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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,4 (19%8)

MEASURE THEORETIC BEHAVIOR OF CLOSED SETS

Rebert E. ATALIA, Tempe

Abstract: In this paper we introduce the idea of a
Pl-se’i. X closed set P is a Pl-set if for any positive re-

gular Borel measure m, Fn suppert (m) % ¢ implies m(F)> O,
Every P-set is a P,-set, but 1t is unknown whether every

Pl-set is a P-set.

Key words: P-set, P,-set,P-point, Borel measure, ex-
tremally disconnected spale,

AMS: 54G05

1. Pl-_sLtg. Throughout, X will be a compact Tz space.
If me M+, where M is the set of positive regular Borel mea-
sures on X, then S = S(m) is the closed support set of m.,
We recall that a closed set F is a P-set if its neighbor-
hood system is closed under countable intersections. P-sets
have the following interesting property: if melﬁ’, then SN
NF 4@ implies m(F)> 0. lLet us call a closed set having
this property a Pl;_s_e_t_,_. In this section we give a number of
equivalent characterizations of P,-sets, and a result on com-
pact spaces with the property that the closure of a cozero
set is always a Pl—set. This generalizes the corresponding
result of Seever [S] for F-spaces (where the closure of a
cozero-set is always a P-set).

We do not know if there exist Pl—sets which are not
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P-sets. We shew in seection 2 that if they exist anywhere,
they can "usually" be embedded in BN\N.

Theorem 1. For a clesed set F, the following are e-
quivalent: (1) F is a P,-set, (2) for all me I+, SN T is
clepen in S, (3) for all me ll+, SNF is either empty or a
P’ ’-set, i.e., SAFc Z (zere set) implies intg (Z2n8S) + g,
(4) for all meu+, suppert (m!) = suppert (m)AF, (5) for
all me ¥* am all open V, YV/nFn S+ @ implies m(VAF)>0,
(6) if S
(e14S)NF

Proof. The pattern will be 1-» 2-—3%3 -1, and 6> 1

"

Us,, where the S are suppert sets, then
clp(SnF).

~—»5-—>4—5—>6.

(1) implies (2). ILet V = S\(FAS), an open set in S.
Let n = my, i.e., n is the regular Borel measure defined by
n(A) = m(AAV). Then n(F) = e. Now suppert (n) = elgv.
[For if xeclsv and W is an S-open neighborhood ef x, then
WA V4P, and hence n(¥W) = m(WAV)>0.] By (1), FaclgV = #.
Thus FA S is open, as well as closed, in S.

(2) implies (3). Obvious.

(3) implies (1). Suppose SAF#@, while m(F) = 0. By
regukarity there exists a descending sequence of S-open sets
V, with FAScV, and m(Vn)——ﬁ 0. Since F is closed we may
assume cl vn+1°?n’ Then m(NV,) = 0, whence intg(NV,) =
= P, contrary to the assumption that FAS is a P’ ’-set.

(6) implies (1). Suppose (1) fails, so that for some
S = S(m) we have FnS# @, but m(F) = O. Let A, be an ascen-
ding sequerc e of compact subsets of SNF such that m(An)—-b
—p m.(S). Define measures m, by the formula m (B) =
= m(BAA ). Then S, = supoort (m,)cA, . Let T =\ S . Then
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clp(TA F) = cly(f) = #. However, clyT = cly U S = S, where
S = suppert (m). [ For if not, then there is an open set V
such that m(V) = t>0, whence m(A,)<m(S) - t, contrary te
m(A ) —5 n(S).] Thus, (c1yT)AF = SAF4 P, while clp(TAF) =
= @, Hence (6) fails. -

(1) implies (5). If (5) fails, then there is an open V
such that m(VAF) = 0, while VA FA S40. Let n = my. Then
suppert (n)a VA S; so (1) fails, since Fn suppert (n)% 4,
while n(F) = O.

(5) implies (4). Clearly, the left side of the formula
in (4) is contained in the right side. For the reverse inclu-
sion, let x e support (m)AF, If V is a neighberhoed of x,
then my(V) = m(VA F)> O, and hence x € suppert (mg).

(4) implies (5). If VAFA S+, let x be in this set.
Then x & support (mp), 80 O<my(V) = m(VAF).

(2) implies (6). Clearly, clp(SAF)c (c1yS)AF. For the
reverse inclusion, suppose x ¢clp(SNF). Then there is an o-
pen V containing x such that VA (SnF) = @, Then VA (Syn F) =

= @ for all n, whence m(VATF) = O, where

m= = 27 N W "lmn.
By (5), 8 = VAFnsupport (m) = VAFA cl,S. Since x6V, it
follows that x§Fn clyS.

Remark. If in condition (6) we allow the S, to be ar-
bitrary compact sets, we get a characterization of P-sets,

We leave details to the reader.

Theorem 2. Let X be a comvact 72 space such that the
closure of a cozeroc set is always a Pl—aet. Then any support

set S = S(m) is extremally disconnected in its subspace to-
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pology.

Proof. It suffices to prove S is an F-space, since
an F-space with countable chain conditien is extremally
disconnected., Let Ao and Bo be disjoint cozeroc sete in S,
As in [Sem, page 432], we may write Ay, = {x:f(x)> 0} and
B, = {x:f(x)< 0} for some f€ C(S). Let g be any element of
C(X) which extends f. If A = §x:g(x)> 0% and B = {x:g(x)<

<0%, then A, = AnS and B, = BnS. Define a measure n =

]

m,. Then suppert (n) = clsko. let ¥ = cle. Since Fn Ao =
= @, we have n(F) # O. Since F is a Py-set, it follows that
g = Fn Support (n) = clyBnecld aelgB nclA . Thus, dis-
joint cozere sets in S have disjoint closures, i.e., S is

an F-space.

Corollary. If X is as in the theorem, then C(X) is a
Grothendieck space.
Proof. The proef of theerem 2.2 of [ S] shows that if

every suppert set is extremally diseonnected, then C(X) is

a G-space.

Remark. In [I-S] it is asked what sorts of Borel sets
have the "Grothendieck property", i.e., how to characterize
sets such that if o, and m are Borel measures with m —> mn
weak-* , then m (F)—> m(F). P -sets satisfy the somewhat
stronger conclusion that m |g —-)mlr weak-* , In fact, in
the last assertion, sequences may be replaced by countable
nets, (Perhaps this is a property which characterizes I’l~

sets among the closed sets.)

2, The existemnce problem. We do not know whether the-

.
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re exist Pl-seta which are net P-sets, but theorem 3 below
may be helpful in this respeet. The special ecase of P~
peints merits speeial interest. A Pi—point is one which does
net beleng te the suppert ef any element ef M" such that
m(p) = O. In LK) it is shown that in AN\ N there exist
peints which are not P-peints, and which are net points eof
aceunmulatien ef any countable subset. Let us call these
Pa-points. It is easy te see that P—pcintscPl-points c

c Pa-points. Assuming CH, at lsast one ef these inclusions

is proper in the BN\N case, but it is net knewn which.

lemma 1. Let £:X—>Y be centinueus, where X and Y
are compact T2, If K is a P,-set in Y, then £71(K) is a P,-
set in X. '

Proof. Let m be a pesitive regular Berel meaau’re on
X, and suppese m(f-lK) = 0., Define a pesitive regular Berel
measure m on Y by m (A) = n(£™14). Then m;(K) =0, sekKn
N suppert (m.) = 0, since K is a Pl-set. IfV=YN

e

support (m_), then V is an open set with K¢V and m_(¥) =
0o’? (+]

[}

0. New £ Kc £~1V, where £y is open, and m(£~1v) =
m, (V) = 0. Thus, KA suppert (m) = &, so 7K is a Py-

set.

Lemma 2 LV, theorem 8], Let f:X—> Y be continuous and
onte, and K be a clesed subset of Y, If £k is a P-set,then
K is a P-set. (The converse also holds, will not be needed
here,)

The rather easy proof, whida is omitted in (V), is left

as an exercise.

Theorem 3. { CH] Let X be a compact 78 space such that
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the cardinality ef the epen sets is ¢, If X centains a Pl-
set which is net a P-set, then (JN\ N coentains a P, -set
which is not a P-set.

Proof. ILet K be such a set in X. If E(X) is the Glea-
son space of X and £ the Gleason map, then L = £7IK is a
P,-set in E(X), by lemma 1. It is shewn in [K] that under
CH an extremally disconnected space with ¢ epen sets can be
embedded as a P-set in {sN\ N. By lemma 2, L is net a P-set
in E(X), and it is easy te check that it is net a P-set in
BNN\N either. To shew that L is a Pl-set in BN\ N, iet m
be a positive regular Berel measure on 3N\ N with suppert
set S, and suppese SNL#%@, Let n = Dg(x)+ Since B(X) is a
P-set (hence also a Py-set) in BN\N, n>0 and condition
(4) of theorem 1 implies that support (n) = SAEBE(X). n defi-
nes a regular positive Borel measure on E(X). Since support
(n)AL#¢ and L is a Py-set in E(X), we have m(L) = n(L)>0.
Hence L is a Pl-aet in pN\ N.
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