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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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TENSOR PRODUCT AND QUASI-SPLITTING OF ABELIAN GROUPS
Ladislav PROCHAZKA

Abstract: The purpose of this note is a study of some
classes of torsion free groups characterized by quasi-split-
ting and tensor product.

Key words: Splitting, quasi-splitting amd p-quasi-split-
ting of groups, temsor product, functor Ext.

Classification: 20K20, 20K21

If an abelian group G splits then each group H which is
quasi-isomorphic to G, need not be splitting (see [1],[3]).
In this note we shall deal with the class ¢ of all torsion
free groups A such that for each torsion group T a quasi-iso-
morphism G~ A @ T implies the splitting of the group G. It
is shown that the class ¢ contains a class € of torsion
free groups whose definition is related with tensor product;
in € is included the class B of all groups belonging to so-
me Baer class T, .

All groups in this note are supposed to be abelian and
additively written. For the terminology and notation we re-
fer to [2]. The symbol p represents always a prime. Further-
more, Jp (Kp resp., Qp resp.) denotes the additive group of
the ring Q; of p-adic integers (of the field 'JCp of all p-
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adic numbers resp., of the ring Qp of rational numbers with
denominators prime to p resp.). AllL modules considered he-
re are left and unitary. A Q;-module G is said to be tor-
sion free (divisible resp.) if its additive group (G;+) is
torsion free (divisible resp.); the purity of a submodule H
in G is defined analogously.

We begin with the following definition which will occur

very useful in our investigations.

Definition 1. A torsion free Q;-module G is comple te-
ly decomposable if it is a direct sum of a divisible and a
free modules.

At first we shall prove several elementary propositions

concerning the just introduced notion.

Lemma 1., If a Q;-module G is completely decomposable
then each of its pure submodules H is completely decomposab-
le as well.

Proof. Iet H be a pure submodule in G and let U (V res-
pectively) denote the maximal divisible submodule of H (of G
resp.). Evidently, S VnH; since VAH is pure in V, it is
divisible and therefore VnE = U. If we write G = V® 6, and
H=1U ®H1 then .

Hy% BAU = B/(Hn V)2 (B+V)/VE G/V 26, .

By assumption G1 is free and each of its submodules is also

free. Thus Bl is free and hence H is completely decomposable.

Lemma 2. Let F be a free Q;-module and let H be its pure
submodule of finite rank. Then the module F/H is also free.
Proof. Consider F in the form F = 42‘-10 Q‘pxi. Now we
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shall proceed by induction on the rank r(H) of the free
submodule H,

For r(H) = 1 we have H = Q;y where {yi is a free basis
in H. With reapect.to the relation ye F we can write y =

= * (3= ;
-aclxi1+...+ocnx1n where 0+, & Qp (i=1,...,n). Since the

equation px = y has no solution in H, there exists iJ- (1«
£ j£n) such that P /l'oci . Hence the element L2 is inver-

J
tible in Q’; and we have

= Q‘py ehf'&-?@ Q;xk.‘
In this case F/H is free.

Suppose r(H) = r>1 and write H = 2 ® 0,’1‘;‘.j where
{yl,...,yr’; is a free basis of H. If we set H, = 2 ® pr‘]
then Ho is pure in F and by induction F/Ho is rree. But H/ﬂo
is a rank one pure submodule in F‘/HO and by the preceding
part F/H T (P/Ho)/(H/Ho) is also free.

The following generalization is -an immediate one and
the proof will be omitt:ed.

Lemma 3. If G is a completely decomposable %-lodule
and H its pure submodule of finite rank then G/H is also com-
pletely decomposable,

Now we shall continue by proving the following assertion.

mma 4, Let G be a reduced torsion free Q;-lodule and
let H be its pure submodule of finite rank. Then G/H is a re-
duced Q*-module.
M. For an indirect proof suppose that the torsion
free module G/H is not reduced. Then there exists a submodu-.
le G in G such that HS G, and Gllﬂ is ioélorphic to the

Q*-modu]e Ky If n ie the rank of H then n+l is the rank of
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G,; at the same time G, is a reduced torsion free Q’;-module.
By the Prlifer-Kaplansky theorem [6, § 40] G, is a free Q.;-
module and by Lemma 2 G,/H is free as well. We get a contra-
diction with Gl/Ha‘-.'Kp and hence G/H is reduced.

Lemma 5. Let G be a torsion free Q;-module amd H its
pure submodule of finite rank. If the module G/H is comple-
tely decomposable then G is also comple tely decomposable.

Proaf Denote by D(G) (D(H) resp.) the maximal divisib-
le submodule in G (in H resp.) and write H = D(H) ® H,; evi-
dently, Hy is reduced. Since H, is pure in G, H;nD(G) is
pure in D(G) and therefore Hin D(G) = 0. Thus there is in G
a submodule G, such that H;€ G, and G = D(G) & G,. Clearly
D(H) S D(G) and we have

G/H = (D(G) ® G,)/(D(H) ® H))=D(G)/D(H) @ G, /H,.

The module Gl is reduced and Hl is its submodule which is pu-
re and of finite remk. By Lemma 4, G)/H, is reduced as well.
From the complete reducibility of G/H it follows that G,/H;
is free. Hence, Gl = Ble H, where H, is free. Since H, is
reduced and of finite rank, H; is also free 6, § 40]. Thus
we have proved that Gl is free anl, therefore, G = D(G) @ Gl
is completely decomposable.

For any torsion free group A and any torsion free Q’;—no-‘
dule G the tensor product of abelian groups G ® A may be con-
sidered as a torsion free Q;-module. Thus we can formulate

the following definition.

Definition 2. By the symbol ‘CP we shall denote the
class of all torsion free groups A for which the Q;-module
JPQ A is comple tely decomposable (see [51).
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In the following proposition some elementary proper-

ties of the class ‘fp are concentrated.

Proposition 1. i) The class ‘fp is closed with rea-
pect to direct sums, tensor product and pure subgroups.

ii) If A is a torsion free group and S its pure subgroup
of finite rank then A € ‘fp if and only if A/S e‘fp.

Proof. If A =, ® A; with Aje €, (i€I) then the
relation Jp@ AES ;§1 ® (Jp® A;) (it represents a module
isomorphism) implies A ¢ ‘t’p. Assume A,B € ‘Cp. Then we have
a module isomorphism I, (ae B) = (Jp ® A) © B. By hypothe-
sis the Q;-module Jp® A is completely decomposable, there-
fore, Jp® A= Lzs'l ® G;, where each module Gi is isomor-

phic either to J_ or to Kp. Thus we have a relation

p
Jpe (A® B) = 6%1 @ (6; ® B)

where each module Gi® B is completely decomposable (if

Gig Kp then Kp@ B is divisible). This means that A® B e‘ep.
If A e ‘fp and S is any pure subgroup of A then (see

[2, 60.4])

(1) Of—-éJp@ S——:J_'p® A——)JPG (A/S)—> ©

is a pure exact sequence of abelian groups. Thus the Q;-modu-—
le Jp® S is a pure submodule of the comple tely decomposable
module Jp® A and hence, by Lemma 1, we get S 6‘€p. The proof
of i) is complete.

For the proof of ii) let us note that if S is of fini-
te rank then Jp® S is of the same rank as Q’;-module (see
[2, § 93]). Furthermore, with respect to (1) we have

2
(2) @ (A/S)a‘(JPG A)/(Jp® s).
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If we assume A ¢ ‘fp then the relation A/S e ‘{p follows fraom
(2) by using lLemma 3. On the other hand, if A/S e ‘fp then
for the proof of A € ‘fp we use (2) and Lemma 5.

Recall now the definition of Baer classes I, . First-
1y, I'y is defined as the class of all countable torsion
free groups. If oo > 1 then a torsion free group A belongs
to T‘& Just if A & I‘p for each {3» <o¢ and there exists a
pure subgroup S in A of finite rank such that A/S is a di-
rect sum of groups belonging to classes of indices less than
o . By the symbol 43 we shall denote the clgsa of all tor-
sion free groups A such that there is an ordinal o~ with Ae'

e\"oc.

Lemma 6. For every prime p we have the inclusion BB &
c ‘Cp.

Proof. We shall prove by induction that for every ordi-
nal o¢ it is [y ‘fp.:’me relation I'; & ‘Cp is a consequen-
ce of the Priifer~Kaplansky theorem [2, 93.3). Suppose now
that 1< o , T € ‘Cpfor each (3 <cv, and take A € Tc
By the definition there exists a pure subgroup S of finite
rank in A such that A/S =210 A, Aj s l",.ji and (3; < &
(1¢I). Thus A; ¢ ‘Cp (ieI) and A/S e.‘fp by Proposition 1.
But using the same Propositiom 1 we obtain A e ‘fp and hence
Pur. < ‘Cp. The proof by _induction is finished.

For every prime p the class J3 may be extended in the
following way :

_ Definition 3., By the symbol '.’Bp we shall denote the
class of all torsion free groups A such that Qpe AeR .

Proposition 2. For any prime p we have the inclusions
- 60 - )



e B p < ‘-ﬂp.

Proof. In order to prove the inclusion H & ‘ﬁp we shall
prove the following sharper assertion: (x) If A € I then
there exists a (34 oc such that Qpe Ae T'ﬁ . The proof will
proceed by induction. If A € I'; then also Qp® A el since
both groups are countable. Assume 1 < o¢ and Qpe A& Trs
for each (3 < o . Since A 6 T (1 < o), there exists a pu-
re subgroup S of finite rank in A with a direct decomposition
A/S = ‘LZ‘\I ® A, A, € l"(si_, B; < « (i€I). At the same ti-
me the sequence

0—Q,® S—Q,®A—>Q® (AMS)—0
is pure exact and we get an isomorphism

(QPS A)/(Qp® S)EQP® (A/8S) §a§l D (Qpe A

By indﬁctive hypothesis Qp@ Ai 3 T‘,ri where Ti F [3:1 < cC g
this implies Qp® Ac T‘w since Qp® S is of finite rank. Thus
the proof of (k) is finished and we have B < .‘Bp.

For the proof of the inclusion 3p£ ‘{,’p suppose A € .’Bp.

This means Qp® A 6P and Qpe Ae‘ep by Lemma 6. Hence,
the Q;-module Jp® (Qp9 A) is completely decomposable. But
.0 (Q;® A-)g(JPQ Q)@ AﬁJpe A, therefore, A € ‘fp.

Note that the proposition proved just now concerns the
largeness of the class 'Cp.

In the following we shall use the next notation: If G
is any group then t(G) denotes the maximal torsion subgroup
of G; G(p) represents the p-primary component of t(G). Re-
call that two groups G, H are said to be quasi-isoaerphic
[3] (in symbols GXH) if there are subgroups U<G, VEH and
a positive integer n such that nG&U, nHecV and U2V, Now we
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give a localization of the notion just defined.

Definition 4. Two groups G, H are said to be p-quasi-
isomorphic if they are quasi-isomorphic and if the corres-
ponding number n may be found in the form n = pk. In this ca-
se we shall write G"?‘-.',H.

From the Definition 4 it may be deduced that the rela-
tion G'-;‘{,H implies G/t(G)% H/t(H). The following lemma is

a modification of [3, Theorem 5].

lemma 7. A group G is p-quasi-isomorphic to a split-
ting group if and only if the exact sequence
(3) 0—>t(G)— G —G/t(G)—> 0

represents an element of the group [Ext(G/t(G),t(G))J(p).
Now we shall define a further class "£p (depending on

p) of torsion free groups.

Definition 5. By the symbol ‘£p (€ resp.) we shall
denote the class of all torsion free groups A such that for
each torsion group T the relation G f; A®T (GXADT resp.)
implies that the group G splits. Evidently, € < ’£p for eve-

ry prime p.

Proposition 3. A torsion free group A is contained in

the class <% _ if and only if[Ext(A,T)J(p) = 0 for every

P
torsion group T.

Proof. Assume A e ¢ T a torsion group and let

p’
(4) O—>T —>G—>A—>0

be an exact sequence representing an element of the group
[Ext(a,T)] (p;‘ By [3, Theorem 3], for a suitable integer n

the sequence
- 62 =



0—>T—»p"G + T—> pPA—> 0

is splitting exact. Hence pPG + T = A,® T, where A % pPA
2 A and therefore A ¢ 4. Since pGepG + T = A® Tc< o,
we have G 1’—; A°® T, which implies that G splits. This means
that (4) represents the zero elemernt and we conclude
[Ext,(A,T)](p) = 0.

On the other hand, let A be a torsion free group such
that [Ext(A,T)](p) = 0 for every torsion group T. Take any
torsion group To and consider a group G satisfying G%A@ To;
thus, as we have noted, G/t(G)3 A. By Lemma 7, the exact se-
quence (3) represents an element of [Ext(G/t(G),t(G))](p)-
Using [4, Lemma 2], from the relation G/t(G) %/A we deduce
Ext(G/t(G),t(G)= Ext(A,t(G)) and hence [Ext(G/t(G),t(G))] (p)g
g[Ext(A,t(G))](p) = 0. This means that (3) represents the
zero element, G splits and, therefore, A e "f,p.

As an immediate consequence we obtain

Corollary 1. The class <% _ is closed with respect to

p
direet sums ani summands. Analogously for the class ¢ (see
L4,

Now we shall describe some further properties of the

class “ip.

Lemma 8. Let A, A2 be two torsion free groups satis-
fying A1'1—"; A,. Then Ay € ‘Gp if and only if A, € ‘£p. Fur-
ther, if A is a torsion free group such that for every tor-
sion group T any extension G of A@® T splits whenever
G/(A® T) is a bounded p-group, then A e%p.

Proof. If A% A then Ext(A;,T) ZExt(A,,T) for each
torsion group T (see [4, Lemma 2]). Our first assertion
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follows now by Proposition 3. Further, let A satisfy the
hypothesis of the lemma and let G be a group with G %A ®T
for a torsion group T. In view of the Definition 4, there
are subgroups U, V and an integer n such that pncs—UEG,
PPAD®T)ISVEA® T and UZV. Since pP(A® T) = pPa® p"T,
pPAZA and U2V, there is a subgroup U, S U satisfying U; &

-+

2p™(A ® MA@ p°T and p'UcU,. Hence p™* G U, and, by

hypothesis, the group G splits. But this means that A e\‘-ip.

Lemma 9. If A € %p then Q,©® A € ‘Ep as well.
Proof. Assume A € ‘£p and denote by E(A) the divisible
hull of A. If we set Ap = QpAE E(A) then there exists a na-

tural isomorphism Qp® AZA_ = QpA. We shall prove that A_¢€

P P

€ ‘?,p. In order to verify this fact, take any torsion group

T, anq consider an extension G of Ap® T, such that G/(Ap® To)

is a bounded p-group. If we denote t(G) = T then T ST and

G/(Ap® T) is a bounded p-group as well. We can write T =

= K : .
T(p) @ 'l‘fp) where T(p) represents the direct sum of all pri-

mary components different to T(p). Let us denote by Go the

following set

G, = {g;géG,pngeLp® T(p) for a suitable nk.

Evidently, G, is a subgroup of G containing Ap® T(p) and sa-
tisfying G N Tz‘p) = 0. We shall prove that G, @ Tfp) = G, For
an indirect proof consider ge G\ (G, ® T{p)). Obviously the~
re is an integer n such that p'g G, ® T(p), therefore, pg =
= g+t with g € G, ter("‘p). But t may be written in the form
t = pnto, ty¢ Tfp)’ and hence Pn(g-to) = g€ Go' This contra-~
dicts with g-t°¢ Go and the definition of Go. Thus we have

= ¥ nd A_® T(,)<S0q_ . Thi
shown G G°® T(p) a P 6(:;,) ° is means that T(p)



is the maximal torsion subgroup of Go and we get an isomor-

phism of bounded p-groups
(5) G/(APGD T)=Go/(Ap® T(p)).
At the same time we can write

(6) Go/(Ap® T(p))C’—.LGo/(A@ T(p))]/ [(Ap@ T(p))/'
/(A ® 'r(p))]

and also R
(%C-D T(p))/(Aea T(p))gAp,/A.

But AP/A = QpA/A is a divisible torsion group with p-compo-
nent equal zero. Thus from (5) and (6) we deduce that the
group G = Go/(A ] T(p)) is a torsion group of the form G =

_ o= - 1 . =%

= G(p) ® G(p), where the p-component G(p) is bounded and G(p) ]

is divisible. Let G, be the subgroup of G, such that A ® T(p)c_.
£Gy and Gl/(Aea T(p)) = G(p); therefore, G,/(A ® T(p)) is
a bounded p-group. Since A e %p, the group Gy splits: G1 =
=AS T(p). From the construction of Gl it follows that
GofGla' ’G("‘p), hence Go/Gl is a divisible torsion group with
p~-component equal zero. Now let us set
A= {g;geG , nge A, for a suitable n and p tni;
it is easily seen that A, is a subgroup of G, satisfying .
AjS A, and A N T(p) = 0. The group G /(A, & T(p)) is again
torsion and divisible with p-component equal zero. By the
same method as in the preceding part it may be shown that
the assumption Go+ A ® T(p) mskes a contradiction. Thus

= G = * = ® =
Go A°© T(p) and hence GOO T(p) Aoe T(p) ® T(p)
= A,® T. The group G splits, therefore, using Lemma 8 we
conclude that Qp® Ae ‘%pn
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For the proof of the converse we shall use the follow-

ing lemma.

Lemma 10. Let A, C be two torsion free groups with pC #
#C, IfF COA € ‘ﬁp then A € ‘Ep.

Proof. Assume C® A € ULP, take any torsion group T and
set E = Ext(A,T); we shall prove that E(p) = O. Since the
ring Z of rational integers is hereditary we have by L[7, VI,

Proposition 3.6 a)l

(7) Ext(C,Hom(A,T)) ® Hom(C,Ext(A,T)) &
2 Ext(C ® A,T) ® Hom(Tor(C,A),T).

Both groups A, C are torsion free, therefore, Tor(C,A) = O,

From (7) we obtain (up to an isomorphism) the inclusion
Hom(C,Ext(A,T)) s Ext(C ® A,T),

Since A is torsion free, the group E = Ext(A,T) is divisible.

Ir E(p)*o then we should have a direct decomposition E =

=EO® Z(p®) and hence

(8) Hom(C,EO) ® Hom(C,Z2(p™ ))<= Ext(C® A,T).

In view of Proposition 3, the relation C® A € %p implies
that [Ext(C ® A,T)](p) = 0, But making use of the hypothesis
pC *+C we conclude Hom(C,Z(p® ))# O, which contradicts (8).
Thus E(p) = 0 and the Proposition 3 gives A € ‘%p.

As a corollary we obtain:

Proposition 4. i) If A is a torsion free group then A¢
€ %p if and only if qpe A e ‘Ep. ii) The class of all tor-
sion free groups which are not contained in ‘ﬁp, is closed
with respect to the tensor product.

Proof. i) The implication 4 € ‘ipzz) Le Ae %p is

shown in Lemma 9, the converse follows from Lemma 10 setting
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C = Qp. ii) If C is torsion free and pC = C, then Qp® c
is divisible and, therefore, it is a direct sum of countable
groups, Thus by [4, Theorems 2 and 3) (see also thé following
Lemma 11 and Corollary 1) we obtain Qp® Cetc ‘ép, and in
view of Lemma 10, C e %p. Hence, assuming A, C torsion free
and not contained in ‘£p we have pC#C and using Lemma 10
we get C® A ¢ ‘Ep.

Before we prove the inclusion ‘fp = Cfp we recall the

following known facts.

Lemma 11. The class % contains the class of all coun-
table torsion free groups; for each prime p it is J_e € .

P
Proof. See L[4, Theorem 21].

Proposition 5. For each prime p we have the inclusion

c .
‘fp - %P

Proof. If A e ‘Cp then the Q’;—module Jp® A is comple te-
ly decomposable. Hence, the additive group Jp® A is a direct
sum of the form D® A,, where D is divisible and A, is a di-

rect sum of groups isomorphic to J_. Using Corollary 1 and

p
Lemma 11 we deduce that Ay € ¢ , D e € and therefore Jp® A=
=D® A e ¢ < ‘ﬁp. From Lemma 10 we get A € “gp and hence
c
€p < “ép.
This note we shall conclude by the following remarks.
Remark 1. If P denotes the product of My exemplars of
infinite cyclic group Z then P ¢ %p.arﬂ, therefore, P ¢ ‘-Cp.
Thus none of the classes JBP,
pect to direct product. This shows also that the reduced

‘Cp, ‘ép is closed with res-

Q;-module Jp@ P is not completely decomposable.
Proof. If T is a torsion group such that T(p) is not
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expressible as a direct sum af a bounded and a divisible
groups then by [ 1, Satz 4,1lit is [Ext(P,T)](p)#: 0. Now it

suffices to use Propositions 3, 5 and 2.

Remark 2. lLet € denote the class of all torsion free
groups A such that Ae ‘Cp for every prime p. ThenB < €c €.

Proof. The inclusion § <€ follows immediately from
Proposition 2, If A € € then A€ ‘€p =4 ‘£p for any prime p,
by Proposition 5. In view of Proposition 3, [Ext(A,T)](p) =
= O for every torsion growp T and hence, Ext(A,T) is torsion
free whenever T is toreion. This implies (see [4, Theorem 11)
that A & € and, therefore, € € ¢ .

The inclusions 3 = € € %4 show that the class % is
sufficiently large. Further, the well known Kuro3 - Mal’cev -
Derry invariants theory (see [2, § 93)) may be extended to
the class € . Thus there is a possibility (by making use
of the existence theorem) to comstruct (non trivial) groups

of arbitrary cardinality lying in ¢ and, therefore, in .
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