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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

TERMS AND SEMITERMS
Jaroslav JEZEK

Abstract: A construction of the algebra of terms is
found which allows a notation making the study of subterm
instances more comfortable. It turns out that it is useful
to consider (together with terms) new ideal objects, called
semiterms. Using the theory of semiterms, a representation
of universal algebras in commutative semigroups is obtained.
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tive semigroup, envelope.
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O. Preliminaries and introductiomn. By a type we mean a
set T of operation symbols; every operation symbol F is asso-
ciated with a non-negative integer which is denoted by np and
called the arity of F. For every non-negative integer n we
put T(n)={Fe Tinp=nj. The symbols from T(n) are called n-ary
(nullary, unary and binary in the cases n=0, n=1l and n=2).

By a T-algebra we mean a non-empty set U together with
a mapping, assigning to any Fe T an ng-ary operation on U,

If the T-algebra is denoted by A, then for every Fe T the cor-
responding np-ary operation on U will be denoted by FA (some-

times only by F); the set U is called the underlying set of
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A and it is sometimes denoted by the .same letter (or group
of letters) as A,

For the definitions of standard notions from universal
algebra see e.g. [1].

Given a type T and a non-empty set X, there exists an
absolutely free T-algebra A over X, i.e. a T-algebra genera-
ted by X such that every mapping of X into any T-algebra can
be extended to a homomorphism. Evidently, A is determined by
T and X uniquely up to isomorphism over X. It is customary
to take one concrete fixed absolutely free T-algebra over X
and call its elements T-terms over X (or only terms). Usual-
ly terms are defined as formal inscriptions consisting of
elements of X, operation symbols from T and parantheses, in
the following inductive way: every element of X is a term '
(these terms are called variables); every symbol from T(o)
is a term (these terms are called constants); if Fe T\.T(o)

and if t15-+¢,t, are terms, then the inscription F(ty,...

n
...,tnF) is a teim (these terms are called composed terms).
This definition has various advantages and disadvantages. The
disadvantages are evident e.g. if in some conneection we are
forced to introduce a general study of subterm instances (oc-
curences of subterms, positions of subterms). In this paper
we develop a method for dermting terms in such a way that e.g.
the investigation of subterm instances becomes more comfort-
able; this means a new construction of the algebra of terms.
For example, consider the type consisting of a single
binary operation symbol F. Then every composed term has the
left and the right parts. Every subterm instance in any term

t can be obtained from t by a finite sequence of operations
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of taking the left and right parts; this finite sequence is
uniquely determined by the subterm instance in t. Denote by
F, the operation of taking the left part and by F2 the opera-
tion of taking the right part. Thus subterm instances in t
can be identified with certain elements of the free monoid
M over the set {Fl,in. For example, the subterm F(x,x) has
two distinct instances in the term F(x,F(F(x,x),F(F(x,x),x))),
namely FzFl and F2F2F1. Especially, the positions of variab-
les in t are identified with certain elements of M. Since eve-
ry term is uniquely determined by its variables and their po-
sitions, a term t is uniquely determined by the expression
u=e X +..ete, X, where x; are the variables occurring in t and
ejeM are their instances. (Here the operation + is supposed
to be associative and commutative.) Thus the expression u can
be considered to be a new notation for the term t; or we can
identify t with u. For example, the new notation for the term
F(x,F(F(x,x),F(F(x,x),x))) is F) x+F,Fy F) x+F,F, F,x+F,F,F, Fy x+
+F P F  Fox+F,FoFox,

Not all linear combinations use;Xyt...te X, correspond
to terms. We give in 1.1 a necessary and sufficient condition
for u to correspond to a term. General linear combinations u
will be called semiterms. In Section 2 the notion of semiterm
is applied to finding short definitions of syntactic notions
concerning terms. It turns out that the set of ierms is a block
of a congruence of the commutative semigroup of semiterms; this
congruence is studied in Section 3. In Section 4 we apply the
theory of semiterms to obtain a representation of arbitrary
universal algebras in commutative semigroups. It is proved that

for any T-algebra A there exists a commutative semigroup (S,+)
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such that A is a subset of S and for every FeT\T(o) there
exist erdomorphisms fl,...,an of (S,+) with FA(al,...,anF)=
= fl(al)+...+an(anF) for all al,...,anFeA.

The results of this paper (although called theorems he-
re) are not deep. This paper is only an attempt to develop a
theory of notations that seems to be convenient in some res-
pects. T. Kepka and the author are preparing a paper in which

the methods of the present paper are specialized and applied

to obtain some structure theorems on medial groupoids.

1. The algebra of semiterms and the algebra of terms. let

T be a type. We fix an injective mapping (F,i) r—> F; of the
set {(F,i); FeT\ T(o), i e{l,...,nF}} into the class of una-
ry operation symbols such that F,=F for every Fe T(l)' Further
we fix a nullary symbol O not belonging to T. The type
T(oyui03uiF;; FeT\ T(o)» 1 €il,...,np33 u{+}

will be denoted by T’; it consists of nullary and unary sym-
bols aml one binary symbol +,

We denote by MT the free monoid over the set of unary
symbols from T’. Every element eeMT can be uniquely expressed
in the form e= £ﬁ4 g; where nz 0 and for every i efl,...,n}
g; is a unary symbol from T’; the non-negative integer n is
called the depth of e amd it is denoted by &(e). The unit e-
lement of My is denoted by 1; we have d(1)=0.

We denote by S‘I‘ the variety of T -algebras satisfying the
following identities:

(x+y)+z=x+(y+z),

X+Y=Y+X,
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x+0=x,

F; (x+y)=F;x+Fyy,

F;0=0
(where F is any symbol from T\ T(o) and i s{l,...,nF}). Thus
algebras from ST are essentially commutative semigroups with
0 in which several elements and O-preserving endomorphisms are
fixed.

Let T be a type and X be a non-empty set. We take one fi-
xed free algebra in ST over X (all such T'-algebras are isomor-
phic) and denote it by Swé'x. The elements of SWé’x are called
T-semiterms over X (or only semiterms over X or sometimes only
semiterms). Evidently, every T-semiterm s over X can be expres-
sed in the form s=%é§4 e; X, where r is a non-negative integer
and, for every i eil,...,r}, e;eM; and xieXUT(o); this expres-
sion is unique up to the order of the summands. The non-negati-
ve integer r is called the length of s and is denoted by A (s).
The non-negative integer 4.%1 (1+ a(ei)) is called the total
length of s and it is denoted by \*(s). We have

A(8)=0 <=> A¥(8)=0¢=> 8=0,
A¥(x)=ie=> 86 XOT( )

let us define a T-algebra SWp y as follows: its underlying
set is the set of all T-semiterms over X; if Fe T(o) then

F =F; 3£ FET\T, \ and 8,,..++8, € SWn y then F (81,00
SWp,x 7 (0) 170" ng” PUT,X SWp x 1

= .e . W 1lu i i
...,snF) Fysyt. +F”an1~‘ e shall usually omit the subscript
SwW in F « The T-algebra SW is called the algebra of
7,X SWo x T,X
1

T-semiterms over X.

The subalgebra of SWp y 8enerated by X is denoted by Vo x
]
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and its elements are called T-terms over X (or only terms
over X).
1.2
1.1, Theorem. Let t=£:24 e;X; (where x;¢ Xu T(o)) be a
T-semiterm over X. Then t is a term over X iff it satisfies
the following four conditions:

(1) rz1;
(2) if i,jedl,...,r} and ej=ef for some fe My then i=j;
(3) if i,jedl,...,r}, e;=fF, g am ej=kah for some f,g,he My,
F,Ge T\T(,), kedl,...,npb and Le {1,...,n5}, then F=G;
(4) if iedl,...,r} and e;=fF g for some f,g€ My, Fe T\ T
and k €1l,...,np}, then for every £eil,...,np} there exists
a je{l,...,r¥ with e;=fFgh for some he Mp.
Proof. It is easy to see that the set of all teSWT X
’
satisfying (1) - (4) is a subalgebra of SWp y containing X. On
’
the other hand, one can verify by induction on A¥*(t) that if t

satisfies (1) - (4) then te L

1.2, Theorem. wT,X is an absolutely free T-algebra over
X, For every T-term t over X exactly one of the following three
cases takes place:
(1) teX
(2) teT(o);
(3) there exists a unique symbol Fe T\T(o) and a unique se-

quence tl”"'tnr of T-terms over X such that t=F(t1,...,tnF).

Proof is easy.

r
2. Subterm instances. Let t=4.:21 & X5 (xie Xu T(o)) be a

T-term over X. By a subterm instance in t we mean an element

ee My such that ef=e; for some fe My and some i€ i1,...,r1.
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The set of all subterm instances in t is denoted by I(t).
By a T-pattern we mean a subset P of MT satisfying the

following four conditions:

(1) P is finite and 1€ P;

(2) if efe P then eeP;

(3) if eF € P and eGy€ P then F=G;

(4) if eFy €P then eFp € P for all £ eil,...,ngf.

2.1, Theorem. Let P be a subset of Mp. Then P is a T=-
pattern iff P=I(t) for some T-term t over X. If P is a T-pat-
tern and ¢ is a mapping of the set N={ee P; efe P implies
£=13 into XUT(O) thenc.‘::N e@(e) is a T-term over X and P=
=I(eS£N e (e)).

Proof is easy.

2.2. Theorem., Let t be a T-term over X and e be a sub-
term instance in t., Then there exists a unique pair (w,u) such
that w is a T-semiterm over X, u is a T-term over X and t=w+eu.
Moreover, if v is an arbitrary T-term over X, then w+ev is a

T~-term over X, too.
L2
Proof. Put t=4.'=21 e;X; where x;€ XuT( y. Denote by I
the set of all ie4l,...,r} such that e;=ef for some f& My;

for every i< I define f; by ei=efi. Put u=€§ f;%; and w=

I

= ‘%1 e;%;. We have t=w+eu and it follows from 1.1 that u is
<

a term. Now let t=w’+eu’ where w'e SWp x and u’e Wp x+ Suppose
’

;%; is a summand in w’. Then we can take

an fe M of maximal depth such that for some g,heMT and x,y €

that for some ie I, e

€Xu Ty, efgx is a summand in w’ and efhy is a summand in eu’;
since te Wp y, we would have g=F, g and h=£:z'ﬁ for some E,he Mp,

FeT\T )y anag, ¢ 11,...,n5}; since u’e Wy, u’ would have
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a summand eka;z for some 'EGMT and ze Xu T(o)’ a contradic-
»

tion with the maximality of & (f). Hence e;x; is a summamd in

eu’ for all ie I and we get u’=u. Now w'=w is evident. Using

1.1, it is obvious that wtev is a term.

The term u in 2.2 is called the e-th subterm of t and it
is denoted by tie1® A T-term u over X is said to be a subterm

of t if u=t for some ee I(t). If u=t then we say that

[e)
e is an instance of u in t.

Lel?

The term w+ev in 2,2 is called the term resulting from t
by substituting v for e.

More generally, let €1secesly be subterm instances in t
such that whenever i,je {l,...,n} and ej=e;f for some fe My
then i=j. (We call such subterm instances independent.) Then
it follows from 2.2 that there exists a unique (n+l)-tuple

8,ujy.+s,u, such that s is a T-semiterm over X, Upyeee, Uy 8re

n
T-terms over X and t=s+e Uy +.. e U, If Visees,V, are any T-
terms over X, then ste Vitesote v is a T-term over X, too;

it is evidently Jjust the term resulting from t by substitut-

ing vy for e;,...,v, for e, (in arbitrary order).

3. The congruence © y and irreducible semiterms. let T
be a fixed type and X be a non-empty set.

Two semiterms u,v over X are called similar if we can
write “=i%4 e;x; and v=i%1 e;¥; for some r=>0, e € MT and
X51¥3® Xv T(o)’ Evidently, the set of all similar pairs of se-
miterms over X is a congruence of the T -algebra SWI'.,x (and so
a congruence of the T-algebra SWT,X' too). Evidently, if u,v

are similar then u is a term iff V is a term.
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L2
If u=,Z, ejX; (where x; ¢ XuT(o)) is a semiterm over X,

then the set {xi; i=l,...,r} is called the support of u and it
is denoted by supp(u). The set Xn supp(u) is called the vari-
able support of u and it is denoted by var(u).

For every semiterm u and every xe X there exists a uni-
que semiterm v similar to u such that supp(v)={x3¥; if u=

L2

5 =%
=159 e;X; then VELZy 85X
We define a binary relation &y on sz’x as follows:
(u,v) ¢ By iff u=w+ex and v=w+eFx+...+eF, X for some we S‘T,X’

ee Mp, FeT\T(o) and x e X.

By a 6'x-proof we mean a finite sequence ug,...,u, (n20)

. -1 .

of semiterms over X such that (“i-l’“i) € 6'x06‘x for all i ¢
e{l,...,n%. By a 6'x-proof from u to v we mean a 6x-proof
Ugyeeeyuy such that u is similar to uj and v is similar to w.

We define a binary relation 3x on SWp y as follows:

]

(u,v) € €y iff there exists a &y-proof from u to v.

3.1. Theorem.

_G’X is a congruence of the T -algebra
SW’I'_‘,X and Wy y is its block.

Proof, Evidently, gx is a congruence of sw,} xe It fol-

bl
lows from 2.2 that if (u,v) e Gy then u is a term iff v is a
term; from this it follows that if (u,v) ¢ &y then u is a term
iff v is a term. Let us fix an element xe X. It is easy to pro-
ve by induction on A*(t) that if t is a term then (t,x)e ?x;
4 — 4

hence (t,t")e 8y for all t,t'e wT,X‘

By a minimal @ x—proof from u to v we mean a 6 x—proof
Ugyees,Wy from u to v such that whenever v ,...,Vy is a Gx-
* *
proof from u to v then »JU“ (ug)+eo o+ A (w)) £ A (Vo) 4o oot AF (vg) e
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3.2, Lemma, Let ugj,ee.,W, be a minimal Gx-proof from
u to v. Then there exists a k€ {0,...,n} such that (ui_ My )€
€ 63 for all ie{1,...,k} and (u;_;,u;) e 6, for all i e
€ {k+1,...,n}.

Proof. Evidently it is enough to assume that there is
an xeX with supp(ui)= {x} for all ie {0,...,n}. Suppose that
there is no such k, so that there exists an me{1,...,n-13
with (u,_,,4;) € &y and (um,uml)e 621-. There are w,w’ €

€ SWp x, €,f€ My and F,Ge TN\ ‘1‘(0) with

T,
u,_qSwtex,
u.m=w+ele+. . .+anFx=w +fGlx+. . .+fGnGx,

Upy =W HEX.
If e=f and F=G then evidently Uy 1 Wg 8N4 Uy eee,Wp g5, 0,
«eeyuy is @8 6 y~proof from u to v, a contradiction with the
minimality of ug,,...,u,. Thus we have either e+ f or F+G and

so there exists a w'’¢ SW such that w=w’“+£G.x+...+£G_ x
T,X 1 ng

and w'=w"+ele+...+anFx. But then Ug,ess,Up 1, W  +ex+fx,
UpgyreeerUy is & 5'x~proof from u to v, a contradiction with
the minimality of Uy eee, 0, again,

A semiterm t over X is called irreducible if there are
no we SwT,X’ ecMy, Fe T\ T(o) and xl,...,ane XuT(o) with
t=w+eF X +. .. +anFan.

3.3. Theorem. The following are true:
(1) For any semiterm t there exists an irreducible semiterm
8 with (t,8) e &y
(2) If s,s’ are two irreducible semiterms then (s,s”) e Ty

iff s,8’ are similar.
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(3) A term is irreducible iff it belongs to Xu T ,.
X
(4) If s=i=21 e;jX; is an irreducible semiterm (where x; € Xv
. s - . - k
UT(O))arﬂ t is a semiterm then (t,s)e &y iff t-;?_', e;u; for
some terms UyyeoeyUpne
Proof. (1) can be proved by induction on A*(t). (2)

follows from 3.2. (3) is easy. (4) follows from 3.1 and 3.2.

It follows from 3.3 that for ary semiterm t over X and
any xe& X there exists a unique irreducible semiterm s with
(t,8) ¢ EX and supp(s)={x$; this s will be called the x-re-

duct of t.

3.4. Theorem. Let t,t” be two semiterms over X and let
x€X. Then (t,t’) e &y iff the x-reduct of t is the same as
the x-reduct of t’,

Proof follows from 3.3.

4, Envelopes and universal envelopes. Let A be a T-al-
gebra., By an envelope of A we mean an algebra Ee¢ ST such that

ASE and FA(al’“"anF):Fl (al)+...+FnF(anF) for all Fe T\ T(o)
and all a,,...,8, € A. (Here F; means (Fi)E and + means +p.)

oy

Loosely speaking, an envelope of A is a commutative semigroup

E with O such that A is a subset of E and for every Fe T\ T(o)

n
Fy(ayyeeeya )=fi(a)+.eetf, (a. ) for all a,,... €A,
A1 ’ ng 171 ng ' “np 1? ’anF

there exist O-preserving endomorphisms fl,...,f of E with
F

By a universal envelope of A we mean an envelope E of A
such that the T'-algebra E is generated by A and whenever E’
is another envelope of A then there exists a (unique) homo-
morphism of E into E” over A. We shall show that every T-al-

gebra has a universal envelope.
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let A be a T-algebra. We define a binary relation &,
on sz,A as follows: (u,v) e € iff there exist weSWT’A,
ecMp, FeT a.and x,xl,...,ane A with x=FA(xl,....,an), u=w+
+ex, v=w+eF if np=0 and v=w+eF1xl+...+anFan if np#0, By
an €,=-proof from u to v we mean a finite sequence uUgy.««sVy
(nz0) of elements of SWT,A such that u=u,, v=w, amnd
(uy_1,u3)e g, u exl for all i€ {1,...,nj. We define a bina-
ry relation ~, on SWT,A as follows: u~yv iff there exists
an ¢,-proof from u to v. Evidently, ~, is a congruence of
the T “-algebra SW,I'. A (and so a congruence of the T-algebra

]
SW, , too); it is just the congruence of SW. , generated by
T,A T,A
the pairs (FA(xl,...,an),' FSWT A(xl’“”%F)) where Fe T and
b

Kygooe €A,
1o ¥ng

4.1. Theorem., Let A be a T-algebra. Then:
(1) A has a universal envelope.
(2) Every two universal envelopes of A are isomorphic over A.
(3) If E is a universal envelope of A then there exists a (uni-
que) isomorphism of E onto SWI'. A/NA extending the camonical

’

ing of A into SW; ,/~,.
mapping o into T,A/ A
(4) If E is a universal envelope of A ard if E’ is an arbit-
rary emvelope of a T-algebra A', then every homomorphism of A
into A’ can be' uniquely extended to a homomorphism of E into
E!

Proof., Denote by £ the unique homomorphism of WT A onto

’

A extending the identity on A. If a,b€A and a~, b, then the-
re exists an €,-proof u,,...,u, from a to b; since evidently
€,€ &,, it follows from 3.1 that w€ Wp 4 for all i; now
evidently f(u,)=f(uy)=...=f(u,), so that f(a)=£(b), i.e. a=b.
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This shows that the canonical mapping of A into SW.{.,A/’VA is
an injection and so there exists an algebra EGST and an iso-
morphism g of E onto Sw’i‘,A/NA such that A is a subset of E
and g is an extension of the canonical mapping of A into
swé’A/va. It i.s easy to prove that E is a universal envelope
of A and that it satisfies (4). (2) is evident.

For every T-algebra A we fix one universal envelope of A
ard denote it by E(A). If A,B are two T-algebras, then by
4.1(4) every homomorphism £ of A into B can be uniquely exten-
ded to a homomorphism of E(A) into E(B); this extension will
be denoted by E(f) (or, more exactly, by EA,B(f))‘ Evidently,
E is a functor from the category of T-algebras into the cate-
gory Sp.

let us remark that the appropriate modification of the
definitions and results of previous sections enables us to
prove the following:

For every T-algebra A there exists a commutative semi-
group E such that A is a subset of E, for every Fe T(l) there
exists an endomorphisxp f of E with FA(8)=f(a) for all aeA and
for every Fe T with npz 2 there exist automorphisms fl’”,,an
of E with FA(al,...,anF)=f1(al)+...*an(anF) for all &y,...

o €A,
’anF
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