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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,3 (1977) 

THE LUSIN-MENCHOFF PROPERTY OF FINE TOPOLOGIES 

Ja ro s l av LUKES, Praha 

Abs t r ac t ; The Lusin-Menchoff p roper ty and the Zahorski 
p roper ty of gene ra l " f i n e " topology are in t roduced . These p r o ­
p e r t i e s are d iscussed i n the cases of the d e n s i t y topology, o£ 
the Scheinberg s U-topology, and of the f ine topology i n po­
t e n t i a l t heo ry . 

Key words: Lusin-Menchoff p rope r ty , Zahorski p r o p e r t y , 
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berg s U-topology, Denjoy theorem, pairwise normal i ty of b i t o -
po log ica l space . 

AMS: Primary 54D15 Ref. 2.: 3.961.1 

Secondary 31D05, 26A15 7.972.26 

Lusin-Menchoff property. Let (P,$> ) be a topological spa­

ce. Considering on P another topology x finer than <p which 

will be called the "fine topology", we can state the follow­

ing main theorem (the topological notions referring to the X -

topology will be qualified by the prefix x to distinguish them 

from those pertaining to the topology £> )• 

Theorem .̂. The following assertions are equivalent: 

(i) Given any pair of disjoint subsets FfF^ of P, F clo­

sed, F^ x -closed, there are GjG^ c P, G open,G^ X -open 

such that 

F^ c G, Fc Qx , G n G t * / . 

( i i ) For any couple Fv c U of P, F^ x - c l o s e d , U open, 
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there i s an open se t Gc P such that F„ c G c G ^ c U. 

( i i i ) For any couple J?cU t , F c lo sed , Vv x -open, t h e ­

re i s a X -open s e t JX^ such that F c JX^c J l ^ e U^ . 

( i v ) Given any pair of d i s j o i n t subsets FfF^ of P, F 

c l o s e d , F^, x - c l o s e d , there i s a *x -continuous and upper-

semi continuous funct ion f on P such that 

O £t 4 1 , f = 0 on F t , f = 1 on F. 

Proof. Obviously, ( i ) , ( i i ) and ( i i i ) are equivalent* and 

( i v ) imp l ies ( i ) . Assuming ( i ) , the construction of f i s s i m i ­

lar to that of Urysohn's lemma (see 191, Chap. IV, Lemma 4), 

so we can sketch i t only. Let D be the se t of p o s i t i v e dyadic 

rat ionale . For 16 D, t > l we put F( t ) =- P, l e t F(l) - P\F, 

and l e t F(O) be any open set containing F% whose m -closure 

i s d i s jo int with F. By induction we associate with any 

t e ( 0 , l ) n D an open set F(t) in such a way that 

t < s , t , s € ( 0 , 1 ) A D *«-» F ( t ) c f ( t ) r c F ( s ) . 

Putting f: x i—• inf •{ t; x € F ( t ) } , f has a l l desirab le pro­

p e r t i e s . I t i s x -continuous (193, Chap. IV, Lemma 3) and, 

moreover, i t i s upper-semicontinuous since 

- U e P ; f (x) -c oci - W { F ( t ) ; t c D, t < oc J . 

Obviously, 

Oht £ 1 on P, f = 0 on F^ , f = 1 on F. 

Def ini t ion. We sha l l say that the topology t, has the 

Luain-Menchoff property (with respect to p ) I f any of the 

equivalent assertions of Theorem 1 i s s a t i s f i e d . Of course, 

i f x » q> then the Lusin-Menchoff property i s equivalent 

to the normality of the space ( P , t ) . Generally, a topology 
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with the Lusin-Menchoff property need not be normal* 

Remark. In the setting of bitopological spacea of J.C. 

Kelly (Proc. London Math. Soc. (3)13(1963), 71-89) the Lusin-

Menchoff property of the fine topology x with respect to 

topology <p means nothing else as the palrwise normality of 

the bitopological space ("Ptxff)» 

In what follows, given a function f on P, Z(f) stands 

for the zero set of f, i.e. Z(f) ={xeP; f(x) = 0} . As usu­

al, JR. will be the set of reals. 

Corollary 2. Suppose that the topology x has the Lu­

sin-Menchoff property. Then: 

(a) X is completely regular; 

(b) If <p is a metric topology, then tr is cometrizable 

(topological space (P,f) is cometrizable if there is a metric 

topology <p on P coarser than tr such that each point of P 

has a neighborhood base in (P,x ) the elements of which are 

<b -closed); 

(c) For any closed set F and for any x -open set G^ , 

FcG^ , there is a X -cozero set C, Fc CcG^ ; 

(d) For any K -closed 9et Fx and for any set G of ty­

pe G^, F% c G, there is a f -continuous and upper-semicon­

tinuous function f on P such that F% c Z(f)c G; 

(e) (Zahoraki property o f t ) Any t -clo3ed 9et of ty­

pe GJJT is zero set of a t -continuous and upper-semi conti­

nuous function on P; 

(f) Any pair of disjoint oi ̂ closed sets of type G^ can 

be separated by % -cozero sets* 
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Proof* The proofs are immediate consequences of Theorem 
GO 

1. For (d ) , i f G = ^ 4 G n > Gn open, i t i s s u f f i c i e n t to put 
00 -n f = S ^ 2 f „ , where f„ are constructed as i n Theorem 1 for 

F^ and P \ G n . For ( f ) , assume that A,B are d i s j o i n t ^ - c l o ­

sed s e t s of type G^ » and fA>fB are x -continuous functions 

on P , 0 6 f A , f B 6 l f Z(fA) =- A, Z(fB) = B. We put 

Cf « fA / (fA + f B ) t CA = 4 x € P; $p(x)< ^ J , Cg =--tx€ P; 9>(x)> 

> -r* ? . Then ^ , 0 - ^ are d i s j o i n t x -cozero s e t s containing 

A,B, r e s p e c t i v e l y . 

Remarks. ( l ) Let <p be a metric topology on P# Assume 

that any x -continuous function on P i s of Baire c lass 1 (mo­

re on t h i s subject can be found i n C133). Then any T -zero 

s e t i s X - c losed and of type G^ • Zahorski property for X 

s t a t e s the converse assert ion* and thus x -zero s e t s are com­

p l e t e l y descr ibed . Moreover, the function in question can be 

chosen to be upper-semi continuous*. 

(2) Assume that the topology X on P has the Lusin-Men-

choff property with respect to f • Putting 

$ -*-{f; f i s non-negative x -continuous and lower-se-

micontinuous function on P } , 

§ i s a convex cone on P . The coarsest topology x* on P 

f iner than <p making a l l functions from $ continuous i s ex ­

ac t ly x . Indeed, l e t U b e t -open, x c U . There i s f, 0£ f k 

i 1 , 1 - f 6 $ such that 

f (x ) « 1, P ^ U c Z ( f ) . 

Then 

x 6 { y * P ; 1 - f ( y ) < -£ } c U, 
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On the other hand, t i s obviously finer than f £, . Thus 

the topology with the Lusin-Menchoff property is the £iafi. 

topology associated with the cone $ in the sense of M. Bre-

lot C 23 and has a l l corresponding properties. In par t icular , 

we obtain the following corollary immediately (see C 21, Theo­

rem 1,4) • 

Proposition 3. If z has the Lusin-Menchoff property 

with respect to a locally compact space (P,f>), then ( P , f ) 

i s a Baire space. 

Tietze'a type extension theorem. The classical Tietze 's 

theorem on extension of continuous functions from closed sub­

sets of topological normal space can be transferred in more 

general s i tua t ions . Let us mention just the principle of qua-

si-normality of the fine topology in potential theory (see 

Fuglede £63), or the extension theorem from Lebesgue null sets 

resul t ing in approximatively continuous functions (see Petrus-

ka and Laczkovich [111). We shal l not examine the connection 

between the Lusin-Menchoff property and the Tietze s type ex­

tension theorem, we s ta te the following simple theorem only.. 

Theorem 4. Assume that % has the Lusin-Menchoff pro­

perty with respect to a metric topology (p . Let F be a f -

closed subset of P, and f be a r -continuous Cbounded 3 func­

t ion on F being a r e s t r i c t i on on F of a function of Baire 

class one. Then f has %, -continuous tbounded! extension f * 

to the whole space P. Moreover, f * i s of Baire class one. 

Proof. The proof i s a s l ight modification of the c l a s s i ­

cal proof of the Tie tze ' s theorem. Assume - l £ f £ l on F. Let 

G be a function of the f i r s t class of Baire on P which extends-
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f • We put 

Gx -*{xeP; G(x)£ - 4 » Q 1 M « P ; G(x)£ -i * ' 

Fx *« txeF; tix)£ - ^ J , F1 *-£xeF; f(x) £ j J • 

By Corollary 2.d there is a X -continuous function g>^ of 

A A A 
Baire class one on P t - -% h <f y & -% , 9 \ - "" 3* on F±9 

^ 1 ~1T o n ^ * A s u s u a l t se t t ing f̂  =- f - 9 ^ on F we r e ­

peat the proces3. 

Limit3 of finely continuous functions 

Theorem p. Let (P,<p) be a metric space, and let V be 

a topology on P finer than g> satisfying 

( i ) the Lusin-Menchoff property, 

( i i ) any set of type % (in f ) is of type G^ in t • 

Then any function (possibly inf in i te) of the second class of 

Baire on P i s the limit of a sequence of x -continuous func­

t i ons . 

Proof. I t i s known that a function f i s the limit of a 

sequence of x -continuous functions ( i . e . f belongs to the 

f i r s t class of Baire in the topology x ) if and only i f for 

any rea l c, the sets -CxeP; f (x)£ c? 9 i xe P; f ( x ) £ c j are 

the countable intersections of x -cozero s e t s . Thus, i t i s 

sufficient to prove that any set .of type T$ i s the countable 

intersect ion of X -cozero sets* Let F be such a set of type 

Fg . Using ( i i ) , there are X -open sets Gn such that F * 

-JO*A®^ -?--X now a natural n« There are closed sets F% F * m»* i n * 
-» «C[| FK For any j we can find x -cozero set Cn such that 

J^c CncGn . Then F « J j , ^Q< Cn, and ^ C}> i s x -cozero 

s e t . The proof of Theorem 5 i s now straightforward. 
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Remark. If any x -continuous function on P i s of the 

f i r s t class of Baire and the assumptions of Theorem 5 are sa­

t i s f i ed , then the set of a l l functions of the second class of 

Baire coincides with the set of a l l functions which are in 

the tr*-topology of the f i r s t class of Baire. 

Density topology. Let us consider the usual ordinary 

density topology on an euclidean space Rn (the ordinary den­

s i t y topology is formed by measurable sets having any of i t s 

points as a point of ordinary density; approximately continu­

ous functions are exactly functions continuous in t h i s topo­

logy. See, e .g . , C 81)* The history of discovery of the Lusin-

Menchoff property i s in te res t ing . I t seems that the f i r s t a t ­

tempt is due to V.S. Bogomolova 1924 (Sur une classe des fonc-

tions asymptotiquement continues, Matem. Sbornik 32(1924)^152-

171, Russian with French summary). She writes word for wordi 

"Les th^oremes sur les points d'^paisseur etaient d^montres 

d'abord par M. N.N. Lusin et M« D.E. Menchoff. N'ayant aucune 

id£e de leur m£thode j al obtenu quelques jours plus tard une 

autre demonstration". The generalization of the resu l t s of V* 

Bogomolova can be found in the paper of I . Maximoff 1940,1153• 

In [81 the proof of the Lusin-Menchoff property i s simplified 

and generalized to Rn. We must underline that in the#e papers 

the obtained resul ts are a l i t t l e deeper than the just defined 

Lusin-Menchoff property. t 

Thus, the density topology has the Lusin-Menchoff proper­

ty . Moreover, any Borel set in density topology i s of type G^ 

in this topology. Indeed, any density-Borel set i s Lebeague 

measurable, so i t is of the form G\ N, where G i s of type G^ 
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and N has Lebesgue measure zero. It follows that any such a 

set is G^ in density topology. Of course, any continuous func­

tion in the density topology is of Baire class one (cf. £131), 

thus our Theorem 5 gives the following theorem which was pro­

ved by D. Preiss 1971, £163, and independently by G. Petruska 

and M. Laczkovich 1973, L101. 

Theorem. Any function (possibly infinite) on Rn is of 

the second class of Baire if and only if it is the limit of a 

sequence of approximately continuous functions. 

There are variety of mathematical papers devoted the stu­

dy of the approximate continuity and of the density topology 

beginning with the significant investigation by A# Denjoy in 

1915. The summary of the most important facts about the densi­

ty topology is collected in the recent paper of F.D. Tall 1976, 

[183. We add simple remarks only. 

It is not difficult to prove that the Borel subsets of 

the real line in the density topology are precisely the Lebes­

gue measurable sets. .Further, the rare ( = nowhere dense) sub­

sets in density are always closed, and coincide with the Lebes­

gue null sets. These observations lead easily to another proof 

of the classical result of A* Denjoy. 

Theorem (Denjoy). A real function o n E is Lebesgue mea­

surable if and only if it is approximately continuous almost 

everywhere. 

1 Proof. In density topology, the meagre sets (- sets of 

first category) are closed. Therefore, the Borel sets coincide 

with almost open sets ( -=- sets with the Baire property)• It 

follows that f is a Borel function in density topology if and 

only if it is almost open (= measurable with respect to the 
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9y9tem of all almost open sets), and this is the case if and 

only if there is a null set N c It such that the restriction 

of f to K \ N is approximately continuous. Thus, a func­

tion f is Lebesgue measurable iff it is approximately continu­

ous almost everywhere (i.e. approximately continuous on a den­

sity-open set R N N) • 

The previous considerations are closely related to' many 

construction of functions with required properties. As a sim­

ple application only, we draw the attention to the so-called 

"functions of Pompeiu" whose lengthy and detailed study can 

be found in S. Marcus 1963, E14J. Some questions raised there 

were answered in the papers of A. Bruckner 1863, I 33 and of 

J.S. Lipiriski 1963, E12J. Using the Extension theorem 4 we are 

able to construct the simple counterexamples as well. (It 

seems that the similar problems motivated the investigation of 

Petruska and Laczkovich.) 

(a) Let A be a countable dense subset of JK containing 

0 disjoint with B »-{n" ; n natural} . There ia a bounded ap­

proximately continuous function f 9uch that AcZ(f), f = 1 on 

B. Thu3, at the point Oe Z(f) the function f is not continu­

ous. 

(b) Assume that A1>A2fA-j are diajoint, dense, countable 

9ubset9 of R » There is a bounded approximately continuous 

function f such that 

kxc Z ( f ) , A 2 c { x € " & ; f ( x ) > 0 } , A 3 c i x e R ; f ( x ) ^ O l . 

(It is 3ufficient to pre3cribe the values of f at the point9 

of Aj^AgfA-j as follows: 

f(x) * 0 if xe Alt f(a*) * (-l)
1!!"1, 
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i f k± ^ i a j . a ^ , . . . I 9 i s --»2.) 

The primitive of f on R i s thus the example of function which 

i s d i f ferent!able everywhere and nowhere monotone. 

Remark. There are 3ome general izat ions of the Lttsitv 

Menchoff theorem in more general s e t t ing ( see , e . g . , £43)* On 

the other hand, the so - ca l l ed strong densi ty topology i n t r o ­

duced in i&l has not the Lusin-Menchoff property. 

Scheinberg's U-Topologies# In Scheinberg's paper Cl7J t 

1971 the density topology on the real l ine was strengthened 

to extremally disconnected topologies using u l t r a f i l t e r s on 

the c o l l e c t i o n of s e t s of pos i t i ve Lebesgue measure* More pre­

c i s e l y , l e t °0l be an u l t r a f i l t e r in the family of a l l measu­

rable subsets of R containing the f i l t e r of a l l measurable 

s e t s having the dens i ty 1 at the point 0 . A set A i s a f t -

neighborhood of 0 i f A contains some member of WC * By t rans ­

l a t i o n of Vt we define % -neighborhoods of any point in K • 

In L19J, F.V. Tal l asked for the cometrizabi l i ty of the Vl -

topology. The answer i s contained in the following theorem* 

Theorem 6. The VI - topology has the Lusin-Menchoff pro­

perty (with respect to the euclidean topology on R )# 

Proof (the idea i s due to L. ZajiSek): Given a closed 

s e t F c R and a W -c losed set F^ c R , i t i s su f f i c i ent 

to construct an open set G containing F^ in such a way that 

any point of F i s point of d i spers ion of GNF^ • Indeed, then 

the closure of G \ F ^ in the dens i ty topology i s d i s j o i n t with 

F, and therefore the VI -c losure of G does not meet F* 

Let ^^ant^nH be the sequence of a l l contiguous i n t e r ­

vals of F. Put 
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ocn = an i f an e Jt , and «*n = bn - 1 i f an - -«> , 

fin = bn i f bn e R » a n d /-n = an + - i f bn = + °° ' 

° n = I < « » • / - » > • 

For positive integers k define points cn by the relation 

k-1 „k _ 1 (Jc-1 _ _, x 
cn - cn - n + fc + 3; U n - ccn). 

k k *. 
Obviously, cn \ | ot>n* ^ o r n e & a * i v e integers k define cn in such 

o -k k 

a way that cn would be the center of the segment cn , cn • 

It i s easy to see that there i s an open set G containing F^ 

such that 
C t ( ( c n ' c n " 1 ) n ( G N F < c ) ) 1 

fc_l \ — <
 n t k f o r P»-*-»- k, 

cn " cn 
and 

( i*((cJ+ 1 i )n(G\pJ) , 
ck _ V l " n-5TFi f o r n e« a t l v e *' 
n n 

If x e («-nt ftn), choose j such that x e [ c}^*"1,^). 
Then 
( * ) <^<<*n»xXn(GN*V ) } . f4X(ocn«cn ) < G V ^ >> . 

S OT » 
* " <*n cn " <*n 

^((<*n ,cn+*)r>(G\F^)) c j - c j N - ^ 2 
* 4*1 _ * j+i _ - n • 

cn ocn cn ocn 

Similarly, i f m is a positive integer and j > m, then 

<t*((«n,x)n (G\F«,) 2 (**) i §L-_ SL.^—. . 
x - ocn m 

Now, any point x£F is a point of dispersion from the right 

of G\F . This follow* easily from (** I in the case x =* an 
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for some n, and from (*) in the opposite case. Using sym­

metry of our construction, any point x e F is in fact a point 

of dispersion of G \ F ^ • The proof is complete. 

In £17.1 it is proved that the ^t-Borel sets coincide 

with the Lebesgue measurable sets, and that a set is 'M.-rare 

if and only if its measure is zero. The same observations as 

above give the following result. 

Theorem. A real function on R is Lebesgue measurable if 

and only if it is %-continuous almost everywhere. 

Remark. The important theorem from Ll73 asserts that any 

bounded measurable function is almost everywhere equal to a 

unique determined %-continuous function. Thus, it is easy 

to se«r that the %-topology serves an example of "fine" to­

pology in which not every ^.-continuous function is of the 

first class of Baire. 

Fine topology in potential theory. In this section, X 

will denote an abstract *J3-harmonic space with countable ba­

se in the sense of the axiomatics C* Const ant inescu and PL* 

Cornea. For all notions we refer to C 51- The fine topology on 

X is defined as the coarsest topology on X which is finer 

than the initial topology and which makes any hyperharmonic 

function on X continuous. The fine topology is always comple­

tely regular, and X endowed with the fine topology is a Baire 

space. On the other hand, the fine topology has many patholo­

gical properties - it is seldom metrizable, generally, it is 

neither normal nor Lindelof, it has not the Blumberg proper­

ty. Recently, B. Fuglede 1974* 171 proved that any finely con­

tinuous function on X is of the Baire class one (the simpli-
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fied proof of this fact can be found in £131). Hence, fine-

zero sets are fine closed and of type G *̂. Conversely, we 

shall show that the fine topology (under certain restricted 

assumptions) has the Zahorski property. Even, i t has the Lu-

sin-Menchoff property. 

Theorem 7. If the axiom of polarity holds on X, then 

the fine topology on X has the Lusin-Menchoff property. 

Proof. Assume that F,Q are disjoint se ts , F closed, Q 

fine closed. First, we find a zero set Z of a finely continu­

ous function such that QcZcXNF. Denoting by b(A) the set 

of a l l points of X where A is not thin, we have 

Q -r b(Q) u£Q\bCQ)3 . 

If p is a finite, continuous strict potential on X, then 

b(Q) =**xeX; Sj(x) » p(x) ? . 

AQ 

Obviously, AZ and p are finely continuous functions on Xf and 

p - IC i s upper-semicontinuoust. Therefore, b(Q) i s a zero set 

of a finely continuous and upper-semi continuous function* The 

set Q\ b(Q) is polar, so i t i s contained in a polar set P of 

type Grf* (£53, Corollary 7.2 .3 ) . We can suppose that Pc X^F* 

By a theorem of M. Brelot 1958 (cf. £51 , Exercise 6.2*1), 

there exists a potential q on X which i s • 00 on P and f in i ­

te on X\ P. Then 

P » ix€ X; j - arctg q(x) * 0 J f 

and therefore P i s a zero set of a finely continuous and upper-

semi continuous function f on X, 0 & f £ l . Now, we put Z -* b(Q)u 

u P. If we denote by h t^e continuous function on X such that 

527 -



0£h:4l, h a 0 on F, h > 0 on X\F, 

then the function f/f + h has all properties from Theorem 1. 

Corollary (Zahorski property of the fine topology). If 

the axiom of polarity holda on X, then the zero sets of fi­

nely continuous function are exactly fine closed sete of ty­

pe G ^ . 

Remark. Even in the case of harmonic functions derived 

from the Laplace equation, the F$ sets need not be of type 

G^ in fine topology. Nevertheless, we shall show that in the 

fine topology (under certain as3umption9) any fine closed sub­

set of X is of type G^ in this topology. We restrict to har­

monic spaces only in which the axiom of thinness holds* This 

axiom was introduced in the theory of harmonic spaces by J. 

Bliedtner and W. Hansen 1975 C13 and says that any semi-polar 

set is totally thin, i.e. it is thin at every point of X. 

Proposition 8 (perfectness of the fine topology). If the 

axiom of thinness hold3 on X, then any fine closed set is of 

type G^ in the fine topology* 

Proof. Let M be a totally thin subset of X. Using Corol­

lary 7.2.3 of U51, there is a totally thin set M* of type Q^f 
eO 

containing M. Let Gn be open sets such that Q^ Gn * M * • 

Since M*\ M i s total ly thin, M*\ M is fine closed (153, Co­

rollary 6.3 .5) . It follows that M =*„£\ I 0 n \ (M* \ M)3 is of 

type G^ in fine topology. Now, let F be a fine cl09ed sub9et 

of X. So, F » b(F)u (F \b (F) ) . The 3et F\b(F) i3 semi-polar, 

and, in view of the axiom of thinness, i t i s totally thin. 

The set b(F) is always of type G^ • 
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