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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,4 (1978)

ISOMORPHISMS OF PRODUCTS OF INFINITE GRAPHS
Véra TRNKOVK, V4clav KOUBEK, Praha

Abstract: We prove that every countable commutative
semigroup can be represented by mormal products or cartesi-
an products or cartesian sums of countable simple graphs.

Key words: Products of graphs, representation, commu-
tative semigroup.

AMS: 05C25, 06A50, 08A10, 20M30

By a graph G = (V,E) we mean an undirectéd simple graph,
i.e. V is a set, Ecexp V and e€E implies card e = 2.
Given two graphs, say G = (V,E), G" = (V',E’), the fol-
lowing products are investigated (in the terminology of (B0,
Cartesian mroduct Gx G = (W,E;)
Cartesian sum G% G’ = (W,E,)
Normal product G & G* = (E,5;).
In all these cases, the set of vertices W is equal to VxV’
and the sets of edges E, E2, E3 are defined as follows.
(v,v">, {u,u"d)eB; iff (v,u)eE and (v ,u)eE’;
(Kv,v’y, (u.,u'))eE2 iff either v = u and (v ,u”)e E’
or v =u’ and (v,u)e E;
and E3 = Elu EZ'
(In CB1, % is denoted by = ,32 by + , ) by ¢ )

ke s
Clearly, each of the three types of prpducts > , i =

= 1,2,3, defines a commutative and associative operation on
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the class of all isomorphism types of graphs, i.e. the class
& of all isomorphism types of graphs endowed with ;’c (or
>2< or‘;"i , respectively) forms a "large" commutative semi-
group. Which commutative semigroups can be embedded in it?
By [KNR]and [Trll, every commutative seimgroup can be embed-
ded in (& ,;< ). In the present paper, we show that it can be
embedded also in (@ ,% ) aml (6,2 ). Moreover, we show that
the embedding can be in a sense uniform with respect to all
these three types of products and that countable commutati-
ve semigroups can be embedded into isomorphism types of coun-
table graphs (which is a new result also for ;14 ). More pre-
cisely, the aim of the present paper is to prove the follow-
ing

Theorem. For every commutative semigroup \(S,+) there
exist collections (Gi(x) | xes, i =1,2,3} and {‘fx,y‘ X,y €
€ S} such that

(a) @;(x) = (V(x),B;(x)), i = 1,2,3, are graphs with
the same set of vertices V(x); E,(x)n By(x) = 0 and B, (x) v
U B, (x) cEB(x);

(b) for every x, y€S, is a bijection of V(x) =<

qx’y
xV(y) onto V(x + y) such that it is an isomorphism of
Gi(x)i G; (y) onto G, (x + y) for i = 1,2,3;

(¢) ifdx,id>, {x",i"ve Sx£1,2,33 ,<x,id&<{x",i’d,
then G; (x) is not isomorphic to G;(x");

(@) if S is countable, then all the sets V(x), xeS,
are countable.

We give the detail proof of the theorem in the case
that the given semigroup S is countatle. If S is mnot count-

able (and the cardinality of the sets V(x) is not restrict-
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ed), the whole construction can be essentially simplified.
This is sketched in 15. at the end of the proof.

Let us notice that the representation of commutative se-
migroups by products of graphs in the above sense gereralizes
the non-validity of cancellation, square root preoperty, Can-
tar-Bernstein property and some similar properties. Products
of graphs end relational structures witn respect to these
T operties have been investigated in & number of papers, let
us mention at least [ L], {Mc¥ 7 and [ Ch] for the older refe-

renceg.

1. First, let us re~all Low these three types of pro-
ducts are defined in the infinite case. Let {G(oc) lcc € A¢
be a collection of graphs, Giesc) = (V(ew), E(w)),
Then aLErA'i’ Glec ) = (V,E;), 1 = 1,2,3 are graphs defined on the
set V =&TIAV(°°) as fcllows (I, :V—s V(o) denotes the oc-—
th projection)
(u,v)e E, iff ( g (u), M (v))e E(ex) for all o € A;
(u,v) e E, iff there exists (3 € A such that ( A (),
’Jr(b (v))eE({S) and 2 (u) = A (v) for all & ¢ AN {33
(u,v)e E3 iff u%v and for every o« & A either :?roc(u) =

=ar, (v) or ( mg (u), g (v))e E(ee).

2. Denote by I' the set of all non-negative integers. Let

p, be the (n + 3)-th prime (i.e. P, = 5), qQ, = p, - 1. For ne

¢ N define
vin) = £0,1,a3 U (Nx a,),
E(n) = £(C,1),(1,)3u4 (2,£C,20) | z e
€ g3 uin,zy, (n+l.2)|neN,zeq,3,
G(n) = (Vin),E(n)).
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3. Let us consider N as an additive semigroup. Denote
by NN the set of all functions on N with the values at K
(and with the addi\tion defined by (£ + g)(m) = £(m) + &(n)
for 211 ne N). Denote by © the constant zero. For fe NS
\N{0% put

L(f) =4<j,n> | neN, 0= j&£f(n)}
Since £ + ® , L(f) is non-empty. If £ =<j,n> e L(f), put
£ = n. For every fe Nm\{OZ denote

V) = Iy V(L)

and denote by :V(£)—> V(Z) the L -th projection. For
every pair f, 'geNN\{Oi define

q)‘l.’g:L(f)v L(g)—> L(Lf + g)
(where v denotes the disjoint union) by
Ve g (jmH»=<¢jm) for {jym)eL(f),
Ve g {(j,m>= <f(n) + jy,n) for (j,n) €& Lig).
Then 11'1.,8 is a bijection, defining a bijection
;Df’g:v(f)xv(g)—-» V(£ + g)

by the rule My o @, . = for all Le L(f + g).
’

Tt
.4 )
Denote by
pI:V(f)x V(g)—> V(L)
Py V(L) = V(g) —> V(g)
the first and the second projections,

4, Let a countable commutative semigroup (S,+) be gi-
ven. Denote by exp N’ﬁ the commutative semigroup of all sub-

sets of N (where the addition is given by the usual formula
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A+B=4f+ g|feA,geB%). By [Tr,], there exists a homo-
morphism
g:(S,+) —> exp il

such that

(i) for every x& 8, h(x) is infinite and countatle and,
for all feh(x), f(n)% O for infinitely many n e N;

(ii) for x, x'€S, x%x’, the sets h(x) and h(x’) are
disjoint.
For every xeS, fe h(x), we define by induction

X (x,f) =4{veV(L) | Mg (v) = 0 for all £ ¢ L(f) except
a finite number }u{veV(f) | ar, (v) =1 for all Le L(f) ex-
cept a finite number},

Xpa1(x,1) = x.,,x,esLa{ * %y X Prl,fz(%("yfl)"

frehixy), f,ch(u,_"F-n—fa-f
%X, (%5,£5)) U ,%L..Js (p,@P7 g(X (x+y,f+g)u
G &M (y)

VP, @ (Xp(x + y,f + ),

X(x,f) = = 0 X, (x,1).

(Let us notice that if f "xLé)S h(x), then there is unique
x€ S such that feh(x). Hence we could write only X(f) in-
stead of X(x,f), but we prefer the more expressive notation
X(x,t).

5. Lemma. For every xe S, feh(x), X(x,f) is a count-
able subset of V(f). For every x, x € S, feh(x), £« h(x"),
Pe p maps X(x,f)x X(x’,f’) bijectively onto X(x + x', £ +
+ £7),

Proof. Since all the sets V(n) are countable, the set
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Xo(x,f) is countable. Since S and all the sets h(y), ye S,

are countable, any xn(x,f) is countable. Hence X(x,f) is
countable. Since {of s (X, (xq,f9)x X (x,,£,)) 5 X (fq + £5),
we obtain X (x,f)c X,(x, £); then X (x,f)c n+1(x,f) for all
x,f,n, hence, clearly, @s ¢, (X(x,f) X(x ", £ ))2X(x + x~,
. . , , -1
£ + £°). Conversely, if ueX(x + x ,f + £°), put v = plef,f'
. -1 p vy
(w), v’ = pz@f,f’ (u). Then vé&X(x,f), v'€ X(x,f") and
Pr,prKv,v ) =
6. We recall (see 3.) that for fe NN\{Oi , £ =
={i,nY e L(F), Z is defined as n and the graphs G(n) are

defined in 2. Now, put
G (£) = TTy G(E)
1 £ eLF)
for i = 1,2,3. Then, clearly, V(f) is the set of vertices of
all Gl(f), Gz(f), G3(f’). Moreover., for every f, geNN\{cz,
Pr g is an isomorphism of Gi(f); Gi(g) onto G, (f + g) for
’

all i = 1,2,3. For every x&S, fe€ h(x) denote by H;(x,f) the
full subgraph of G.(f) gererated by the set X(x,f). Then the
domam-—range restriction of pf g¢ is an isomorphism of
I-I (xf)xH(x f)ontoH(x+x , £+ £7) for all 1 = 1,2,3.
For xe S define

Gy(x) = (H, (x,f))

1 Gé‘*y(x’ 1T

" meN

More in detail, consider the set V(x) =‘F¢‘ (xy X(o0, £) % 417 x
% §n% and define the graph Gi(x) = (V(x),Ei(x)) such that for
every £€ h(x), neN, the napping zvwa~ { z,f,n » is an isomor-
phism of H; (x,f) onto a full subgraph of G;(x) and there are
no other edges in Gi(x) than edges obtained by this way. Then,
clearly, V(x) is the set of all vertices of Gy (x), Gy(x),
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G4(x) and E,(x)n Ey(x) = &, Ej(x)UE,(x)c Ey(x),i.e. the
system {G;(x) | xeS, i = 1,2,3% has all the properties, re-

quired in (a) of the Theorem.
7. For every x, x € S choose a bijection
Yy 5ot (A% N) < ((x )% N)—> h(x + x")x N
’

such that always ¥,  ,({f,n), <£",n")) =(f + £",n) (this
’

is possible because h(x) + h(x’) = h(x + x")). Now, define
‘:?x,x/‘V(X)" V(x)—> V(x + x°)
by gpx’x,(<z, <£,nd>, <z, <" ,n"))) = (gof.’f,(z,z'),

'Vx,xl«f’n)’ <f",n">»)) . Thus Py, x/ TapS the product of

the n-th copy of X(x,f) and the n’-th copy of X(x',f’) onto
the n-th copy of X(x + x",f + £°) as Pe et Si‘nce Vo, x is
a bijection, Px,x’ is an isomorphism of Gi(x‘); Gi(x') onto
G;(x + x7). Hence the system -igx’x,] x,x e S} has the pro-

perties required in (b) of the Theorem.

8. It remains to prove (c). First, let us notice that
for every xeS, Gl(x) co'ntains vertices of the degree 1 (na-
mely the points of all copies of Hl(x,f), having all coordi-
nates equal to O) but neither Gg(x) nor G3(x) contain such
vertices (by (i) in 4., L(f) is infinite for every fe H(x),
hence all vertices of G,(x) and G3(x) have infinite degrees).
Hence Gl(x) is never isomorphic to Gz(x') or G3(x'). For
every xe€ S, G3(x) contains triangles (the points of X(x,f),
having all coordinates in 40,1% , form a complete gaph in
H3(x,f)), but no Gz(x) contains a triangle (because no G(n)
contains a triangle). Hence G3(x) is never isomorphic to

Go(x"). Thus, it suffices to prove that if x#x’, then G; (x)
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is not isomorphic to Gi(x') for i = 1,2,3, First, let us pro-

ve a lemma, suitable for all the three cases.

9. lemma. (ec) If ueX(x,f), then there exists Fc L(f)
finite such that ar, (u)€40,1% for all £ e L(f)\F;

(B) Let ueX(x,f), veV(f); let there exist Fc L(f)
finite such that for all £e L(f)N\F both ar, (u), v, (v) are
in 40,1} and 91y (u) # ary (v); then veX(x,f).

Proof. X(x,f) is defined as ,\Jp X (x,f). X (x,) ful-
fils (o) and (3 ). Then proceed by induction (simultaneous-

ly fr all x€S, feh(x)) by n.

10, We recall (see 2.) that p, is the (n + 3)-th prime.

Lemma. Let u be a vertex of Hy(x,f). Then its degree
is equal to the prime Pp iff there exists t = {(j,n) & L(f)
such that 4rp(u) = O for all £€ L(f)\4{t} and am, (u) = a.

Proof. Let a vertex u of Hl(x,f) be given. Denote by L
the set of all £€ L(f) such that arp(u) = 1. If L is infini-
te, then the degree of u is infinite. For, we can find a ver-
tex uy joined by an edge with u for every £ € L such that
ag (ug) =a, My (up ) =0 for all keL\4L} , g (up) =
= 1 whenever 9rg (u) = O. Let us suppose that L is finite. De-
note by F the set of all ¢ L(f) such that T, (u)d 0, so F
is finite. For every £ = {j,n) € F denote by dg the degree
of o (u) in G(n). Then the degree of u in Hy(x,f) is equal
toz'\;TF dy . Since arp (u)# O whenever £ € F’,?,.ETF de is & pri-
me iff F has precisely one element, say F ={t3} . Moreover,

dy =Py irf t =<{j,nY and Wy (u) = a.

11. Propositiom. If xdx’, then G;(x) is not isomorph-

ic to Gl(X’)o
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Proof. By the previous lemma, f can be recognized from
the graph Hl(x,f). For,‘ £(n) is the number of vertices with
the degree Ppe Let us mention that all these vertices are
contained in the same component of H,(x,f), namely the com-
ponent containing the unique vertex u of Hl(x,f) with the
degree 1 (i.e. the vertex with -0 (u) = 0 for all Le L(f).
If xpx’, choose fe h(x)\ h(x"). Then G;(x) contains a com-
ponent with a vertex with the degree 1 and exactly f(n) ver-
zices with the degree Py for every ne€ N, but Gl(x') contains

no such component.

12, Given a graph G = (V,E), and ue€V, denote b(u) =
={veV|(u,v)€B% . Denote by c(u) the supremum of cardina-
lities of all sets Cecb(u) such that any pair of elements of
C is not Jjoined by an edge.

lexma. Iet u' be a vertex of H3(x,f). Then c(u) is e~
qual to the prime p  iff there exists t = (j,n)e€L(f) such
that a7, (u) =0 for all1 Re L(L)\ §t} and EA (u) = a.

Proof. Let a vertex ue H;(x,f) be given. Denote y L
the set of all £e L(f) such that arp(u) = 1. If L is infini-

te, then c(u) = & _. For, we can find a vertex uy Jjoined by

o
an edge with u, for every £e€ L, such that Uy and ugs are
not joined by gn edge whenever £, 2 e L, £ + 48’ (it is suf-
‘ficient to put M (uy ) = a, arg (up ) = 0 for all ke LN\ $L3%,
oo (up ) = T (u) otherwise). Let us suppose that L is fini-
te. Denote by F the set of all £ & L(f) such that arp (u)%0,
8o F is finite, If v is a vertex of H3(x,f), joined by an ed-
ge with u, then, by the definition of TT, , the vertex ¥ such

that (¥) = ary (v) for all £ € F, o, (V) = O otherwise, is

b,
£
joined with u as well as with v, Hence, the number c(u) is
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determined by the subgraph generated by all vertices v with
, (V) = 0 for all L€ L(£)\F, For every £ = {(j,n)eF deno-
te by ¢y the number c(®g (u)) in G(n). Then c(u) =2-§F e
This is a prime iff F has precisely one element. Clearly

c(u) = p, iff F =4t} , t =<j,n) and ’, (u) = a.

13. Proposition. If x*x', then G3(x) is not isomorph-
ic to G3(x ).

Proof. By the previous lemma, f can be recognized from
the graph H3(x,1’). The rest of the proof is quite analogous

as in 11.

14. Given a graph G = (V,E) and ueV, consider the sets
Acb(u) (where b(u) is as in 12.) such that

if v, vie A, v#v’, then (v,v )& E and for no we V,
distinct from u, (v,w) and (v',w) are in E.

Denote by a(u) the supremum of cardinalities of all such sets
A,

Lemma. Let u  be a vertex of Hy(x,f). Then a(uj) =1
ife er(uo) = 0 for all £ e L(f).

Proof. If a7, (4 )4 O for someLe L(f), then a(u,)z2
because ",e‘“o) has this property in G(R), If ) (uo) =0
for all e L(f) and v,v’e blu,), v4v’, then there exist k,
ke L(f), k£k’, such that @ (v) =1, :rr“‘,(v') =1, o (v) =
=0, ﬂ&.(v) =0 and ar,(v) = ay (v’) =0 for Le LIEINEk,k}.
Then w, defined by :rrk(w) = m:k,(w) =1, o, (w) =0 for L e
€ L()\{k,k'}, is distinct from u  and is joined with both
v and v’.

Iemma. Let ug be the unique vertex of He(x,f‘) such that

a(uo) = 1. Let u be a vertex of Hz(x,f). Then there exists
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t =¢J,m) e L(L) such that ar, (w) = a, M, (u) = 0 for all
2e L(E)N{ty if a(u) = p, and there exists ve b&uo) such
that ue b(v).

Proof. Clearly, if gm, (u) = a for t = (j,n>e L(f) and
y, (u) = 0 for all e L(f)\4{t} , then u has the property.
Conversely, let a(u) = Py and there exists v such that v e
e b(u,), ueb(v), Then necessarily there exists te€ L(f) such
that :rr_L(v) =1, 7, (v) = 0 for all 2e L(f)\{t} . Since ue
€ b(v), either m, (u) €40,a} and a, (u) = O for all Le L(L\
\{t3 or ar, (u) = 1 and there exists t’e L(f), t4 t, such
that ar,(u) = 1 and a, (u) = 0 for Le L(f)\ {t,t‘?. But the
second case is impossible because this implies a(u) = 2, In
the first case, a(u) = p, implies A (u) =aand t ={(j,mn>
for some jé’f(n).

Progosi£ion. If x+x , then G,(x) 38 not isomorphic to
Gz(x').

Proof. By the previous two lemmas, f can be recogniz-

ed from the graph Hz(x,f). Then proceed as in 11.

15. If the cardinality of the constructed graphs is not
limited, the construction can be simplified and generalized
as follows. Given an arbitrary semigroup (S,+), there exists

homomorphism h:S — exp EK, where M is a set with card M =

»

. card S, such that card h(x) = e card S, every f&

€ h(z) is non-zero for infinitely many meM and h(x)n h(x’) =

g for x+x’, by Y.TrZJ. Choose g collection {ﬁn\ neM? of
distinct cardinals with (3n> 2card ¥ £, 211 me M and defi-

ne
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V(n) = {O,l,a,vo,vl}u
TITERRR Y N
E(n) = 1(0,1),(1,a),(a,v,),
(a,vl)Su{(vj,<0,z))‘
fij=o0,1, z¢ Baiv
vim,z) <(n + 1,20
lmeN,zep 3

G(n) = (V(n),E(n))

and put 6400 =, Mgy 08 ) ) = g (e
me

1}

Then for the collection 4@;(x) | i = 1,2,3, xe S} a system
L9y ¥ | x,y€ S can be found such that (a),(b),(c) of the

’
theorem are fulfilled, the proofs are analogous as the pre-

vious ones.

16. Remark. By the method of [AK], the presented the-
orem can be generalized (with straightforward modifications
of the presented proof) to the sum-productive representati-
on of ordered commutative semigroups "uniformly " by ;l< ’ }i ’
& , i.e. given an ordered commutative semigroup (S,+,%£),
there exist collections

G = §6;(x) \‘xes, i=.1,2,3% & =-(gx’y\ x,yeS%t,

Ye 'iwx’x,\x,x'e S, x£x°} '
such that & and § fulfil (a),(b),(c),(d) of the theorem
and, moreover,

(e) for every x,x’e S, x&x’, ?x,x' is a one-to-one
mapping of V(x) into V(x“) such that it js an isomorphism

of G, (x) onto a summand of G;(x") for i =1,2,3;
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(f) if x,x’e S and x£x” is not fulfilled, then G, (x)
is not isomorphic to any summand of Gj(x'), i,je41,2,33.
(We recall that a subgraph G = (V,E) of G* = (V', E') is
said to be its summand if there is no edge in G’ joining a

vertex of V with a vertex in VA\V,)
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