3.2 

s ;isfying the conditions (i) and (ii) of proposition 3.2. Al­

so let ( S ) ' hold. If 0# (L-N)Olln dom L), then there exists 
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an integer i 0 ? l such that 0 £ (I^-N)(ail n dom L) for all 

positive integers m.>m0, or equivalently 0# (I-M^) (3--1 ) for 

all m> m . 
o 

Proof. The corollary follows from corollary 3.4. 
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