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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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ENDOMORPHIC UNIVERSES A N D THEIR STANDARD EXTENSIONS 
A. SOCHOR, P. VOPENKA 

Abstract: This paper is meant as a contribution to the 
development of mathematics in alternative set theory. In # 
particular, a procedure in some aspects similar to Robinson a 
non-atandard methods is created using specific means of al­
ternative set theory. 

Key words: Alternative set theory, ultraproduct, non­
standard methods, endomorphic universe, standard extension. 

Clas9ification: Primary 02K10, 02K99 

Secondary 02H20, 02H13 

The classical calculus of Leibniz and Newton is based 

on the existence of the natural extension of real functions 

on infinitely small quantities. Robinson's non-standard ana­

lysis has tuned this assumption with the mathematics in Can­

tor's set theory. Moreover, Robinson'3 non-standard methods 

have brought a great deal of additional important applica­

tions* 

This article deals with analogical question in alter­

native aet theory (AST). We do not tranafer the conatruction 

of non-3tandard models to AST word for word - although even 

thia approach ia poa8ible - but the method deacribed in the 

paper i8 based on specific properties of AST. Let us note 
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that from the point of view of non-standard methods the 

whole of AST behaves as a non-standard model* 

An endomorphic universe is a copy of the universal 

class conveniently put into the universal class. There are 

many different endomorphic universes in AST, In many cases 

there is room enough for the natural extension of endomor­

phic universe. Let us note that this natural extension is 

defined inside AST (and it is not considered as a primitive 

notion). These extensions are so natural that it would be 

absurd (from the point of view of AST) to call them non­

standard extensions (though they correspond to Robinson's 

non-standard extensions). This is the reason why they are 

said standard extensions. 

The more experienced reader notices that the approach 

we have chosen enables us to eliminate from AST the method 

of ultraproduct and to replace it equivalently by another 

procedure which seems to fit more in AST. For such readers 

let us note that in AST we can prove that the ultrapower of 

the universal class is isomorphic to the universal class. 

The method described in the paper has a lot of appli­

cations; in particular, we can imitate in this way a great 

deal of results obtained by non-standard methods. Some ap­

plications which are in a way specific to AST can be found 

in CS-V2J • 

In the first section we investigate basic properties 

of general endomorphic universes, in particular we show the 

existence of endomorphic universes with special properties. 

The second section deals with properties of standard exten­

sions on an endomorphic universe. Especially, we prove that 
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standard extension is determined uniquely. The last section 

is devoted to the proofs of the existence of endomorphic uni­

verses which have standard extensions. 

The whole article can be considered as an immediate 

continuation of CV]. When referring to that book we shall ci­

te only the section and the chapter in question. 

The first author showed in AST that the ultrapower of 

the universal class is isomorphic to the universal class. On 

the base of this result the second author suggested the con­

ception of this paper. Its concrete realization was carried 

out by both authors. 

§ 1. Basic properties of endomorphic universes 

A class is called an endomorphic universe iff it is si­

milar to the universal class. Therefore, a class A is an en­

domorphic universe iff there is an endomorphism F with 

rng(F) -* A. 

Let us recall that a function F is an endomorphia* iff 

for every set-formula ?(Sj,>*»«»&n) and for every x^f . . . fX^V* 

*dom(F) we have (< p ( x 1 9 . . . t ^ ) & <p(F(x1)f ...9?{xn))). Fur-
A ther, let us remind that g? denotes the formula resulting 

from g> by the restriction of all quantifiers binding set va­

riables to the elements of A and all quantifiers binding 

class variables to the subclasses of A. 

Theorem. The following properties of a class A are •-

quivalent: 

(1) A is an endomorphic universe 

(2) If $ (Z±9... 9ZU) is a normal formula of the langu-
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age FL* (i.e. the elements of A are admitted as parameters) 

then for every %!•••**£ t n e subclasses of A which are at 

most countable we have 

g> (X-p...,^) — 9 ( X - p . . . , . ^ ) 

(3) A satisfies the following two conditions 

(a) If cf (z) is a set-formula of the language FL^ then we 

have (Jx) <y(x) — * (Bxek) <j>(x) 

(b) For every countable FSA there is f 6 A with Fsf 

(4) If -{<pn(z) jn6 FN? is a sequence of set-formulas 

of the language FL^ then we have 

(3x)(Vn) <jn(x)~* (3x€A)( Vn) yn(x)„ 

Proof. (1) —> (2). Let X£A be a countable class con­

taining all constants occurring in y and such that X^SX 

for every l^i^n. By the second theorem of § 1 ch. V it is 

sufficient to construct an endomorphism which is identical 

on X and the range of which is A. Let Qbe an endomorphism 

with rng(Q) - A. Then Q~ M is a countable similarity and 

therefore it can be extended to an automorphism F (see § 1 

ch. V). Hence the composition of Q and F is an endomorphism 

we looked for. 

The implication (2)—1>(3) is a trivial consequence of 

the prolongation axiom. 

(3).—>(4)t I-et "icpn;neFN5 be a sequence of set - for­

mulas of the language FL^ and l e t c be a set such that for 

every neFN the formula g>n(c) holds. According to (a) we 

can choose for every nCFN a set xn€ A such that <?;!.(-%) & 

& . . . & ^ ( x , * ) . % (b) there i s f € A with f(n) * xn and hen­

ce there i s a se t X€A such that -tx^ncFNif Q. x. For every 
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n eFN we put yn * ize x; ^>1(z)& ... & g> n(z)$ and we have 

obviously y n*-^&y n+0. Using our assumptions we can choose 

g£A such that dom(g)c NgUVn)(g(n) » yn) & ( V*c )(<* + 1 e 

G. dom(g) —> g(oo+ l)cg(oo)). Let ($ be the smallest oc for 

which holds g(cc-t- 1) • 0 V cC +1<£ dom(g). Then /S e A and 

(3 £ FN. We get A n g C l J ^ O as a consequence of (a) and of* 

the statement g(f$ ) + 0&g((.J )€ A. Moreover, the formula 

( V y€ g( /J )) ( Vn) cpn(y) follows from the construction of the 

function g and this proves our statement. 

(4)—.> (1)# At first we are going to show that for e-

very set b and for every similarity FQ which is at most coun­

table and the range of which is a subclass of A, there is 

a^A such that the function F0u-€<a,b>? is again a simila­

rity. Under our assumptions there is a set c such that F u 

u i <c,b>$ is a similarity (see the third theorem of § 1 

ch. V). Let us choose aeA such that for every set-formula 

<jp(z) of the language Flpj^ tp ) *e have cp(a)sg>(c). Thus 

FQu-i<afb>$ is a similarity and thence we have proved our 

claim. 

Let -ta^; oc c XL 3 (^^ i & e -&? respectively) be an e-

numeration of A (of V respectively). Using the previous claim 

and the third theorem of § 1 ch. V we are able to construct 

by transfinite induction a sequence -tF^ ; oc € H 3 of simila­

rities which are at most countable and such that U i F^ ; I3 e 

eoc/ A i l j c p ^ f a ^ € ragCF^sA and ^ c domfF^). Tbaa 

U-C-^- |o6C U S is an endomorphism we looked for. 

Let us note that according to (2) of the last theorem, 

for every endomorp * erse A and for every finite set x 
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we have xeAs-xSA-

Theorea. Let ̂ 31 be a codable class of endomorphic u-

niverses such that for every 71 Q ffl which is at most coun­

table there is A e fflt, with UHl & A. Then UWtl is an en­

doaorphic universe. 

Proof. To prove the property (4) of the previous theo-

rea let us suppose that -C<yn(z);neFN S is a sequence of set-

formulas of the language **-..—* • Then there i0 1ft £ $4 which 

is at most countable and such that -tcj?n;n€ FN? is a sequence 

of set-formulas of the language M^** • Thu8 by otir assump­

tion there is A e 9ft> such that every g>n i8 a-set-formula 

of the language FL^. If there is a oet y euch that for every 

n€FN we have 3Pn(y) then there io x € A 0uch that for every 

n€FN, the foraula 9>n(x) holde. Since x e U 12t our otate-

ment ie proved. 

Theorea. Let -fAn$n e FN? be a eequence of endoaorphic u-

niverses such that A^c An4.1. Then U i A ^ n c l N j io no endo­

aorphic universe. 

Proof. We can choose a function F ouch that doa(F) * FN 

and auch that for every nc FN the foraula F(n)c A^-^ - A^ 

holde. If U-i A njneIN} would be an endoaorphic univeree then 

there would be f clM Jk^ineFBl with f£ f and thence we would 

have fc A^ for some acFN. Since acA^ it would hold F(a)c Affl, 

which is a contradiction to our assumption F(a) c - ^ x " *B* 

For arbitrary class A and arbitrary set d we put 

A t d ] «-Cf(d);fc*.&d€doa(f)? 

Theorem. let A be an endoaorphic universe and let d € 

€ U A. Then A L dl is the eaalleat endoaorphic universe sub-
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class of which is the class AuldS • 

Proof. Obviously the class ALdD is a subclass of every 

endomorphic universe subclass of which is Au-td3. To show 

that AuidiSAtdJ let us fix v with d* v€ A. Let xcA be gi­

ven. The function f for which the formula dom(f) -* v 8 U V y e 

ev)(f(y) = x) holds is an element of A and moreover f(d) 9 x. 

Hence AS Atd] has been proved. If id denotes the identity on 

v then id€ A and id(d) * d from which deAtd] follows. 

Therefore it remains to prove that Atd] is an endomorph­

ic universe. To show this we are going to verify the condi­

tions (a) and (b) from the first theorem of this section. 

(a) Let y(z0,z-,...,z) be a set-formula of the langu­

age FL and let us assume that for functions f,f...ffneA the 

formula d€dom(f1)A ..»#ndom(fn) &(3x) g>(x,f1(d)f ...,fn(d)) 

holds. We have to construct f ek with g>(f(d),f1(d)f... 

...,fn(d)). Put 

u * 4y €> dom(f j) A ... ndom(fn) j (3 x) eg (x,f-^y),... tfn(y ))J. 

Evidently d c u c A and moreover there is a function g for which 

the statement dom(g) * u&( Vyeu) 9(g(y)ff]L(y)f.. .ffn(y)) 

holds. Since A is an endomorphic universe there must be a fun­

ction f with the above mentioned property and which is more­

over an element of A. Thus we get $(f(d),f^(d)f...,fn(d)) as 

a consequence of d£ u. 

(b) Let F£A£d3 be a countable function. Then there is 

a sequence -Cfn,*n cFRfJ of elements of A such that d« 0 «Cdom(f); 

n* FN 3 and F * 4fn(d) ;nc FN}. Without loss of generality, we 

can suppose that dom(fn) » v for every n-sFN because if g e 

Q A&dedom(g)&h * (gfv) u40*x (v - dom(g)> then h€A fc 

8cdo»(h) * vfeg(d) » h(d). Since A is an endomorphic universe 
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there is a prolongation •£ f^ .j oo c /3 5 £ A of our sequence 

for which the implication 06 e (I -* dom(foc: ) * v holds. For 

every y c v we define 

«(y) = -ff.4 (y); 06 c /3 g. FncHf r (y); r^ oc})i 

We have evidently gcA and d€v * dom(g) and therefore g(d)<£ 

e AtdJ. Moreover FSg(d) because F « ̂  f^d) ;n €FN3 is a func­

tion. 

At the end of this section we shall see that the assum­

ption d e U A in the previous theorem is essential. 
s 

Let us note that if A is an endomorphic universe and if 
d l , d 2 € U * then * dl , d2^ fe ^ A and At-tdpdgSU is the small­

est endomorphic universe subclass of which is Au-td-jfdpJ and 

hence it is even the smallest endomorphic universe subclass 

of which is the class Atd-jlu Atdpl • The analogical statement 

holds for arbitrary finite number of elements of UA. 

Theorem. Let A be an endomorphic universe and let c,d£ 

e U A. Then Ate] « ALd] iff there is a one-one mapping tG k 

with c * f(d). 

Proof. let Ate] =- Atd]. There are g,h €A such that c * 

» g(d) and d = h(c) because of cc Atd]& d € Ate] • Put u * 
r-ty; h(g(y)) = yi. We have evidently d e u c A . Moreover put­

ting f - g l̂ u we get f(d) = c and f € A. We have to prove that 

f is a one-one mapping. Let x,ycu and x4*y» If we would ha­

ve f(x) * f(y) it would hold the statement g(x) = g(y), and 

hence we wou}.d obtain h(g(x)) = h(g(y)). Further from the as­

sumption xty e u we would get x =- y which is a contradiction. 

The opposite implication is trivial. 

Let us mention the almost trivial fact that if A is an 
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endomorphic universe then U A • U , C P A ; o C € A } « U U A « 

* P(UA). This is an immediate consequence of the obvious 

statements o c c A s P ^ c A, xcA —.> t^(x)c A and <*<€ A — ^ 

~-->oC+l£A (for J^ see §1 ch* M ) -

Theorem. Let A and B be endomorphic universes. Then 

there is the smallest endomorphic universe a subclass of . 

which is AuB. 

Proof. Using the previous fact we have either A & U B 

or B s UA. Let us suppose that the second inclusion holds. 

Put W » -CACdljdcB}. It is sufficient to prove that UM 

is an endomorphic universe because for every endomorphic 

universe C the implication A u B S C —** UOT £ C is **tia> 

fied. Let ?fc *-t AEo^] |n € FN I be a countable subclass of#t. 

Since B is an endomorphic universe, there is f e B with 

(Vn)(f(n) » d.^). Thus Atd^c A[f3 £ ^ for every » c W . 

The use of the second theorem of this section finishes ttu 

proof. 

Let us recal l that a c lass X i s called revealed i f for 

each countable X&X there i s a set u such that X £ u £ X . 

Theorem. If A i s an endomorphic universe then U A i s 

a revealed endomorphic universe. 

Proof. If -tx^n eFN } SUA then there i s a sequencs 

-Lynjn«s FIT}9A such that for every n 6 FN we have s^e y n . Sin­

ce A i s an endomorphic universe we can choose P J - e A e o that 

iyntjn€.FN5-=Poc a n d t h u a i t i s i^n e FNjs F^ £ U A. We ha­

ve proved that UA i s a revealed c lass . 

For every f and d with f c Afcdedom(f) we have f (d) € 

6 rng(f) e A and therefore the formula f(d) e U A holds. As a 

consequence we get UA « U-tAtd-]|d eUAl . Thus i t i s su f f i -
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cient to show that the class U i ALdUjd e U Air is an endomor-

phic universe. If i dn;n € FN J SUA then there is f £ UA with 

(Vn)(f(n) s d n). This means, however, that for every nc FN 

we have kl&nl£ kltl because the statement d^eACf] holds for 

every neFN. To finish the proof we use the second theorem of 

this section. 

The theorem we proved just now makes it possible to re­

strict the investigation of endomorphic universes to the fol­

lowing two types: The first type consists of endomorphic uni­

verses which are not semisets (in other words the union of 

which is the universal class). To the second type belong en­

domorphic universes which are transitive (a class X is tran­

sitive iff liXSX). In fact if A is an endomorphic universe 

then U A is an endomorphic universe of the second type and 

A becomes an endomorphic universe of the first type if we con­

sider UA as the universal class. 

Theorem. A revealed class A is an endomorphic universe 

iff for every set-formula cp(z) of the language FL^ we have 

(Jx) <y(x) - ^ (3 xsk) 9>(x). 

Proof. We are going to verify the condition (4) of the 

first theorem of this section. Let «f 9> (z);neFN} be a se­

quence of set-formulas of the language FL^ and let the formu­

la (Jx)(Vn) Cfn(x) hold. Put XR « *y £ A; g^y) fc... fc 9>n(y)5 . 

Then tX-̂ fi- fcFN} is a descending sequence of non-empty reveal­

ed classes and hence (Kx^jneFNS + 0 by § 5 ch. II. 

Theorem. If A is an endomorphic universe such that the­

re is an infinite uSA then A is revealed. 

Proof. Let X be a countable subclass of A and let F be 

a one-one mapping of X into u. Then there is f €A with F£f &. 
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& FncCf"1) and thus X s f ^ u g A . 

Theorem (A. VencovsleaJ. If 1f$l is a class of revealed 

endomorphic universes which is at most countable then 0 Wt 

is a revealed endomorphic universe. 

Proof. Obviously 0 33t is a revealed class. To prove 

the condition mentioned in the last theorem let us assume 

that <£>(z) is a set-formula of the language F L ^ ^ • Let us 

choose a set-theoretically definable one-one mapping F of H 

onto V and let x be the set for which the formula cp(x) & 

kCVy)C<y(y) — * P"1(y)iP"1(x)) holds. Then ye FLA for all 

A 6 W and hence xc A for all A e t from which x e f) 3# 

follows. 

Theorem. There is a transitive endomorphic universe 

which is the intersection of countably many sets. 

Proof. In the second section of chapter V it is shown 

that there is an endomorphis F and oCQ 6 N such that P ^ c p ^ , 

Put A0 = UP-V, 4ft+1 = U F " V * n + 1 = FC* n) a m A - f U ^ ; 

neFNj. Then CA^neFNi? is a sequence of transitive revealed 

endomorphic universes and thence A is a transitive revealed 

endomorphic universe. Moreover, for every neFN we have Â +i---

£**n+l
&V 

Theorem. For every set x there is a transitive endomor­

phic universe xaA which is a semiset. 

Proof. Let F be an endomorphism such that FMV is a se­

miset. Put y * F(x). Since -C<x,y>! is a similarity, there 

is an automorphism G with G(y) » x by § 1 ch. V. Putting A « 

= GWF*V we obtain an endomorphic universe which is a semiset 

(because G is an automorphism and because F"V is a semiset) 
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and moreover xcA. Thus U A has all desired properties. 

Theorem. If A is an endomorphic universe and & ̂  U k 

then there is no minimal endomorphic universe a subclass of 

which is Au-td3. 

Proof. Let B be an endomorphic universe such that A u 

u Cdl SB. Applying the last theorem (and substituting B for 

V) we obtain a class C such that AuidS^CcB and C is an 

endomorphic universe in the sense of B and hence C is an 

endomorphic universe by the definition of endomorphic uni­

verse . 

§ 2. Standard extension % 

Let A be an endomorphic universe. An operation Ex defi­

ned for all subclasses of A is called a standard extension 

pn A iff for arbitrary normal formula g>(Zlf ...fZn) of the 

language FL* and arbitrary X-,,.. ̂ X^iS A we have 

^k(Xlt...,X^) s g> (Ex(Xlf... tEx(X^)). 

Theorem. An operation .Ex defined for all subclasses 

of an endomorphic universe A is a standard extension on A 

iff tor arbitrary normal formula y{zlf... tz^tZlt... fZn) of 

the language FL^ and for arbitrary X1>...fXn£ A we have 

Ex(*t<x1,.*.fxk>€ A; ^
A(x1>...,xkfXlf...fXXl) J ) « 

»«x1,...,Xjf.> i g>(xlf ...,xkfEx(X1)f...fEx(Xn))l. 

Proof. At first let us suppose that Ex is a standard 

extension on A. Put I *-£<xlf ...fxk> c A, <j> (xlt...tx^tXlt 

*****n'3« Obviously 

(VycAXyc YsC3xlf...fxk£A)(y » <xlf ...,xk> & 
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& Q (x1,...fxkfX1>...,Xn))) holds and since Ex is a stan­

dard extension we get (Vry)(y€ Ex(Y)s 13 xlf... fxk)(y » 

• <xlf ...,xk> Sc Gp (xlf ...fXjc,Ex(X1)f ...fEx(Xn)))). From he­

re we obtain Ex(Y) =-t< xlf ..•fxk> ; y(xlf... fxk.fEx(X1)f... 

....ExCX^))*. 

Conversely let Ex have the property mentioned in the t 
A 

theorem. Then for X l f . . . , X ^ . s A it holds y (X-^,...,^) s 

s t x £ A ; y ^ X - p . . . , . ^ ) ? =A «-tx€Ajx = x 5 3 

=*-Exj 9>(Ex(X l f . . . lEx(}t l l))l • V « { x p t » x 3 i s 

s ( V x ) ^(Ex(X l f . . . ,Ex(^ 1 ) ) s 9 (Ex(X 1 ) , . . . f Ux(X n ) ) . Thus 

Ex is a standard extension on A. 

Up to the end of this section let A denote an endomor-

phic universe different from V and le t Ex denote a standard 

extension on A. 

As immediate consequences of the definition of standard 

extension or of the previous theorem we obtain statements of 

the following list in which X and Y denote subclasses of A. 

XcEx(X) 

X » AnEx(X) 

X£YsEx(X)CEx(Y) 

Ex(A) - ? 

Ex(0) » 0 

Ex(XnY) = Ex(X)nEx(Y) 

Ex(XuY) * Bx(X)UEx(Y) 

Ex(X - Y) a Ex(X) - Ex(Y) 

XnY « OsEx(X)nEx(Y) = 0 

The following statements follow from the fact that 

< x,y> e A»x,yeA. 

ReKX)sReKEx(X)) 
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Pnc(X)~Phc(Ex(X)) 

Bx(X""1) « (Ex(X))"1 

Ex(dom(X)) * dom(Ex(X)) 

Ex(rng(X)) * rng(Ex(X)) 

Bx(Y"X) » Ex(Y)*Ex(X) 

Ex(Xx.Y) « Ex(X)xEx(t) 

I f cp(z) i s a set-formula of the language PLA then 

Ex(Ar.{xt <f(x)}) ~ ixi<$(x)l and thus we have in particular 

xeA—-*Ex(xr>A) =- x 

Bx((JXnA) = UEx(X) (* 4 <x,y> } x e y j «Ex(X)) 

Ex(PH)cN 

Theorem. Let cp (.5tZ-, t...fZn) be a normal formula of 

the language PL^ and let ̂ .....X^cA. Then 

(3x) 9>(xfEx(X1)t...tEx(Xn))s(ax€A)9(xtEx(X1)f...tEx(Xn)). 

Proof. Let us suppose that the formula (3 x) g>(xfEx(X., ) f 

...tEx(XnL)) holds. Then we have (3 xeA) y
A(xtXlt...tXn) and 

therefore we can choose a€A so that q> (a,X1>...tXn). Hence 

we have <qp(afEx(X1)t...fEx(Xn)) and thus we have proved 

(3 x€A) y(xtEx(X-L)t...tEx(Xn)). The converse implication is 

trivial. 

Theorem. Por every x there is X£A which is at most 

countable so that xeEx(X). 

Proof. To prove our statement by contradiction let us 

assume that acV and that for every X£A which is at most 

countable we have a^Sx(X)t Let ̂  be an ordering of A of ty­

pe & . Put 

y(PtX)s(X£AfcPSA
2ft (Vx«A)(Vy£x)(y* P(x)sycX)) 

We have (V X£A)(3 P) y(PtX) because every two disjoint at 
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most countable subclasses of A can be separated by a set which 

is an element of A. Moreover a € Ex(dom(F)) is a consequence 

of ijr(F,X). Further let us realize that if X,YSA and X+Y 

then Y<F»X> &y(OfY) implies that the class ix;F(x) - G(x)} 

is at most countable and hence ae Ex(-fx;F(x)4- G(x)i) and the­

refore Ex(F)(a)4-Ex(G)(a). Thus if we put 

Q *M<x,y> ;(3X,F)(Y(F,X)&.Ex(F)(a) « y&x&X)? 

then Q codes all subclasses of A which contradicts the second 

theorem of § 5 ch. I. 

From the last theorem and from the above summarized re­

sults we can conclude 

Theorem. If X£k then Ex(X) * Vi Ex(Y) {Y£ X&Y4 *-*}. 

Theorem. If X£ A then X « Ex(X) iff X is finite. 

Proof. If X is finite then X is a set which is an ele­

ment of A. Hence the equality X » Ex(X) is obvious in this 

case. On the other hand let X be an infinite subclass of A 

with X « Ex(X). If Ycx then Ex(Y)SEx(X)£ A and therefore 

Y « Af)Ex(Y) * Ex(Y). Thence we can suppose without loss of 

generality that X is countable. If feA then Ex(f"X) * f"Ex(X)» 

* f"X by the statements mentioned above. Since every countable 

Y£A is of the form f"X where feA, we have Ex(Y) » Y for all 

such Y and thus Ex(A) - A by the last theorem. This contra­

dicts Ex(A) - V. 

Theorem. The class Ex(X) is revealed for every X£A. 

Proof. By the last but one theorem we can assume in our 

proof without loss of generality that X is a countable class. 

At first let us realize that 

FN =ioGe A;(Vu€A)(u £ oc —> (3vcA)(v « Xnu))}. 
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In fact if u^^n&ucA then XouCFin and hence Xnu€A. On 

the other hand for every oc cA -FN there is u€A such that 

X£u&u <& co because A is an endomorphic universe. In this 

case Xnu * X is a countable proper class. 

Let X£Ex(X) and let Y be at most countable. Using the 

last theorem we can choose y e Ex(FN) - FN thus by our as­

sumptions the formula (Vu)(u «£ ̂ — > (3v)(v * Ex(X)nu)) 

holds. Moreover there is u with u f&f&>X£%x and therefore 

there is v so that v * unEx(X). Hence we have found v with 

T£v£Ex(X) which finishes the proof. 

We are going to prove a little stronger result. 

A class X is called fully revealed if for every normal 

formula y(z-Z) of the language FL, the class -fx; cp(xfX)} is 

revealed• 

Let us note that every set-theoretically definable class 

is ful.ty revealed and that each fully revealed class is revea­

led. Moreover if X is fully revealed and if F is an automorph­

ism then F"X is fully revealed-* too. 

Theorem. The class Ex(X) is fully revealed for every 

X£A. 

Proof. If a normal formula o>(zfZ) of the language FL is 

given then^x; 3>(x,Ex(X))} =- ExU x€k; cpA(x,X)}) by the 

first theorem of this section and the class in question is re­

vealed according to the last theorem. 

Theorem. Let X be a fully revealed class and let <j>(z,Z) 

be a normal formula of the language Fly (i.e. we admit arbit­

rary sets as parameters). Then the class 4x; g>(x,X)3 is fully 

revealed• 
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Proof. Evidently it is sufficient to show that all 

classes of the above described form are revealed. Let 

ijr (z,z1,...,zn,Z) be a normal formula of the language PL and 

let a1,...,an be parameters such that y(z,Z)s Y(z,a1,... 

...,an,Z). We have-Cx; g>(x,X)j = ix; y(x,a1,...,an,X)5
 a 

* rng(4< x,x1,...,xn> j yCxjX^^,..,,^,!)} n(Vx-fap...?^|)). 

Therefore the investigated class is revealed as the range of 

intersection of two revealed classes (cf. § 5 ch. II). 

From the previous statement we obtain the following re­

sult using an appropriate formula and coding finite sequence 

of classes by a class. 

Consequence. If g>(z,Z1,...fZ ) is a normal formula of 

the language FL^ (!) and if X1,...,XnSA then the class 

ix; o>(x,Ex(X1),...,Ex(Xn))} is ffcilly revealed. 

Theorem. The class Ex(X) - X is revealed for every X£A. 

Proof. Let be given a countable Z with ZSEx(X) - X. 

According to the third theorem of this section there is XS.X 

so that Y is at most countable and Z£Ex(Y). Since Ex(Y) is 

revealed, there is u with Z£u£Ex(Y) and with Yntt = 0. Mo­

reover Ex(Y)n X * Y by the second property of Ex in our list 

and hence unX » un(Ex(Y)nX) = uoY = 0. 

Theorem. Ex(Def) is an endomorphic universe. 

Proof. Let y (z,zlf...,z ) be a set formula of the lan­

guage FL. Then the formula 

(Vx1,...,xn£ Def)((J xsA) <j> ̂ (x,^,...,*^) —* 

—» (3x«Def) 9A(x,x1,...,xn)) 

holds because A is an endomorphic universe. Hence we get 

(Vx1,...,xncEx(Def))((j3 x) ̂ (x,x1,...,xn)—-» 
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— » (3 xcEx(Def) ̂ (xfxlf...,x )) 

Thus a use of a statement of the first section and of the 

fact that Ex(Def) is revealed finishes the proof. 

Theorem. If uSA then u is a finite set. 

Proof. Let u£ A be an infinite set and let X be a coun­

table subclass of u. Since Ex(X) is a revealed class, there 

is v such that Xcvcj,x(x). Hence X * AnEx(X) « unEx(X) • 

* unv which contradicts the assumption that X is a proper 

class. 

As an immediate consequence we get P ( A ) C A and thence 

P^(A) » p(A). Therefore we obtain 

Theorem. For every X£ A it is Ex(P(X)) * P(Ex(X)). 

Theorem. If X is a countable subclass of A then Ex(X) =-

* fUucA;XSui. 

Proof. If X £ u £ A then X£unA and hence Ex(X) £ 

£ E X ( U A A ) « U. TO prove the converse inclusion let us assu­

me that y€Ex(Y)r\f,«[ ucAjXrru} and that X is a subclass of 

A which is at most countable. There are ulfu2€ A such that 

nln u2 " ° & x - u i k O T - X)5u2, Evidently wa have ye u-̂ . 

Since y£u 2, the formula y^Ex(X - X) follows from the first 

part of the proof. However, this implies ycEx(X). 

From the last theorem and from a theorem we have proved 

before we get 

Theorem. If XS A then Ex(X) * IK fl •£ u£A;Xe u$$ IS X* 

In particular, there is at most one standard extension 

on every endomorphic universe. The following result is a con­

sequence of the last theorem and of the formula Ex(A) = V. 
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Theorem. If there is a standard extension on an endo-

morphic universe A then for every x there is X which is at 

most countable and which is a subclass of A such that the 

formula (V u£ A)(X5 u — > x<- u) holds. 

In the next section we are going to prove that the pro­

perty mentioned in the last theorem is also sufficient for 

the existence of a standard extension. 

Let us realize that there are endomorphic universes 

which do not have standard extensions. As an example can ser­

ve each revealed endomorphic universe different from V (sin­

ce it has infinite subsets) or each endomorphic universe 

which is a semiset (according to the last results). 

§ 3. Existence of standard extension 

If A is an endomorphic universe then for every X c A we 

put BA(X) « fUueA fXc Uy. 

Theorem. .Let X and Y be at most countable subclasses 

of an endomorphic universe A. Then we have 

(1) EA(XuY) =- EA(X)u EA(Y) 

(2) XAY * OsEA(X)nEA(Y) * 0 

(3) EA(dom(X)) * dom(EA(X)) 

(4) EA(XxY) * EA(X)xEA(Y) 

(5) I f Cjp(z) i s a set-formula of the language FI ,̂ then 

the equali ty EA( ixe X; <f(x)}) * -txeEA(X); y (x )3 ho lds . 

Proof. (1) One inclusion follows from the t r i v i a l s t a ­

tement X£Y —> E A ( X ) C B A ( Y ) . I f x<t-EA(X)uEA(Y) then there 

are u,v&A with X ^ u & I £ v & x ^ u u v . Since we have XuY-Suuv 

we get x4SA(XuY) which f inishes the proof. 
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(2) I f X and X are disjoint then there are u ,vcA 

which are also disjoint and such that X£u&X£v» Thus we 

have IA(X)n BA(X)£ u n v = 0. The converse implication i s a-

gain t r i v i a l . 

(3) If x*dom(BA(X)) then there i s y so that < y , x > € 

€ *&A(X) and moreover there i s veA with rng(X)£v because X 

i s at most countable. Let dom(X)£u€A be givjen. Then X £ v x 

XXL and hence < y , x > € v x u from which X€u follows. 

Conversely l e t us assume x€ BA(dom(X)). Let F£ X be a 

function satisfying dom(F) =- dom(X). Since A i s an endomorph-

ic universe there i s a function f£ A with F*Sf. I f u€ A sa­

t isfying F£ u i s given then we have xedom(unf) and hence 

< f ( x ) , x > € u. Therefore we have shown that <f (x) ,x > c BA(F) 

which implies x€dom(BA(X)). 

(4) We have (BA(X))~1 * B^X"1) because X £ u - * X"1^ 

£u" X . Hence EA(XxY)£ BA(X)xBA(Y) follows from (3) . To pro­

ve the converse inclusion l e t us suppose that u€A with XxYS 

S u i s given. The class Z « «fuw-C a j jae X J i s a subclass of A 

which i s at most countable and moreover i c f l Z holds• Since 

even Y i s at most countable there i s v c A such that I £ T § OZ 

(cf. § 4 ch. I ) . Put w « -\z.$v£u" i a H . Then X£weA and at 

the end we get BA(X)xBA(Y)S w x v £ u which finished the proof. 

(5) Let y€BA(A.X€X| g>(xH) and l e t XSu€A. Then 

-tx€X| <j>(xH £ *Cx€Ujj cjKxH and hence y€-£x€u.j <j(x)} and the 

formula y c BA(X) & cj>(y) i s a consequence of the Hast s ta te ­

ment. Conversely l e t us suppose that the formula y€BA(X)& 

& cy(y) holds. There i s v€A so that X£v. Put w * v n 4 x | 

l c y ( x H . I f - t x e X j <j?(x)]£u€A then XSuuw and therefore 

y c u u w . By the definit ion of w, g>(y) implies y^w and thence 
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y&u. Therefore we have proved y^E^-Cx^X; <J»(x)jK 

Theorem. An endomorphic universe A has a standard ex­

tension iff V * VI EA(X);X£A&X-4FtO. 

Proof. In the last section we have proved that from 

the existence of a standard extension on A the condition 

mentioned in the theorem follows. To prove the converse imp­

lication for every X£ A we put 

Ex(X) « U-tBA(Y);Y5-XScX4FN}. 

Thus we obtain 

(0') Ex(A) = V 

Proofs of the following easy consequences of the defini­

tion of Ex and of the last theorem are left to the reader 

(in the case (3#) we use the formula YSdomtX)—> (3 FSX) 

dom(F) = Y). For X,Y£A we have 

(1') Ex(XuY) =- Ex(X)wEx(Y) 

(2') XnY « OsEx(X)nEx(Y) » 0 

(3') Ex(dom(X)) = dom(Ex(X)) 

(4#) Ex(X;*Y) =Ex(X)xEx(Y) 

(5 ) If cp(z) is a set-formula of the lajM|uage FL^ then 

the equality ExKxcX; <j>(x)$) »-fx-cEx(X),; <f{xrf*holda. 

By the first theorem of the second section it remains 

to prove that if <y(zlf .•. ,Zy,Z,,... fZn) is a normal formula 

of the language FI*A and if Xlf...,Xn£A then we have 

Ex(-i<xlf...fxk> £ Aj 9>
4(xlf...fxk,Xlf...fXn)}) = 

= -l<xlf ..^x^) ; <5>(x-,f ...fxk>Ex(X1)f •••9Ex(X&))}« 

A proof of this equality can be done by induction. If 

0? is an atomic formula of the form x^c x* or of the form 

x.6 X• then we can use statements (0')f(4*) and (5*). It is 
* J 
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sufficient to deal with these atomic formulas on3y , since 

the atomic formula x^ s x. can be reduced to the first type 

because x.£ s x* s ( V z)(z€ X4H »€ Xj). The induction step for 

negation and for conjunction follows from (l') and (2#) sin­

ce using the usual set-theoretical considerations we obtain 

from these statements equalities Ex(X - Y) * Ex(X) - Ex(Y) 

and Ex(XnY) * Ex(X)nEx(Y). The induction step for existen-

cial quantifiers is a consequence of (3'). 

Theorem. Let A be an endomorphic universe, let X be its 

subclass which is at most countable and let dcE^CX). Then 

ACd!CU{EA(Y)fY£A8cY4FNj. 

Proof. Let f c A and d-idom(f). Then f"X£ A & f " X 4 . f » and 

we are going to prove that f (d)€ E. (f"X). At first let us re­

alize that d^l* (X-dom(f)) because d€dom(f). Hence according 

to (1) of the first theorem of this section we get dcB^(XA 

r»dom(f)). For every ueA with f"X£u we have Xndom(f) £ 

c f ^ T X ^ f ' ^ u i i l a n d therefore d€f""1,fu. Thus we have pro­

ved our claim and the theorem is its immediate consequence. 

Theorem. Let Hft be an ultrafilter on the ring of all 

set-theoretical 3y definable classes. Let F be an endomorphism 

and let F, 73t ,d be coherent (see § 2 ch. V). Put A « F"V. 

Then we have 

(3 X)(X£AfcX4-5W&dC .EA(X))s 

sea Y)(Y4FN&( Vu)(Y£u-> u € m,)). 
Proof* Let us suppose at first that there is a class X 

with X£A«tX4FN8vd*EA(X). Put Y * F~
lf<X. Evidently Y is at 

most countable • For every u with YSu we have XSF(u) and 

therefore dc F(u). Finally we get u € Wl as a consequence 

of the statement d4 F(u)»ix;x€ u $ e W • 
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Conversely let us assume that there is a class Y such 

that the formula Y^FN Sc( Vu)(YS u -> u e 33t ) holds. Put 

X -s F"Y. Obviously X is a subclass of A which is at most coun­

table. To prove that d€ E^(X) let us suppose that X^uiA is 

given. Thus we have Y * F~ "XS F~ (u) and therefore F (u) € 

a fflb . However,-{x;x€ F~ (u)$ e W implies dcu. 

Theorem. Let Mi be an ultrafilter on the ring of all 

set-theoretically definable classes and let WfL contain a 

set. Moreover let us suppose that 0, 791 fd are coherent. Then 

there is an endomorphism F such that F, Wtl ,d are coherent 

and such that the equality (F"V)tdJ= V holds. 

Proof. Let us choose u e TtL and let F be an endomor­

phism such that P , 1tt ,d are coherent (the existence of such 

endomorphism was proved in § 2 ch. V). Then we have ix; X€VL!C 

€ W and therefore d is an element of F (u). From here the 

formula dc U(FQ"V) follows and hence (F "V)EdJ is an endo-

morphic universe by the first section. Thus there is an endo­

morphism (F-J, say) such that F-̂ "V * (F "V)tdJ. According to 

§ 1 ch. V we can choose an automorphism F^ with F2(Fr (d)) * d. 

Let G be the composition of F2 and F£ and let F denote the 

composition of G and FQ. Evidently G is a similarity, F is 

an endomorphism and moreover it holds G(d) s d. 

At first we show that F, 12t ,d are coherent. If 

dp(z,S50,...,zn) is a set-formula of the language FL then we 

have €x;9(x,xlt...,xn)l e Wl s <9?(d,F0(x1)f...fF0(xn))s 

S<y(G(d)fG(F0(x1)),...,G(F0(xn)))sy(d,F(x1),...,F(xn)). 

Thus it remains to prove that (G"V)CdJ* V. For arbitrary 

y we have G-1(y)6 (FQ"V)Ld3 and therefore there is f<sFQ"V 

so that f(d) • G " 1 ^ ) . Hence we get G(f)eG"FQ"V * F"V and 

- 627 -



more ever G(f)(d) s y because G is a similarity. 

The previous statements enable us to obtain a lot of en-

domorphic universes having standard extension. So for examp­

le we can choose a non-trivial ultrafilter ^ on the ring of 

all set-theoretically definable classes with oo ̂  FN —>cc e 201, 

$y § 2 ch. V we are able to choose further d such that 0, Kft 9 

d are coherent. Thus the last theorem assures the existence of 

an endomorphism f so that Pf KM, fd are coherent and such that 

if we put A * pMv then we have moreover ACdl=- V. By the last 

but one theorem there is a class X with XS A&X4FN ScdcB^(X). 

Hence according to the third theorem of this section we have 

V » Attfl S (j ̂ E4(y)jYCAgcX4F!IJ and thence at the end there 

is a standard extension on A as a consequence of the second 

theorem of this section. Let us note that A4-.V since IRtV is 

non-trivial and therefore d^A. 

Another way how to construct an endomorphic universe ha­

ving a standard extension is described in the following theo­

rem. 

Theorem. If d^Def then there is an endomorphic universe 

such that d£A, A[dJ= V and deE^Def). 

Proof. Let W denote the class of all classes of the form 

ix$ Q?(x)J where cp(fc) is a set-formula of the language PL for 

which y(d) holds. Obviously if % is a non-trivial ultrafil­

ter with % & W then 0t3#,d are coherent. Iloreoever if 

<&(*) is a set-formula such that y(d) is satisfied then the 

formula (J x) <y(x) holds, therefore we have (J x€Def)g>(x). 

This enables us to choose a non-trivial ultrafilter Wl satis­

fying <Jt £ W and -tUjjDef £u } £ Wl . According to the last 

theorem there is an endomorphism F such that F, 7ft ,d are co-
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herent and if we put A » PMV then ALdJ* V. Since ffli is non-

trivial we have d£A. Por every DefS-uCA it is Def * 

» P"1,,Defcp""1(u) c «t i.e.-tx;xeP""1(u)J <£ Ml . Using the 

assumption that F, #3t ,d are coherent we get d€ u. Hence we 

have proved dsB»(Def). 

Consequence* Def = f)i A; A is an endomorphic umversej. 

Thus we see that there is no minimal endomorphic univer­

se . Moreover we can construct two endomorphic universes the 

intersection of which is the class Def and hence the inter­

section of two endomorphic universes need not be an endomor­

phic universe. 

Theorem. If A is an endomorphic universe having a stan­

dard extension then there is an endomorphic universe B so 

that AnB = Def. 

Proof. Put B =- E^(Def) and use the results of the pre­

vious section. 
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