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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21. 1 (1980) 

TENSOR PRODUCT AND QUASI-SPLITTING OF ABELIAN GROUPS 
Ladislav PROCHAZKA 

Abstract: The purpose of this note is a study of some 
clas3es of torsion free groups characterized by quasi-split­
ting and tensor product. 

Key words: Splitting, quasi-3plitting and p-quasi-split-
ting of groups, tensor product, functor Ext. 

Classification: 20K20, 20K21 

If an abelian group G splits then each group H which is 

quasi-isomorphic to G, need not be splitting (see ClJ,L3]). 

In this note we shall deal with the class % of all torsion 

free groups A such that for each torsion group T a quasi-iso-

morphi9m G-* A © T implied the splitting of the group G. It 

is shown that the class % contains a class *€ of torsion 

free groups whose definition is related with tensor product; 

in *£ is included the class 3b of all groups belonging to so­

me Baer clas9 T^ • 

All group3 in thi3 note are supposed to be abelian and 

additively written. For the terminology and notation we re­

fer to H2J. The symbol p represents always a prime. Further­

more, J (K resp., Q r e a p . ) denotes the additive group of 

the ring Q* of p-adic integers (of the field % of all p-
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adic numbers resp., of the ring Q of rational numbers with 

denominators prime to p resp.). AIL modules considered he­

re are left and unitary. A Q?-module Q is said to be tor­

sion free (divisible resp.) if its additive group (G;+) is 

torsion free (divisible resp.); the purity of a submodule H 

in Q is defined analogously. 

We begin with the following definition which will occur 

very useful in our investigations. 

Definition 1. A torsion free o£-module Q is complete­

ly decomposable if it ia a direct aum of a divisible and a 

free modules. 

At first we shall prove several elementary propositions 

concerning the just introduced notion. 

Lemma 1. If a Q*-module G is completely decomposable 

then each of its pure submodules H is completely decomposab­

le as well. 

Proof. let H be a pure submodule in G and let U (V res­

pectively) denote the maximal divisible submodule of H (of G 

resp.). Evidently, PSVnHj since VnH is pure in V, it is 

divisible and therefore VnH = U. If we write G = V g) G]L and 

H « U 0 H1 then 

H^H/U -= H/(HnV)-^(H+V)/V^G/V-SG1. 

By assumption G-̂  i s free and each of i t s submodules i s also 

free. Thus H, i s free and hence H i s completely decomposable. 

jt 
Lemma 2. Let P be a free Ql-module and let H be i t s pure 

submodule of f in i te rank. Then the module F/H i s also free. 

Proof. Consider P in the form P =- ^-£j © ^^p1!. ^°* W e 
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shall proceed by induction on the rank r(H) of the free 

submodule H. 

For r(H) = 1 we have H = oty where -ty5 is a free basis 

in H. With respect to the relation y e F we can write y * 

=-o£,x. +...+ 0C x. where 0 4-o6. eQ* (i*l....,n). Since the 
l l-j n i^ 1 p ' 

equation px = y has no solution in Hf there exists ii (1£ 

4 j-^n) such that p k °^\ • Hence the element cC* is inver-

i i 
tible in Q* and we have 

F « 

In this case F/H is free. 

Suppose r(H) * r> 1 and write H -= .2^ 0 Q*y. where 

^^•••ty-pi i s a f r e e basis of H. If we set HQ
 s .;£' €) C^y. 

then HQ is pure in F and by induction F/HQ is free. But H/HQ 

is a rank one pure submodule in P/HQ and ty the preceding 

part F/H « (F/HQ)/(H/H0) is also free. 

The following generalization is an immediate one and 

the proof will be omitted. 

Lemma 3. If G is a completely decomposable Q^-module 

and H its pure submodule of finite rank then G/H is also com­

pletely decomposable. 

Now we shall continue by proving the following assertion. 

Lemma 4* Let Q be a reduced torsion free Q^-module and 

let H be its pure submodule of finite rank. Then G/H is a re­

duced Q*~module. 

Proof. For an indirect proof suppose that the torsion 

free module G/H is not reduced. Then there exists a submodu­

le Q-L in G such that HSG-L and G-,/H is isomorphic to the 

Q*-module K . If n is the rank of H then n+1 is the rank of 
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G, i at the same time G-̂  i s a reduced torsion free Q*-module. 

By the Prtlfer-Kaplanaky theorem [6, § 40] G^ i s a free Q*-

module and by Lemma 2 GL/H i s free as well. We get a contra­

diction with G,/H£K and hence G/H i s reduced. 

Lemma 5. Let G be a torsion free Q*-module aid H i t s 

pure submodule of f inite rank. If the module G/H i s comple­

tely decomposable then G i s also completely decomposable. 

ProotC Denote by D(G) (D(H) reap.) the maximal divis ib­

le submodule in G (in H resp.) and write H * D(H) €) H, ; evi­

dently, H-̂  i s reduced. Since H-̂  i s pure in G, H-jA D(G) i s 

pure in D(G) and therefore H-,n D(G) = 0. Thus there i s in G 

a submodule G-ĵ  such that %£ Ĝ  and G *- D(G) © 0-̂ . Clearly 

D(H)&D(G) and we have 

G/fc * (D(G) © G1)/(D(H) © H1)-^D(G)/D(H) €> ^AL^ 

The module G-̂  is reduced and H-̂  is its submodule which is pu­

re and of finite rank* By Lemma 4, G-̂ /H-̂  is reduced ad well. 

From the complete reducibility of G/H it follows that O^/H^ 

is free. Hence, G, * H-̂ ® Hg where H 2 is free. Since H1 is 

reduced and of finite rank, H-̂  is also free 16, § 403. Thus 

we have proved that G-̂  is free anl, therefore^ G =- D(G) €> G^ 

is completely decomposable. 

For any torsion free group A and any torsion free Gt-mo-

dule G the tensor product of abelian groups G ® A may be con­

sidered as a torsion free Qi!l-module. Thus we can formulate 

the following definition. 

Definition 2. By the symbol <€ we shall denote the 

class of all torsion free groups .4 for which the Q^-module 

J $3) A is completely decomposable (see 151). 
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In the following proposition some elementary proper­

ties of the class *€ are concentrated. 

Proposition 1. i) The class *if is closed with res­

pect to direct sums, tensor product and pure subgroups, 

ii) If A is a torsion free group and S its pure subgroup 

of finite rank then A e <€_ if and only if A/S e f . 

Proof. If A = . S T © A4 with A.* e € n (i e I) then the 

relation J._ 6) A =*-- .21T © (J«® A.J) (it represents a module p <̂s I p i 

isomorphism) implies k e *€ . Assume A,B e <C . Then we have 

a module isomorphism Jp 0 (A® B)» (J ® A) 0 B. % hypothe­

sis the Qif-module J ® A is completely decomposable, there­

fore , J^ & A = , 5L T © Q. , where each module G. is isomor-

phic either to J or to Kp. Thus we have a relation 

J,,® (A® B) * ,2. © (G. (8 B) 

where each module G*® B is completely decomposable (if 

G i ~ K p then Kp® B is d i v i s i D l e^ This means that A ® B e <£. 

If A e *€D and S is any pure subgroup of A then (see 

£2, 60.43) 

(1) 0 — > J <S S — > J 8> A—-*J p ® (A/S)—>0 

is a pure exact sequence of abelian groups. Thus the Q*-modu-

le J 0 S is a pure submodule of the completely decomposable 

module J-© A and hence, by Lemma 1, we get S e *C . The proof 

of i) is complete. 

For the proof of ii) let us note that if S is of fini­

te rank then J-® S is of the same rank as Q*-module (see 

L2, § 933). Furthermore, with respect to (1) we have 

(2) J p e (A/S)*(Jp® A)/(Jp® S ) . 
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If we assume A e <£p then the relation A/S € ̂  follows fro* 

(2) by using Lemma 3. On the other hand, if A/S 6 <t then 

for the proof of A 6 «£ we use (2) and Lemma 5. 
P 

Recall now the definition of Baer classes 1^ . first­

ly, F^ is defined as the class of all countable torsion 

free groups. If oc > 1 then a torsion free group A belongs 

to 1^ just if A £ Vn for each p < oc and there exists a 

pure subgroup S in A of finite rank such that A/S is a di­

rect sum of groups belonging to classes of indices less than 

06 . % the symbol d3 we shall denote the class of all tor* 

si on free groups A such that there is an ordinal 06 with A €. 

Lemma 6. For every prime p we have the inclusion J3 £. 

Proof. We shall prove by induction that for every ordi­

nal cC it is I^S <£ . The relation T^ £ *C is a consequen­

ce of the Prttfer-Kaplansky theorem L2f 93.33. Suppose now 

that 1 < oo f ft £ <C for each fh < cO , and take A e T ^ . 

3y the definition there exists a pure subgroup S of finite 

rank in A such that A/S = . S © A^ f A^ e V^ and fl^ < <*> 

(i& I). Thus Ai t *t (ifcl) and A/S 6 <t by Proposition 1. 

But using the same Proposition 1 we obtain A e *t and hence 

r S *t rsm ^ie proof by induction is finished. 

For every prime p the class JJ may be extended in the 

following way: 

Definition 3. By the symbol 3 we shall denote the 

class of all torsion free groups A such that Q_6> A 6 3& • 

Proposition 2. For any prime p we have the inclusions 
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Proof. In order to prove the inclusion 33 £ J3D we shall 

prove the following sharper as9ertion: (#) If A e V^ then 

there exists a |34oO such that Q 0 A 6 T\ . The proof will 

proceed by induction. If A e T.̂  then also Q €> A 6 ^ since 

both groups are countable* Assume 1 -< oc and Q_ 0 A ^ ^ 

for each (3 -c oo . Since A 6 I* (1< o&), there existd a pu­

re subgroup S of finite rank in A with a direct decompoaition 

A/S « ̂ x © Aif k± g r« . i (% -< oC (i€l). At the aame ti­

me the sequence 

0—>Qp® S —>Qp® A—>Qp® ( A / S ) — > 0 

i s pure exact and we ge t an isomorphism 

(Qp€> A)/(Qp® S)£Qp€> (A/S) SL^y <3> (Op® A i ) . 

By inductive hypotheeid Q g> A i & TV where y^ £ /J^ -< 
P - -x 

06 • 

this impliee Q p ® A fc T^ since Qp€> S ie of finite rank. Thus 

the proof of (*) ia fini3hed and we have J5 & & . 

For the proof of the inclusion 3 p £ *£ suppose A € JB . 

This means Q_<S A 6 J5 and Q^O A € <£ by Lemma 6. Hence, 

the (̂ -module J © ^ p ® A) is completely decomposable. But 

J €> (Qp€> A.)»(Jp© Op)® *^
J
p£> A, therefore, A « € p. 

Note that the proposition proved just now concerns the 

largeness of the class «€ . 

In the following we shall use the next notation: If G 

is any group then t(G) denotes the maximal torsion subgroup 

of G; G, x represents the p-primary component of t(G). Re­

call that two groups G, H are said to be quasi-isomorphic 

13] (in symbols G.-&H) if there are subgroups U&G, V£H and 

a positive integer n such that nQ£U, nH£V and u£.V. Now we 
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give a localization of the notion just defined. 

Definition 4* Two groups G, H are said to be p-quasi-

iaomorphic if they are quaei-i3omorphic and if the correa-
v 

ponding number n may be found in the form n = p . In thia ca-

ae we ehall write G ^ H . 

From the Definition 4 it may be deduced that the rela­

tion G ^ H implies G/t(G)^ H/t(H). The following lemma is 

a modification of C3, Theorem 53. 

Lemma 7» A group G is p-quasi-isomorphic to a split­

ting group if and only if the exact sequence 

(3) 0—>t(G)—>G—-»G/tCG)~-> 0 

repreeent9 an element of the group [Ext(G/t(G),t(G))3/ v. 

Now we ahall define a further class *£ (depending on 

p) of torsion free groups. 

Definition 5. By the symbol *£ ( % resp.) we 3hall 

denote the class of all torsion free groups A such that for 

each torsion group T the relation G ^ A @ T ( G ^ A © T resp.) 

implies that the group G split3. Evidently, % £ C ^ D -^°
r «•«-

ry prime p. 

Proposition 3* A torsion free group A is contained in 

the clas9 *£ if and bnly if [ Ext(A,T)J^ , = 0 for every 

toraion group T. 

Proof. Assume A e ^ D , T a toraion group and let 

(4) 

be an exact sequence representing an element of the group 

£Ext*(A,T)]/ y By [3, Theorem 3J, for a suitable integer n 

the sequence 
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0~—>T—>p nG + T —> pnA—> 0 

is splitting exact. Hence pnG + T = AQ © T, where AQ^p
nA = 

£.A and therefore AQ e <& . Since pnG9pnG + T = A Q ® T £ G, 

we have G |£ A Q © T, which implies that G splits. This means 

that (4) represents the zero element and we conclude 

[ExtXA,T)J(p) = 0. 

On the other hand, let A be a torsion free group such 

that [Ext(A,T)J( j « 0 for every torsion group T. Take any 

torsion group TQ and consider a group G satisfying G ̂  A ($> T : 

thus, as we have noted, G/t(G)4* A. By Lemma 7, the exact se­

quence (3) represents an element of [Ext(G/t(G),t(G))J( v. 

Using [4, Lemma 2J, from the relation G/t(G) ̂ A we deduce 

Ext(G/t(G),t(G)£-Ext(A,t(G)) and hence [Ext(G/t(G) ,t(G))J ( }£ 

£. [Ext(A,t(G))J( j = 0. This means that (3) represents the 

zero element, G splits and, therefore, A e *& . 

As an immediate consequence we obtain 

Corollary 1. The class ^ is closed with respect to 

direct sums and summands. Analogously for the class % (see 

L4J). 

Now we shall describe some further properties of the 

class % . 

Lemma 8. Let A-,, Ap be two torsion free groups satis­

fying A-^ Ag. Then A-, e % if and only if Ag e <£ . Fur­

ther, if A is a torsion free group such that for every tor­

sion group T any extension 0 of A ® T splits whenever 

G/(A © T) is a bounded p-group, then A e % . 

Proof. If kx^ Ag then ExtU-^T) ~ExtU2,T) for each 

torsion group T (see L4, Lemma 2J). Our first assertion 
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f o l l o w s now by Propos i t ion 3 . Further, l e t A s a t i s f y the 

hypothes i s of the lemma and l e t G be a group with G -* A €> T 

for a t o r s i o n group T. In view of t h e Def in i t ion 4 , there 

are subgroups U, V and an i n t e g e r n such that p G£U£Gt 

pn(A €> T)SV£A<5> T and U-^V. Since pn(A ® T) -= pnA €> pnTf 

pnA£.A and U^V, there i s a subgroup U j - U s a t i s f y i n g U-_ £ 

£ p n ( A e T ) ^ A $ pnT and p 1 2 ! ^ ^ . Hence p ^ G S t ^ and, by 

hypothes i s , the group G s p l i t s . But t h i s means that A ^ ^ p * 

Lemma 9. I f A c <fc then Q €> A & c £ a s w e l l . 

Proof. Assume A e <& and denote by E(A) the d i v i s i b l e 

h u l l of A. I f we s e t A * Q A S E (A) then there e x i s t s a na­

tura l isomorphism Q^® * ^ * p = Op** ^ e S-M-H prove that A c 

e *& . In order to ver i fy t h i s f a c t , take any tors ion group 

T^ and consider an extension G of A^€> T̂  such that G/(A_ © T ) o p O p O 

i s a bounded p-group . I f we denote t(G) = T then TQ£T and 

G/(A © T) i s a bounded p-group as w e l l . We can wri te T » 

« T ( p ) ® T? ) where Tf j represents the d i r e c t sum of a l l p r i ­

mary components d i f f erent to T/ , . Let us denote by GQ the 

fo l lowing s e t 

G0 = 4 g , ' g € G , p n g e A p ® T{ . for a su i tab le n\. 

Evident ly , GQ i s a subgroup of G containing A <§> T̂  j and s a ­

t i s f y i n g %nTf j =- 0 . We s h a l l prove that GQ€> Tfp) a G. For 

an i n d i r e c t proof consider g€. G\ (GQ€> T (n))» Obviously the­

re i s an integer n such that p n g€.G 0 © T f p ) * therefore , png a 

» g 0 +t with g 0 ^ G
0 >

 t f e T f p ) # B u t t m a y b e witt**1 i n the form 

t s Pnto> t o € T ( p ) ' a n d h e n c 0 p I l ( « " t o ) " g o c G o - a h i 8 co*-tra-

d i c t s with g - t 0 4 G and the d e f i n i t i o n of GQ. Thus we have 

shown G = G0<& Tfp) and Ap © T ( P ) ^ Q Q . This means that T( } 
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is the maximal torsion subgroup of G and we get an isomor­

phism of bounded p-groups 

(5) G/(Ape T)^Go/(Ap© T ( p ) ) . 

At the same time we can write 

(6) G0/(Ap© T ( p ))-LG o/(A©T C p ))3/t(A p© T ( p ) ) / 

/(A©T ( p ))] 

and also 

(Ap® T(p))/(A©T(p))^Ap/A. 

But A /A = Q A/A is a divisible torsion group with p-compo-

nent equal zero. Thus from (5) and (6) we deduce that the 

group G = GQ/(A €> T( )) is a torsion group of the form G = 

= G/ % © G(*D)> where the p-component G(D) is bounded and G/ x 

is divisible. Let G-_ be the subgroup of GQ such that A ©
 T(D)£ 

£G 1 and G1/(A ©
 T(p)>

 = ^(p)» therefore, G1/(A€>T(p)) is 

a bounded p-group. Since A e «i f the group G-̂  splits: G.̂  = 

= A, & T( D)* Fr°m the construction of G-, it follows that 

Go^Gl* G(*D)» h e n c e Go^Gl i s a d i v i s i D l e torsion group with 

p-component equal zero. Now let us set 

AQ= 4g;geGQ, ngeA-j for a suitable n and p\n\; 

it is easily seen that A0 is a subgroup of GQ satisfying 

A 1£A Q and kQn T, j = 0. The group G Q/U 0 ®
 T(p)>

 i B *««i» 

torsion and divisible with p-component equal zero. By the 

same method as in the preceding part it may be shown that 

the assumption GQ4--A0<S> T^ j makes a contradiction. Th\xa 

Go = A o e T(p) a n d h e n c e G * Go® Tfp) * A o ® T(p) • Tfp) * 

= A 0 ® T. The group G splits, therefore, using Lemma 8 we 

conclude that Q ® A e °i, 
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For the proof of the converse we shall use the follow­

ing lemma. 

Lemma 10. Let A, C be two torsion free groups with pC 4 

*C. If C€>A e <£_ then A e <fcp. 

Proof. Assume C ® A e *i f take any torsion group T and 

set E = Ext(A,T); we shall prove that E/ ) = 0. Since the 

ring Z of rational integers is hereditary we have by 17, VI, 

Proposition 3.6 a)] 

(7) Ext(C,Hom(A,T)) © Hom(C,Ext(A,T)) « 

Si Ext(C® A,T) © Hom(Tor(C,A),T). 

Both groups A, C are toraion free, therefore, Tor(C,A) = 0. 

From (7) we obtain (up to an isomorphism) the inclusion 

Hom(C,Ext(A,T))£Ext(C® A,T). 

Since A is torsion free, the group E = Ext(A,T) is divisible. 

If E / ^ ) * 0 then we ehould have a direct decomposition E = 

= E Q e Z(p°°) and hence 

(8) Hom(C,EQ)e Hom(C,Z(p°° ))SExt(C® A,T). 

In view of Proposition 3, the relation C® A e *fc implies 

that CExt(C® Af T^( p)
 = °« B u t D-aking use of the hypothesis 

pC#C we conclude Hom(C,Z(pw ))40, which contradicts (8). 

Thus -S/p) = 0 and the Proposition 3 gives A e <£ . 

As a corollary we obtain: 

Proposition 4. i) If A is a torsion free group then A e 

e <fc if and only if (L,® A e % . ii) The class of all tor­

sion free groups which are not contained in *£ , is closed 

with respect to the tensor product. 

Proof, i) The implication A £*€-=£ Q ^ 0 A e % is 

shown in Lemma 9, the converse follows from Lemma 10 setting 
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C =- O . i i ) If C is torsion free and pC « C, then 0^® C 

is divisible and, therefore, it is a direct sum of countable 

groups. Thus by [4, Theorems 2 and 3] (see also the following 

Lemma 11 and Corollary 1) we obtain (L® C e i £ % , and in 

view of Lemma 10, C & ̂ D» Hence, assuming A, G torsion free 

and not contained in ^ we have pC-t=C and using Lemma 10 

we get C ® A # <gp. 

Before we prove the inclusion 1? i= *£ we recall the 

following known facts. 

Lemma 11. The class *£ contains the class of all coun­

table torsion free groups; for each prime p it is J e < . 

Proof. See U , Theorem 2]. 

Proposition 5. For each prime p we have the inclusion 

€ p S V 

Proof. If A e *€ then the Q -module J D® A is complete­

ly decomposable. Hence, the additive group J <S> A is a direct 

sum of the form D^A-p where D is divisible and A-, is a di­

rect sum of groups isomorphic to J . Using Corollary 1 and 

Lemma 11 we deduce that A-, e % , D e % and therefore J D® A= 

s D $ A, 6 *i -- ̂  , From Lemma 10 we get A e *£ and hence 
X P ~ ^ P 

This note we shall conclude by the following remarks. 

Remark: 1. If P denotes the product of js exemplars of 

infinite cyclic group Z then P ̂  % arrl, therefore, P 4 C^D» 

Thus none of the classes 3 , <€, *£ is closed with res­

pect to direct product. This shows al«t> that the reduced 

QD-modulfi J © P is not completely decomposable. 

Proof. If T is a torsion group such that T, x is not 
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expressible as a direct sum <mf a bounded and a divisible 

groups then by [1, Satz 4.11it is LExt(P,T)]. ^ o. Now it 

suffices to use Propositions 3, 5 and 2. 

Remark 2. Let % denote the class of all torsion free 

groups A such that ke*t for every prime p. Then 33 & <£.£ *£. 

Proof. The inclusion 51 £ *£ follows immediately from 

Proposition 2. If A € <£ then A e < £ <£ for any prime ,p, 

by Proposition 5. In view of Proposition 3, L.E&t»t(A,T).]/ % s 

= 0 for every torsion group T and hence, Ext(A,T) is torsion 

free whenever T is torsion. This implies (see [4, Theorem 13) 

that A e % and, therefore, <€ £ % . 

The inclusions 3i £ <€ £ *i show that the class *& is 

sufficiently large. Further, the well known KuroS - Mal'cev -

Derry invariants theory (see [2, § 93]) may be extended to 

the class *£ . Thus there is a possibility (by making use 

of the existence theorem) to construct (non trivial) groups 

of arbitrary cardinality lying in *€ and, therefore, in % . 
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