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A BOUND FOR THE MOORE-PENROSE PSEUDOINVERSE
OF A MATRIX
J. M. MARTINEZ

Abstract: A geometric bound is obtained for the norm

of (A"A)""A", when A is an m x n matrix of full rank with
mzn. Hence, a similar bound holds for the Moore-Penrose
pseudoinverse of any m x n matrix, with m>n. The new bound
gives a geometrical meaning to the well-known relation bet-
ween condition number, scaling and angle between columns.
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Moore-Penrose pseudoin-

Notation. [vl,...,vpj will denote the subspace spanned

by the vectors VyseeesVp and [vl,...va its eorthogonal com-

plement, NIl will always be any norm, unless specified.

Iemma 1. Let A be a real n x n matrix, A = (al,...,an)

amd le.t oly be equal to #'/2 and ccj, J = 2,...,n the angle

between aj and [al,...,aj_lj'. Then,

mn
|det Al =1.’1='T,, i asll, Isin ol
Proof. See [2].
Iemma 2, Let A be a real m x n matrix of full rank

with mzn; A = (ay,...,a,); and define oy = ccj(A) as in

m
Lemma 1 for j = 1,...,n, Define P(A) ='”'l | sin d.i\. Then
4=
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P(A) is invariant under permutations of the columns of A.
Proof. If m = n the thesis is true because of Lemma 1.
Suppose m>n and define A" = (aj,.ees8,,8 1 ,+00,87), where
Lasll, =1, (ai,aj) =0if i+j, i, j = n+l,...,m, and
Lapyre-s8y] =Lag,...,a, 10 . Then P(A") = P(A). But P(A)
is invariant under permutations of the columns of A”; so the

same holds for A.

Lemma 3. Let A be as in Lemma 2, and let f(3; = f3;(A),
i=1,...,n, be the angle between a; and ial""’ai-l’aiﬂ’“‘
«.+y8p). Then lsin (|2 P(4).

Proof. Define A” = (8y,..4,85_158;,11¢++»8,,8;)+ Then

Pi(8) = € (A7) and so, | sin B;(A)) = |sin o (A7) 2
2P(A°) = P(a).

Lemma 4. Let A be as in Lemma 2, and define AT =
t,,~-1,t t
= ")™Y = (by,...,5) . Then Ibyll, £ 1/(P(A) Nayll,) for
all i = 1,...,n, '
+ P
Proof. A'A = I implies that bi£[al""'ai—1’ai+1"”
1 - =
«esy8,)" and {a;,b;> = 1. Then, llajl, b ll, cos 75 = 1, whe-
re 7; is the angle between a; and b;. But At = (a1t
implies that bjclay,...,a 1. Then 7; = /2 - 3;, with (8
defined as in Lemma 3; and so, llbiil2 = 1/(llaillz | sin Bil) £

<1/(Nagll, P(A)).

Theorem:l. Let h-ll bé a norm in K™, Then there ex-
ists K>0, K = K(m,n) such that for all A with the hypothe-
ses of Lemma 4,

Na*li£K max 41/ llagh,, 1 = 1,...,n% /P(A).

Proof. It follows immediately from Lemma 4.
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Theorem 2. Let A be a real m x n matrix of rank p with
mZ n., Suppose A = (B,C), where rank B = p; and let A be the
Moore-Penrose pseudoinverse of A (see [3]). Then there ex-
ists K = K(m,p) such that

NA*I£K max {2/11 a;lly, i =1,...,p3 /P(B),

+
Proof. Define A = (g ) . Then, A’b is a solution of the

least - squares problem Ax=b for all be R®. Then | A*'b“2 <
£)A’pll, for all be R”, Thus A" I,£1I1A°l,, and the thesis

follows easily from this inequality.

Final remarks.

a) If kx(A) is the condition number of an n x n nonsin-

gulr matrix (see [1]), then it follows from Theorem 1 that

k(aA)£K max{lazly, i = 1,...,n} max {1/l ally, i = 1,...
..o, /P(4).

This is an interesting inequality which shows that when the

condition number grows, then either the matrix is not "well

scaled” or the columns of A are nearly dependent.

b) The sharpness of the bounds on Theorems 1 and 2 de-
pends on the sharpness of the inequalities lsin pi\ Z P(A)
in Lemma 3. If more than one column is nearly dependent from

the other columns, it may happen that |sin (;1>> P(A).

c¢) We may, mutatis mutandi, reformulate the results of
this section for full rank matrices AeRmxn, with m£€n and
A9 (right inverse) = at(aa®)~1,
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