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20, 4 (1979)

ENDOMORPHIC UNIVERSES AND THEIR STANDARD EXTENSIONS
A. SOCHOR, P. VOPENKA

Abstract: This paper is meant as a contribution to the
development of mathematics in alternative set theory. In
particular, a procedure in some aspects similar to Robinson’s
non-standard methods is created using specific means of al-
ternative set theory.

Key words: Altermative set theory, ultraproduct, non-
standar% methods, endomorphic universe, standard extension.

Classification: Primary 02K10, 02K99
Secondary 02H20, 02H13

The classical calculus of lLeibniz and Newton is based
on the existence of the natural extension of real functions
on infinitely small quantities. Robinson’s non-standard ana-
lysis has tuned this assumption with the mathematics in Can-
tor ‘s set theory. Moreover, Robinson’s non-standard methods
have brought a great deal of additional important applica-
tions.

This article deals with analogical questions in alter-
native set theory (AST). We do not transfer the construction
of non-standard models to AST word for word - although even
this approach is possible = but the method described in the

paper is based on specific properties of AST. Let us note

- 605 -



that from the point of view of non-standard methods the
whole of AST behaves as a non-standard model.

An endomorphic universe is a copy of the universal
class conveniently put into the universal class. There are
many different endomorphic universes in AST. In many cases
there is room enough for the natural extension of endomor-
phic universe, let us note that this natural extension is
defined inside AST (and it is not considered as a primitive
notion). These extensions are so natural that it would be
absurd (from the point of view of AST) to call them non-
standard extensions (though they correspond to Robinson’s
non-standard extensions). This is the reason why they are
said standard extensions.

The more experienced reader notices that the approach
we have chosen enables us to eliminate from AST the method
of ultraproduct and to replace it eguivalently by another
procedure which seems to fit more in AST. For such readers
let us note that in ‘AST we can prove that the ultrapower of
the universal class is isomorphic to the universal class,

The method described in the paper has a lot of appli-
cations; in particular, we can imitate in this way a great
deal of results obtained by non-standard methods. Some ap-
plications which are in a way specific to AST can be found
in [S-V22],

In the first sectioz; we investigate basic propertiea
of general endomorphic universes, in particular we show the
existence of endomorphic universes with special properties.
The second section deals with properties of standard exten-
‘sions on an endomorphic universe. Especially, we prove that
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standard extension is determined uniquely. The last section
is devoted to the proofs of the existence of endomorphic uni-
verses which have standard extemsiohs.

The whole article can be considered as an immediate
continuation of [V]. When referring to that book we shall ci-
te only the section and the chapter in question. .

The first author showed in AST that the ultrapower of
the universal class is isomorphic to the universal class. On
the base of this result the second author auggegtod the con-
ception of this paper. Its concrete realization was carried

out by both authors.

§ 1. Basic properties of endomorphic universes

A class is called an endomorphic universe iff it is si-
milar to the universal class. Therefore, a class A is an en-
domorphic universe iff there is an endomorphism F with
rng(F) = A,

Let us recall that a function F is an endomorphiam iff
for every set-formula g?(zl,...,zn) and for every xl,...,rneVa
= dom(F) we have (@ (x),..0yXy) = @ (F(x7),...,F(xy))). Fur-
ther, let us remind that g:A denotes the formula resulting
from ¢ by the restriction of all quantifiers binding set va-
riables to the elements of A and all quantifiers binding

class variables to the subclasses of A.

Theorem. The following properties of a class A are e~
quivalent:
(1) A is an endomorphic universe

(2) rrlg(zl,...,zn) is a normal formula of the langu-
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age PL‘ (i.e. the elements of A are admitted as parameters)
then for every xl""’xn the subclasses of A which are at

most countable we have

r Xy, X)) = @ (Xp,0en,X)
(3) A satisfies the following two conditions
(a) If ¢ (z) is a pet-formula of the language FL, then we
have (3 x) g(x) —> (3xel) p(x)
(b) For every countable FSA there is fe€ A with Fef

(4) If {9, (z);neFN%is a sequence of set-formulas
of the language F']:.A then we have
(3x)(Vn) @p(x) — (I xeA)(Vn) g,(x).

Proof. (1) —> (2). Let YEA be a countable class con-
taining all constants occurring in ¢ and such that <X
for every 1<i< n. By the second theorem of § 1 ch, V it is
sufficient to construct an endomorphism which is identical
on Y and the range of which is A, Let G be an endomorphism
with rng(G) = A. Then 611 Y is a countable similarity and
therefore it can be extended to an automorphism F (see § 1
ch, V). Hence the composition of G and F is an endomorphism
we ].;oked for.

The implication (2) —> (3) is a trivial consequence of
the prolongation axiom.

(3)—> (4), Let 1 ;neFNS be a sequence of set-for-
mulas of the language FLA and let c be a set such that for
every n€ FN the formula @p(c) holds. According to (a) we
can choose for every n€ FN a set x € A such that @,(x,) &
&.ee& gu(x ). By (b) there is f€ A with f(n) = x,;, and hen-
ce there is a set x€A such that {x, ;neFN§ S x. For every
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neFN we put y = {ze x; P,(2)& coe & gn(z)} and we have
obviously y,& A&yn# 0. Using our assumptions we can choose
g€ A such that dom(g)e N&(Yn)(g(n) = y )& (Ve )(c+ 1 €

< dom(g) — g(oc+ 1)cg(ec)). Let (3 be the smallest o< for
which holds g(cc+1) = 0 v +1¢dom(g). Then 3& A and
(3¢ FN. We get Ang((3)+0 as a consequence of (a) and of.
the statement g([s )#O&g((& )€ A, Moreover, the formula
(Yyeg())(Vn) @ (y) follows from the construction of the
function g and this proves our statement.

(4) — (1). At first we are going to show that for e-
very set b and for every similarity Fo which is at most coun-
table and the range of which is a subclass of A, there is
a<A such that the function Fju {<a,b>% is again a simila-
rity. Under our assumptions there is a set ¢ such that Fo v
u{<e,b?% is a similarity (see the third theorem of § 1
ch. V). Let us choose a€ A such that for every set-formula
¢ (z) of the language FLI‘RG(FO) we have (a)= @(c). Thus
Fou {<a,b>} is a similarity and thence we have proved our
claim.

Let fa ;v € 13 (b, ; ¢ € O} respectively) be an e-
numeration of A (of V respectively). Using the previous claim
and the third theorem of § 1 ch. V we are able to construct
by transfinite induction a sequence iF_ ; o¢ € L% of simila-
rities which are at most countable and such that Ud{ Fﬂ s Be

e nfNis € rng(F )= A and b, € dom(F, ). Thus

ch y 8,
ULE, ;¢ ¢ Q3% is an endomorphism we looked for.
Let us note that according to (2) of the last theorem,

for every endomorg " rerse A and for every finite set x
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we have xe A=x<A.

Theorem. Let 97 be a codable class of endomorphic u-
niverses such that for every 7L ¢ %/ which is at most coun-
table there is A< %! with UZL & A. Then UWL is an en-
domorphic universe.

Proof. To prove the property (4) of the previous theo-
rem let us suppose that {C_en(z);nemi is a sequence of set-
formulas of the language FL, . . Then there is A c % which
is at most countable and such that {g ;n€ FN} is a sequence
of set-formulas of the language PLU n o Thus by our assump-
tion there is A e @& such that every g, is a set-formula
of the language FLA. If there is a set y such that for every
né FN we have ¢, (y) then there is x €A such that for every
n¢ FN, the formula gvn(x) holds. Since x ¢ U7 our state-

ment is proved.

Theorem. ILet {An;ne FN3 be a sequence of endomorphic u-
niverses such that A C A .. Then U{iA,;n€FN} is no endo-
morphic universe,

Proof. We can choose a function F such that dom(F) = FN
and such that for every n<c FN the formula F(n)€ A, - 4,
holds. If U{ A ;ne PN} would be an endomorphic universe then
there would be fc U4 A ;neFN} with FS £ and thence we would
have f< A, for some mcFN, Since me Ay it would hold F(m)< Ay,
which is a contradiction to our assumption F(m)e€ Ap,; = A,

For arbitrary class A and arbitr#ry set 4 we put

ALd]l ={r(d);fcAlLd cdomn(r)?

Theorem. Iet A be an endomorphic universe and let 4 €
. €e€UA., Then AL 4] is the smallest endomorphic universe sub-
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class of which is the class Auidl .

Proof. Obviously the class ALd) is a subclass of every
endomorphic universe subclass of which is Au{d%. To show
that Au{dicAld] let us fix v with de ve A. Let xCA be gi-
ven. The function f for which the formula dom(f) = v &(¥ye
€ v)(f(y) = x) holds is an element of A and moreover f(ad) = x.
Hence A< A[d) has been proved. If id denotes the identity on
v then ide A and id(d) = 4 from which de Ald] follows.

Therefore it remains to prove that A[d) is an endomorph-
ic universe. To show this we are going to verify the condi-
tions (a) and (b) from the first theorem of this section.

(a) Let g»(zo,zl,...,zt) be a set-formula of the langu-
age FL and let us assume that for functions fy,...,f €A the
formula d<dom(fy)N...ndom(f,) &(3x) @(x,f(d),...,f (a))
holds. We have to construct feA with @¢(f(a),f,(d),...

oo, Tp(d)). Put

u ={yedom(fy)N...ndom(fy); (Ix)@(x,f3(y),..c, L (y))3.
Evidently de u< A and moreover there is a function g for which
the statement dom(g) = u&(Vyesu) @(&(y),f1(y),...,2,(¥))
holds. Since A is an endomorphic universe there must be a fun-
ction £ with the above mentioned property and which is more-
over an element of A. Thus we get ¢(f£(d),f,(d),...,f,(d)) as
a consequence of d€ u.

(b) Iet F£Ald]) be a countable function. Then there is
a sequence {f, ;n eFNJ} of elements of A such that dcﬂ{doa(-:fn);
neFN%and P = if (4);nc FN}. Without loss of generality, we
can suppose that dom(f,) = v for every n€ FN because if g &
CAkdedom(g)kh = (gPv)ud0% x (v - dom(g)) then h€A &

& dom(h) = v&g(d) = h(d). Since A is an endomorphic universe
- 611 -



there is a prolongation{f_ ; ¢ € 33€ A of our sequence
for which the implication o< € # — dom(f. ) = v holds. For
every y<v we define

gly) =41, (y); 00 € B & Fne({f,. (y); < <}
We have evidently gc A and dev = dom(g) and therefore g(d)e
€ ALd]. Moreover F< g(d) because F =if (d);n€FNF is a func-
tion.

At the end of this section we shall see that the assum-
ption d € UA in the previous theorem is essential. .

Let us note that if A is an endomorphic universe and if
dy,d,€ UA then {dl,dz} e U A and AL{ dy,d4,3] is the small-
est endomorphic universe subclass of which is Au{ dl,dz'i and
hence it is even the smallest endomorphic universe subclass
of which is the class A[d]_]u A[dzl ."J.'he analogical statement

holds for arbitrary finite number of elements of UA.

Theorem. Let A be an endomorphic universe and let c,de
€ UA., Then Alc] = ALA) iff there is a one-one mapping f£€ A
with ¢ = £(d).

Proof. Iet Alc] = Ald]). There are g,h cA such that ¢ =
= g(d) and d = h(c) because of ce Al@J&deAle] . Put u =
=4y; h(g(y)) = yt. We have evidently de u € A. Moreover put-
ting £ = g Mu we get £(d) = ¢ and £f€ A, We have to prove that
£ is a om‘z-one mapping. Let x,ycu and x+y. If we would ha-
ve f£(x) = £(y) it would hold the statement g(x) = g(y), and
hence we would obtain h(g(x)) = h(g(y)). Further from the as-
sumption x,y € u we would get x = y which is a contradiction.
The opposite implication is trivial,

Let us mention the almost trivial fact that if A is an
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endomorphic universe then UA = U4 I_", ;€ A= UUA =
= P(UA). This is an immediate consequence of the obvious
statements o« € A=P € A, x€A —> v(x)€A and L€ A—>

—> L +1e A (for B, see §1ch.1D).

Theorem. Let A and B be endomorphic universes. Then
there is the smallest endomorphic universe a subclass of .
which is AuB.

Proof. Using the previous fact we have either AcUB
or Bc UA, Let us suppose that the second inclusion holds.
Put %t = {Ald);de B}, It is sufficient to prove that UL
is an endomorphic universe because for every ehdomorphie¢
univerae C the implication AUBSC —> U < C is ntii.—
fied. Let 7 ={Al4 );neFN} be a countable subclass of %%.
Since B is an endomorphic universe, there is ~:\fe B with
(¥n)(£(n) = 4,). Thus Alq JcAlf] e %L for every ncFN.
The use of the second theorem of this section finishes ths

proof.
Let us recall that a class X is called revealed if for

each countable YS X there is a set u such that Y& ucSX.

Theorem. If A is an endomorphic universe then U A is

a revealed endomorphic universe. )

Proof. If {x, ;n eFN ?c UA then there is a sequence
{ypine FR}S A such that for every ncFN we have X, € Y Sin-
ce A is an endomorphic universe we can choose _P:C & A 80 that
{ypine FN}cP, and thus it is {xn;nemisfds- UA. We ha-
ve proved that UA is a revealed class.

For every £ and d with fe A&k dedom(f) we ha'.n f£(d) e
& rng(f) € A and therefore the formula f£(d) e U.A holds. As a

consequence we get UA = Ufalal;a eUA}. Thus it is suffi-
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cient to show that the class U<{ ALdl;d e UAY is an endomor=-
phic universe. If {d ;n€FN} cUA then there is f e UA with
(Vn)(f(n) = 4,). This means, however, that for every nc FN
we have Ald ¢ AL£] because the statement 4, € A[f] holds for
every ne FN. To finish the proof we use the second theorem of
this section.

The theorem we proved just now makes it possible to re-
strict the investigation of endomorphic universes to the fol-
lowing two types: The first type consists of endomorphic uni-
verses which are not semisets (in other words the union of
which is the universal class). To the second type belong en-
domorphic universes which are transitive (a class X is tran-
sitive iff UX<X). In fact if A is an endomorphic universe
then UA is an endomorphic universe of the second type and
A becomes an endomorphic universe of the first type if we con-

sider UA as the universal class.
Theorem. A revealed class A 18 an endomorphic universe

iff for every set-formula gp(z) of the language FL, we have

(3 x) g(x) — (3 xs4) 9x).

Proof. We are going to verify the condition (4) of the
first theorem of this section. Let {qg,(z);neFN} be a se-
quence of set-formulas of the language FLA and let the formu-
la (3x)(Vn) @ (x) hold. Put X ={yeh; @ (y)&eee & pp(¥)3.
Then {Xn;n €FNJ is a descending sequence of non-empty reveal-

ed classes and hence N<{ X,;n€FN3 $ 0 by § 5 ch. IL

Theorem. If A is an endomorphic universe such that the-
re is an infinite u$A then A is revealed.
Proof. Let X be a countable subclass of A and let F ﬁe
a one-one mapping of X into u. Then there is £ €A with FSf &
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-1 -1"
& Fne(f ) and thus Xc £ ~ ucA.

Theorem (A. Vencoveké). If M is a class of revealed
endomorphic universes which is at most countable then N 77¢
is a revealed endomorphic universe.

Proof. Obviously N7 1is a revealed class. To prove
the condition mentioned in the last theorem let us assume
that ?(z) is a set-formula of the language Fan . Let us
choose a set-theoretically definable one-one mapping F of N
onto V and let x be the set for which the formula ¢(x) &
K(Vy)loply) — F'l(y)zF'l(x)) holds. Then @& FI, for all
A e and hence xcA for all A € @ from which xe N WL

follows.

Theorem. There is a transitive endomorphic universe
which is the intersection of countably many sets.

Proof. In the second section of chapter V it is shown
that there is an endomorphis F and o, €N such that F"V.&Pg,.
Put A = UF"V, A, = UF"A, o o = F(e)) and A = N{A};
n 6 FN%. Then fA ;ne FN? is a sequence of transitive revealed
endomorphic universes and thence A is a transitive reve'aled
endomorphic universe, Moreover, for every n € FN we have A 1S
S PS4,

Theorem. For every set x there is a transitive endomor-
phic universe x3 A which is a semiset.

Proof. Let F be an endomorphism such that F"V is a se-
miset. Put y = F(x). Since {{x,y?} is a similarity, there
is an automorphism G with G(y) = x by § 1 ch. V. Putting A =
= G"F"V we obtain an endomorphic universe which is a semiset
(because G is an automorphism and because F"V is a semiset)
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and moreover x€A. Thus U A has all desired properties.

mg‘ rem. If A is an endomorphic universe and d ¢ U A
then there is no minimal endomorphic universe a subclass of
which is Auidl.

Proof. Let B be an endomorphic universe such that A v
v id¥eB, Applying the last theorem (and substituting B for
V) we obtain a class C such that Av{d3<CcB and C is an
endomorphic universe in the sense of B and hence C is an
endomorphic universe by the definition of endomorphic uni-

verse.

§ 2. Standard extension N

Let A be an endomorphic universe. An operation Ex defi-
ned for all subclasses of A is called a standard extensiom
on A iff for arbitrary normal formula @(Zy,...,2,) of the
language IPI..A and arbitrary xl,...,xns A we have

@t (Xyyee e X)) = @ (Bx(Xy, .0 Bx(X)).

Theorem. An operation Ex defined for all subclasses
of an endomorphic universe A is a standard extension on A
j.ff for arbitrary normal formula @(Zj,ee,Zy,Zq,000,%,) Of
the language l?'I.A and for arbitrary Xy5ees, X, €A we have
Ex(4<xy,eeesm > € A5 @R(xgpenn, e, Xp,en X)) 3) =
-{(xl"""k> H q(xl,-..,xk,EX(Xl),...,Ex(l%))}.
Proof. At first let us suppose that Ex is a standard
extension on A, Put Y ={<x1,...,xk) € A; ?A(xl""’xk'xl’
oo.,&’}' Obvio\mly
(V’CA)(!GYE(B21,...,xkeA)(y 3(21,...,xk) 8(

~ 616 =
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% q‘(xl,...,xk,xl,...,xn))) holds and since Ex is a stan-

dard extension we get (Vy)(ye¢ Ex(Y)= (2 xl,...,xk)(y =

24X 5000, 7 & @ (xXgseeerXy,Ex(X;),000,Ex(X))))). From he-
re we obtain Ex(Y) =4 xyeee, X § (X000, X, Bx(X)),.0.

eeo BX(X )3,

Conversely let Ex have the property mentioned in the
theorem. Then for Xy,...,X,S A it holds g‘(xl,...,xn) =
={xel; yA(xl,...,Xn)? =A={xepr;x=x¥=
={x; PEX(Xyyeee,BX(X N =V ={x;x=x}=
= (Vx) g(Bx(Xy,...,Bx(X)) = @ (Ex(Xy),...,Ex(X;)). Thus
Ex is a standard extension on A.

Up to the end of this section let A denote an endomor-
phic universe different from V and let Ex denote a standard
extension on A.

As immediate consequences of the definition of standard
extension or of the previous theorem we obtain statements of
the following 1list in which X and Y denote subclasses of A.

Xe Ex(X)

X = AnEx(X)

XcY=Ex(X) S Ex(Y)

Ex(A) =V

Ex(0) = O

Ex(XnY) = Ex(X)n Ex(Y)

Ex(XvY) = Ex(X)uU Ex(Y)

Ex(X - Y) = Ex(X) - Ex(Y)

XNY = 0=Ex(X)NnEx(Y) = 0

The following statements follow from the fact that
{x,yYe A=x,yecA.,

Rel(X)= Rel(Ex(X))
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Pnc (X) = Pne (Ex(X))
Bx(x"1) = (Ex(x))7}
Ex(dom(X)) = dom(Ex(X))
Ex(rng(X)) = rng(Ex(X))
Ex(Y"X) = Ex(Y)"Ex(X)
Ex(X>< Y) = Ex(X)=Ex(Y)

Iif g:(z) is a set-formula of the language I"I.A then
Ex(An{ix; @(x)}) =4x; @(x)¥ am thus we have in particular

xeA—Ex(xnA) = x

Ex(UXnA) = UEx(X) (= {<x,y> ;xey§ “Ex(X))

Ex(FN)S N

Theorem. Let ¢(2,Zy,...,2,) be a normal formula of
the language FLA and let Xl,...,l%sA. Then
(I x) @(x,Bx(X)),..0,Ex(X;))=(3 x€4) @ (x,Bx(X;),..0,Ex(X))e
Proof. Let us suppose that the formula (3 x)¢g(x,Ex(X,),
«e+sEx(X;)) holds. Then we have (3 xeA) ?A(x,xl,...,xn) and
therefore we can choose a€ A so that 9“(a,x1....,xn). Hence
we have ¢(a,Ex(Xy),...,Ex(X )) and thus we have proved
(3xeA) ?(x,k(xl),...,Ex(Xn)). The converse implication is

trivial.

Theorem. For every x there is X< A which is at most
countable so that x € Ex(X).

Proof. To prove our statement by contradiction let us
assume that a ¢V and that for every X< A which is at most
countable we have a $Ex(X)., Let £ be an ordering of A of ty-
pe L , Put
$(F,X)= (XeAXPEA%R (VX6 A)(V y4x)(ye Flx)=y € X))

We have (Y X<A)(3 F) y(F,X) because every two disjoint at
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most countable subclasses of A can be separated by a set which
is an element of A. Moreover ae Ex(dom(F)) is a consequence
of  (F,X). Further let us realize that if X,Y€A and X4Y
then vy (F,X) % 4(G,Y) implies that the class {x;F(x) = G(x)?
is at most countable and hence ae Ex({x;F(x)4 G(x)%) and the-
refore Ex(F)(a)$ Ex(G)(a). Thus if we put

Q = i{x,y> ;(IAX,F) (¢ (F,X)& Ex(F)(a) = y&x €X)}
then Q codes all subclasses of A which contradicts the second
theorem of § 5 ch. I.

From the last theorem and from the above summarized re-

sults we can conclude
Theorem. If XS A then Ex(X) = U{Ex(Y);Yc X& Y2 FN?.

Theorem, If X< A then X = Ex(X) iff X is finite.

Proof. If X is finite then X is a set which is an ele-
ment of A. Hence the equality X = Ex(X) is obvious in this
case. On the other hand let X be an infinite subclass of A
with X = Ex(X). If Y< X then Ex(Y)S Ex(X)S A and therefore
Y = ANEx(Y) = Ex(Y). Thence we can suppose without loss of
generality that X is countable. If f< A then Ex(£"X) = £"Ex(X)=
= £*X by the statements mentioned above. Since every countable
YC A is of the form £"X where fc A, we have Ex(Y) = Y for all
such Y and thus Ex(A) = A by the last theorem. This contra-
dicts Ex(A) =V,

Theorem. The class Ex(X) is revealed for every X<A.

Proof. By the last but one theorem we can assume in our
proof without loss of generality that X is a countable class.
At first let us realize that

FN =it e 4;(Vued)(u & o« —3 (Ived)(v = Xnu))3d,
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In fact if uA’ n&ucA then XnucFin and hence XnucA. On
the other hand for every o €A -FN there is u€ A such that
XSu&u ,,-'.,} ov because A is an endomorphic universe. In this
case Xnu = X is a countable proper class.

Let YS Ex(X) and let Y be at most countable. Using the
last theorem we can choose o & Ex(FN) - FN thus by our as-
sumptions the formula (Y u)(u & y—> (3v)(v = Ex(X)Au))
holds. Moreover there is u with u &7&!5\1 and therefore
there is v so that v = unEx(X). Hence we have found v with
Y<S v SEx(X) which finishes the proof.

We are going to prove a little stronger result.

A class X is called fully revealed if for every normal
formula: ¢(z,2) of the language FL, the class {x; ¢ (x,X)} is
revealed.

Let us note that every set-theoretically definable class
is fully revealed and that each fully revealed class is revea-
led. Moreover if X is fully revealed and if F is an automorph-
ism then F"X is fully revealed, too.

- Theorem. The class Ex(X) is fully revealed for every
X< .
Proof. If a normal formula ga(z,Z) of the language FL is
given then {x; ¢(x,Ex(X))} = Ex({ x €4; SoA(x,x)}) by the
first theorem of this section and the class in gqueation is re-

vealed according to the last theorem.

Theorem. Let X be a fully revealed class and let 9 (z,2)
be a normal formula of the language I"Lv (i.e. we admit arbit-
rary sets as parameters). Then the class {x; q(x,x)} is fully

revealed.
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Proof. Evidently it is sufficient to show that all
classes of the above described form are revealed. Let
qr(z,zl,...,zn,z) be a normal formula of the language FL and
let &y,...,8; be parameters such that @(z,2)= vy (z,8y,...
ees8,2). We have {x; @(x,X)} = {x; y(x,8),..0,8,,X)F =
= rg({< X, Xy 50003 X, Y 5 WX, Xy 5000,%,X)3 N (Vx{al,'. "9%“)"
Therefore the investigated class is revealed as the range of
intersection of two revealed classes (c¢f. § 5 ch. II).

From the previous statement we obtain the following re-
sult using an appropriate formula and coding finite sequence
of classes by a class.

Consequence, If g(z,zl,...,zn) is a normal formula of
the language FLV (!) and if Xyre0¢,X S A then the class
{x; ?(x,Ex(Xl),...,Ex(Xn))} is fully revealed.

Theorem. The class Ex(X) - X is revealed for every XSA.

Proof. Let be given a countable Z with Z SEx(X) - X,
According to the third theorem of this section there is Y& X
8o that Y is at most countable and Z<Ex(Y). Since Ex(Y) is
revealed, there is u with Zcu<&Ex(Y) and with YAu = 0. Mo-
reover Ex(Y)n X = Y by the second property of Ex in our list

and hence unX = un (Ex(¥)nX) = unY = 0.

Theorem., Ex(Def) is an endomorphic universe.
Proof. Let @ (z,29,...,2,) be a set formula of the lan-
guage FL. Then the formula
(¥Xp,ee,xy€ Do) (A x64) §Alx,xp5000,x)—
—> (3 x € Def) gk(x,xl,...,xn))
holds because A is an endomorphic universe. Hence we get

(V!l,.--,xnc Ex(mf))((a x) q(x,xl,ooo,xn)_"
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—> (3 x ¢ Ex(Def) cy(x,xl,...,xn))
Thus a use of a statement of the first section and of the

fact that Ex(Def) is revealed finishes the proof.

Theorem. If uSA then u is a finite set.

Proof. Let u& A be an infinite set and let X be a coun-
table subclass of u. Since Ex(X) is a revealed class, there
is v such that XS vEEx(X). Hence X = AnEx(X) = unEx(X) =
= unv which contradicts the assumption that X is a proper
class.

As an immediate consequence we get P(A)S A and thence

PA(A) = P(A). Therefore we obtain
Theorem. For every XSA it is Ex(P(X)) = P(Ex(X)).

Theorem, If X is a countable subclass of A then Ex(X) =
= N{uca;Xcui.

Proof. If XSueA then XSunA and hence Ex(X) &
€ Ex(unA) = u, To prove the converse inclusion let us assu-
me that y € Ex(Y) n ('i-f u€A;Xcut and that Y is a subclass of
A which is at most countable. There are up,uy€ A such that
ugN U, = 0&XEu) & (Y - X)E u,. Evidently we have ye¢ u.
Since y4 u,, the formula y¢ Ex(Y - X) follows from the first
part of the proof. However, this implies y ¢ Ex(X).

From the last theorem and from a theorem we have proved
before we get ’

Theorem, If XS A then Ex(X) = U{N{uci;Yeus; YSX&
&Y< FNL.

In particular, there is at most one standard extension
on every endomorphic universe. The following result is a con-
sequence of the last theorem and of the formula Ex(A) = V.
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Theorem. If there is a standard extension on an endo-
morphic universe A then for every x there is X which is at
most countable and which is a subclass of A such that the
formula (V u€ A)(XEu—> x<u) holds.,

In the next section we are going to prove that the pro-~
perty mentioned in the last theorem is also sufficient for
the existence of a standard extension. ‘

Let us realize that there are endomorphic universes
which do not have standard extensions. As an example can ser-
ve each revealed endomorphic universe different from V (sin~
ce it has infinite subsets) or each endomorphic universe

which is a semiset (according to the last results).

§ 3. Existence of standard extension

If A is an endomorphic universe then for every Xc A we

put E,(X) = N{uech;Xcui,

Theorem. Let X and Y be at most countable subclasses

of an endomorphic universe A. Then we have

(1) EA(XUY) = EA(X)U EA(Y)

(2) XnY = 0=E, (X)n E,(Y) = 0

(3) E,(dom(X)) = dom(E, (X))

(4) E,(XxY) = E, (X)x E, (Y)

(5) 1If g(z) is a set-formula of the language FI, then
the equality E,({xe X; 9(x)}) = ixe E, (X); @(x)% holds.

Proof. (1) One inclusion follows from the trivial sta-
tement XSY—> K, (X)E By (Y). If x4 B, (X)UE,(Y) then there
are u,veA with X¢udkYSv&xfuuv, Since we have XuISuvuv

we get x¢EA(X uY) which finishes the proof.
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(2) If X and Y are disjoint then there are u,vc 4k
which are also disjoint and such that XSu& YSv. Thus we
have !‘(X)n E‘(Y)Sunv = 0. The converse implication is a-
gain trivial.

(3) If xcdom(E, (X)) then there is y so that {y,x>€
< !A(X) and moreover there is ve A with rng(X)S v because X
is at most countable. Let do’m(i()SnGA be given. Then Xc v
»xu and hence {y,x) & vxu from which xeu follows.

Conversely let us assume x€ E,(dom(X)). Let FEX be a
function satisfying dom(F) = dom(X). Since A is an endomorph-
ic universe there is a function fe A with FEf. If uecA sa-
tisfying FSu is given then we have x edom(unt) and hence
{f(x),x > € u. Therefore we have shown that {(f(x),x>¢< E,(F)
which implies xe don(EA'(X)) .

(4) We have (EA(X))-l = BA(X-]') because XEu—> X 1c
¢ u™l, Hence E,(X><Y)E B, (X)<E, (Y) follows from (3). To pro-
ve the converse inclusion let us suppose that ue€ A with XxY<
¢ u is given. The class Z ={u”{z};z2€ X}is a subclass of A
which is at most countable and moreover Y < NZ holds. Since
even Y is at most countable ‘there. is vé A such that YS vENZ
(cf. § 4 ch. I). Put w =$z;vEu{23}. Then XSweA and at
the end we get E, (X)xE,(Y)S wxv<Su which finished the proof.

(5) Let y¢E,(AxeX; ¢(x)}) and let XSu<A. Then
ixeX; @(x)} ¢ {x6u; ¢(x)3 and hence y e {x<u; @(x)} and the
formula y¢ EA(X)& ¢(y) is a consequence of the last state-
ment. Conversely let us suppose that the formula yelA(X) &
& op(y) holds. There is V€A so that XSv. Put w = v nix;
Hgx)t. If {xeX; @(x)3SucA then XSuuw and therefore
Yeuuw. By the definition of w, ¢(y) implies ‘yéw and thence
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yeu. Therefore we have proved ye B, ({x<X; @(x)3).

Theorem. An endomorphic universe. A has a standard ex-

tension iff V = U{ E,(X);XSA&XSFNS,

Proof., In the last section we have proved that from
the existence of a standard extension on A the condition
mentioned in the theorem follows. To prove the converse imp-
lication for every XS A we put .

Ex(X) = U{ E, (Y); TS X&Y< FN},

Thus we obtain

(0°) Ex(A) =V

Proofs of the followingeasy consequences of the defini-
tion of Ex and of the last theorem are left to the reader
(in the case (3°) we use the formula Y< domlX) —> (3 FSX)

dom(F) = Y). For X,YS A we have

(17) Ex(XvY) = Ex(X) VEx(Y)

(2°) XnY = 0=Ex(X)n Ex(Y) = 0

(3°) Ex(dom(X)) = dom(Ex(X))

(4°) Ex(XxY) = Ex(X)>Ex(Y)

(5°) If @(z) is a set-formula of the 13&3@9 FL, then
the equality Ex({x<¢ X; ¢(x)}) ={x<Ex(X); ¢(x)¥"holds.

By the first ‘theorem of the second section it remains
to prove that if cy(zl,...,zk,zl,...,zn) is a normal formula
of the language FLA and if Xy500.,X, €A then we have

Ex($4Xyyeee,X > € Aj cyA(xl,...,xk,xl,...,xn)}) =

SECE PRI W IR TCWTTRFE W3 - 16 0P PRPRIS = 10 DL 2t

A proof of this equality can be done by induction. If
P is an atomic formula of the form X;€ X5 or of the form

J

x;€ X; then we can use statements (07),(4°) and (57). It is
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sufficient to deal with these atomic formulas only, since

the atomic formula x; = x; can be reduced to the first type
because x; = ij(‘V z)(zexis Z€ xj). The induction step for
negation and for conjunction follows from (1°) and (2°) sin-
ce using the usual set-theoretical considerations we obtain
from these statements equalities Ex(X - Y) = Ex(X) -~ Ex(Y)

and Ex(XnY) = Ex(X)NnEx(Y). The induction step for existen-

cial quantifiers is a consequence of (37).

Theorem. Let A be an endomorphic universe, let X be its
subclass which is at most countable and let de EA(X). Then
Aldlc U{I%(Y) ;YSAXYS FNT,

Proof, Let fc A and d< dom(f). Then F"XS AL £"XXFN and
we are going to prove that f(d)e€ EA(f"X). At first let us re-
alize that d¢E,(X-dom(f)) because d< dom(f). Hence according
to (1) of the first theorem of this section we get d <E, (XN
ndom(f)). For every ué€d with £"XSu we have Xndom(f) &

c £ lrenxc £y c A and therefore d¢ £71"u. Thus we have pro-
ved our claim and the theorem is its immediate consequence.

Theorem. Let #L be an ultrafilter on the ring of all
set-theoretically definable classes. Let P be an endomorphism
and let F, 99l ,d be coherent (see § 2 ch. V). Put A = F"V,
Then we have .

(30(XSALX4FNLACE, (X)) =

=(AY)(YAFN&(Vu)(YSu—> u ¢ 7)),

Proof. Let us suppose at first that there is a class X
with XEALXAFNSA<E, (X). Put Y = F~lux, Bvidently Y is at
most countable. For every u with Ycu we have XS F(u) and
therefore d € F(u). Finally we get u ¢ 377 as a consequence

of the statement d< F(u)=ix;xecui e 221 .
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Conversely let us assume that there is a class Y such
that the formula YA &(Vu)(¥Su —» u e %) holds. Put
X = F"Y, Obviously X is a subclass of A which is at most coun-
table. To prove that de EA(X) let us suppose that XSu<€A is
given. Thus we have Y = Finxc Fl(u) and therefore F 1(u) ¢
e 9 . However,{x;xe F'l(u)} e 7 implies de u.

Theorem. Let 7221 be an ultrafilter on the ring of all
set-theoretically definable classes and let 9?7 contain a
set. Moreover let us suppose that O, 771 ,d are coherent. Then
there is an endomorphism F such that F, 971 ,d are coherent
and such that the equality (F"V)[Ldl= V holds.

Proof, Let us choose ue& 9% and let Fo be an endomor-
phism such that F, 7L ,d are coherent (the existence of such
endomorphism was proved in § 2 ch. V). Then we have {x; xeufe
€ 771 and therefore 4 is an element of F (u). From here the
formula d € U(F,"V) follows and hence (F "V)[d] is an endo-
morphic universe by the first section. Thus there is an endo-
morphism (Pl, say) such that Fy"V = (F "V)[d}. Aceording to
§ 1 ch. V we can choose an automorphism F, with rz(Fil(d)) = 4.
Let G be the composition of F2 and Fil and let F denote the
composition of G and F,. Evidently G is a similarity, F is
an endomorphism and moreover it holds G(d) = d.

At first we show that F, 72¢ ,d are coherent. If
?(z,zo,...,zn) is a set-formula of the language FL then we
have {X; @ (X,Xy,0005X )} € W = F(A,F (x7),000,F (x))=
= q(G(d),G(Fo(xl)),...,G(Fo(xn)))g §(a,F(xy),00.,F(xy)).

Thus it remains to prove that (G"V)[d]= V. For arbitrary
y we have G'l(y) € (F,"V)LA) and therefore there is £¢F "V

8o that £(d) = G"1(y). Hence we get G(£) € G"F"V = P"V and
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moreever G(f)(d) = y because G is a similarity.

The previous statements enable us to obtain a lot of en-
domorphic universes having standard extension. So for examp-
le we can choose a non-trivial ultrafilter . on the ring of
all set-thecretically definable classes with o ¢ FN—>cc € L,
By § 2 ch. V we are able to choose further 4 such that 0, 7% ,
d are coherent. Thus the last theorem assures the existence of
an endomorphism F so that F, 7L ,d are coherent and such that
if we put A = FP"V then we have moreover ALdl= V. By the last
but one theorem there is a class X with XS A& XATFN &d <&, (X).
Hence according to the third theorem of this section we have
V = Aldle U{E (Y);YS AXY=FN] and thence at the end there
is a standard extension on A as a consequence of the second
theorem of this section. Let us note that A%V since 7L is
non-trivial and therefore d¢ A.

Another way how to construct an endomorphic universe ha-

ving a standard extension is described in the following theo-

renm,
Theorem. If d§ Def then there is an endomorphic universe

such that dg A, Aldl= V and de E, (Def).

Proof, Let 47 denote the class of all classes of the form
ix; @(x)} where ?(z) is a set-formula of the language FL for
which g)(d) holds. Obviously if 2% is a non-trivial ultrafil-
ter with 2L & 9% then 0,997 ,d are coherent. Moreoever if
9(:) is a set-formula such that ¢(d) is satisfied then the
formula (3 x) @(x) holds, therefore we have (3 x€Def) @ (x).
This enables us to choose a non-trivial ultrafilter 99 satis-
fying 9L & M and {u;DefSu} € 9 . According to the last
theorem there is an endomorphism F such that F, % ,d are co-
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hecent and if we put A = F"V then A[d]= V. Since 297 is non-
trivial we have d¢ A. For every DefSu<€A it is Def =
= Flvperc Fl(u) € M i.e. {x;xeF—l(u)i e 2L . Using the
assumption that F, 2L ,d are coherent we get d€ u. Hence we
have proved dsEA(Def).
Consequence, Def =N4{A; A is an endomorphic univerag}.
Thus we see that there is no minimal endomorphic univer-
se. Moreover we can construct two endomorphic universes the
intersection of which is the class Def and hence the inter-
section of two endomorphic universes need not be an endomor-

phic universe.

Theorem. If A is an endomorphic universe having a stan-
dard extension then there is an endomorphic universe B so
that ANB = Def.

Proof. Put B = E,(Def) and use the results of the pre-

vious section.
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