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THE CATEGORIES OF FREE METABELIAN GROUPS AND LIE ALGEBRAS

V.A. ARTAMONCV, Moscow

Abstract: Homomorphisms of free metabelian AqA-groupsl

qz 0, and free metabelian Lie algebras over a commutative as-
sociative unitsal ground ring k are studied. It is proved that
the group of automorphisms of ,a free metabelian Lie algebra
L of rank 2, identical on L/L  is isomorphic to the additive
group of the polynomial group k [ X,Y] . Further; If f: Li—

—> L2 is an epimorphism of free A_A-groups or metabelian
Lie algebras over a ring k = ko[ X)yeoesXny X;;1 ,...,X: ],
where k, is a Dedekind ring, rkl; = n, rkL, = d, then L, pos-
sesses a free generating set Zyseeey2Zy such that f(zl),...
...,f(zd) is a free generating set for L2 and Zg4yre o2y ge-
nerate Ker £ as a normal subgroup or an ideal.

AMS: 17B30, 20E10 Ref. Z.: 2.723.533,2.722.32

Key words: Free metabelian group, free metabelian Lie
algebra, automorphism, free generating set.

The present paper concerns homomorphisms of free metabe-
lian AqA-groups,<;EO, and free metabelian Lie algebras over
a commutative associative unital ground ring k. In § 2 we
show that the group of automorphisms of a free metabelian Lie
algebra L of rank 2, identical on L/L° (lA-automorphisms in
terms of (1] ) is isomorphic to the additive group of the po-
lynomial group k [ X,Y] . For comparison the similar group for

a free metabelian Az-group consists o. inner a tomorphisms
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(see (11).

In § 3 end 4 we show that if f: Ly—> L, is an epimor-
phism of free A_A-groups or metabelian Lie algebras over a
x'r-l>1
kind ring, rkLl = n, rkL2 = d, then L, possesses a free gene-

q
ring k = k°[ XygeeesX

1
. yesesXg 1, where k, is a Dede-

rating set z;,...,z, such that f(zl),...,f(zd) is a free ge-

n
nerating set for L2 and Z3+10°°°12n generate Ker £ as a normal
subgroup or an ideal. In particular, let P be a retract of a
free metabelian AqA-group or Lie k-algebré L with a project-
ion £f: L—> P, k as above with ko a principal ideal ring., Then
by L2) P is free and L possesses a free generating set z;,...
«esyZy such that £(z,)= z; mod Kerf in addition to the proper-
ties mentioned above.

A consideration of metabelian Lie algebras is motivated
by the following reason. If k is a field, chark = O, then any
proper subvariety of metabelian Lie algebras is nilpotent (see
[3)). Moreover, this variety is semisimple,[4]. By [5] if L
is a free nilpotent algebra over a rield with a retract P then
P is a free factor of L. A trivial example in § 3 shows that
this does not hold for metabelian Lie algebras.

It is worthy of mention that the similer results for ab-

solutely free linear algebras were exhibited in [6].

§ 1. H 1 belian Lie al . First

we need a representation of free metabelian Lie algebras of
finite rank n. Let K = k txl,...,xnl be a polynomial ring
with the augmentation ideal M = (X;,...,X;) and M a free
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K-module with the base e;,...,e, . Define an epimorphism of

K-modules

L: M—mMm , £(ey) = X,.

Then M can be regarded as a k-algebra with the multiplicat-
ion

(1) ab = g(b)a - £(a)b, a, be M,

A direct calculation shows that M is a metabelian Lie algebd~
ra. Put

mn
L={scM|L(a) = = X, ajek}

Theorem l. L is a subalgebra in M and a free metabe-
lian Lie algebra with the base €11eees€p.

The proof under assumption that k is a field was given
in [7). But this restriction on k was not used in the proof
and is not necessary.

Corollary. L’ = Kerl.

Proof. If a, beL, then by (1) L(ab) = 0. Conversely,
if

n= = Wiei mod L', 0015 k,
and £(a) = 0, then £(a) = = o 4X; implies o) = ... =
= X = O and ae L.,
Consider now_two free metabelian Lie algebras Ll’ Lz
over k with the bases €1reeeyey and Uy peee,lye. Let
Kl=ktxl,.."xn) N K2=k[Yl,oo-’Yd]

and My ,Kq, My, 481 be associated with Ly, 1 = 1,2, by Theo=
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rem 1. Given any homomorphism @ Kl——-> KZ of k-algebras
such that

(2) @(xy) = z‘finj y Pygek,

consider a g-semilinear homomorphism h: Ml——-> M2 of modu-

les meking commutative the following diagram
——
My m

(2" h l B ll?

—
My 2, My
Proposition 1. h is a homomorphism of Lie algebras, de-
fined by (1), end h(L;)€ Ly,
Proof. If a,beM; then by (1) and (2°)

h(ab) = h(£,(bla - £,(a)b) = ¢¢(£,(b)Inla) - (£ (a))nlb)=
= A£,(h(b))h(a) - £,(h(a))h(b) = h(a)n(b).

Also by (2) and Theorem 1 we have h(L;)& L,.

Now we show that every homomorphism f: Ll-—b L2 can be
extended to a unique semilinear homomorphism (h,cp) with the
properties (2),(2°). In order to do this define ¢ : Kj—» K,
as  @(¥X;) = L£,(£(e;)). Note that by (2°) and Theorem 1 this
is the unique way of defining ¢ . Define also h: Ml"’* M2
by hley) = f£ley).

Propogition 2.  If a€L;, then £(a) = h(a),

Proof. The case a = ey follows from definition. If
f(ad) = h(aj), then £( = ocJaJ) = (= “‘.ja.j)’ Now let f(a) =
= h(a), £(b) = h(b). In this case
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£lab) = £la)e(b) = £,(£(b))f(a) = £,(£(a))£(b) =
= ,Zz(h(b))h(a) - Zz(h(a))h(b) = h(a)h(b) = h(ab)

by Proposition 1.
Thus we have proved

Theorem 2. Each semilinear map (h, @) with (2),(2°)
defines a homomorphism f: Ll—’ L2 of free metabelian Lie
algebras and conversely every homomorphism f: L)—> L2 of
Lie algebras has a unique representation by a semilinear
morphism of modules.

By uniqueness the correspondence between morphisms of
Lie algebras and semilinear morphisms is functorial. Start-
ing from now we identify homomorphism f: Ll—-> L2 with its

semilinear representation (h, ¢).

§ 2. Automorphi gms‘gﬁ free metgbelian Lie algebras. In
this part we consider the case I, =L, =L and £ = (h,¢) €
€ Aut L., By the corollary from Theorer 1 an automorphism f
is identical on IL/L’ iff @ = 1., Let G be a group of all the-
ge sutomorphisms (IA-sutomorphisms in terms of [1]). It is
clear that G« Aut L and by [ 5] Aut L is a semidirect pro-
duct of GL(n,k) and G. By (2°) £ = (h,1)e G iff h is an auto-
morphism of M as K-module, that is he GL(n,K), end £ (a) =

= R(f(a)) for all ae M. If ej,...,e  is a base of M, L(ey)=

n
"
= X;, then h = (hij)’ where h(ey) =é-§'l ejh;ji and

) m
(3) Xy = £(ey) = ,e(h<ei)) = }gq thji

n 3
This implies hyy = d'ij *+ 834, where L:E,, X835 =0, J = 1ye.e

«e.e,n. Hence,
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h=E+ TeSL(n,K), T = (gu)

In particular for n = 2 we have

Xty Xty
T = tyitrek [%,%,]
Xt Kt

and
1 =det(E+ T) = (1 + thl)(l - Xltz) + Xlxztltz =1+
+ X5t; = X35, that is t) = X3t,t, = Xt [Hence,

X Xpt X3t

T = = T(t)

-x3t -X; Xt
Note that T(t)T(t’) = O and thus for E + T(t), E + T(t)e G
we have

(E+ T(£))(E + T(t")) = E + T(t% ¢7)
Thus, we have proved
Theorem 3. If L is a free metabelian Lie algebra of

rank 2, then Aut L is a semidirect product of GL(2,k) and a
group G of IA-automorphisnis isomorphic to the additive group
of k[ ¥X),X5) .

§ 3. Epimopphisms of free metgbelian Lie algebras. In
this part we assume that for all s, r the group GL(s,k [ X),0..
«ee,X,1) acts transitively on unimodular rows (see [8]). This
is equivalent to the following fact: if R = k [X;,...,X ] and
M is R-module such that R®~¢ M @& RP then MaR®7P, The funda-

mental result of (8] shows that this condition is satisfied
1 +1

when k = ko[ Y¥y,...,Y, 2y,...,2, 1, where k, is a Dedekind
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ring.

Let Ly,Ky,Mj, My, £y, 1 =1,2, be as in § 1 and £f:
: Iy—~ L, an epimorphism, £ = (h,¢), rkl; = n, rklL, = d.
Since L2 is projective it can be regarded as a retract of
1,, that is L, 1s a subalgebra in L, and there is a project-
ion f: Ly—> L, identical on Ly, i.e. £ =z By (2), Theo-
rem 2 and the remerk made after this theorem ¢ is an idem~
potent endomorphism of Ky = k[X;,...,X;1, where @(X;) =
= = quXJ, qidek. Thus ¢ 1is an idempotent endomorph-
ism of a free k-module kX; + ..., + an'-‘-’kn and Im ¢ = x? sin-

n-d

ce Lz is free. By the remark made above Kerc¢ = k and thus

K=k [Xl,.-.,xn] =k [Yl,n--,YnJ

for some Yj,...,Y,, where
Yy, 1 =1,...,4;
(4) @ () =
O0,i=4d+1,.ee,yn.
Let % = (ecy )€ GL(n,k)E Aut K and ¥, = x (X)) = E % 3 5%4
1 =1,...,n. Then the map g, gle;) = ? o, jey defines an
o -semilinear map (g,ec) for

2y (gleg)) = ety Xy =1, = (X)) = (L)(ey)),

Thus without loss of generality we can suppose from the very
beginning that in (4)

X4 1 = 1,...,4;
(47) g (x) =

0, 1i=d4d+1,...,n.
Let ’mz be the augmentation ideal (Xl,...,Xd)< k [Xl,...
oo.,xd] ’ Imh = M2, md J = (Xd_',l,-..,xn)< k rxl,-.-’an ’
£ =(h,¢), where ¢ from (4°). Then the disgram (2°) looks
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as

—_—
My m

1
(5) h l l
4, K

¥

Note that by (47) JM) € Ker h and hence (5) induces a commu-

tative diagram

2
M = Ml/ml—l——» Mmy/amy = M,
(57 by 1
4,
Yo M,

Now Mi is a free K, = k [X;,...,X3l ~module with the base e{ =
=ey +JM, leien, and by (5°) h” is an epimorphism of free
K,~-modules. As we have already noticed Ker h is a free K, =mo=-
, ™

dule of rank n - d. Now we can identify M with ;‘?4 Kye €M) .
Thus we choose in M; a new base "l»"°'wn‘;_§'1 K,e; such

that h(w)),...,h(wy) 1s a base for M, and Wg,),e..,W, € Ker h.
Moreover, Ker ¢ = J. Since X; + mi, i=1,...,n, is a base
of a free k-module 'ml/'mi by (4°) we can also assume that

H = : =X mod J, where X = :
(wy) X,

for we can always suppose that £(h(wy)) =Xy, 1 =1,...,d,
and wye Ker h implies £)(ws)e J. Thus H is M,-modular (sea
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[21,[71).
Consider now a subgroup DsBL(n,Kl) generated by

GL(n,K;,J) (see [91) and all matrices

A U
(o B) » A €GL(d,K;), BeGL(n - 4,K,).

Propogition 3. There exists Ce D such that CH = X,
The proof in a more general situation will be given in

Proposition 4.
Since wg,y,...,W €& Kerh, JM; € Kerh by Proposition 3 for

a new base uy = 0.1, i1i=1...,n1in lll we have
2,(uy) =%, 1=1,...,n; uj€Kerh, J =d + 1,...,n,
and h(ul),...,h(ud) is a base for M,. Thus we have proved

Theorem 4. Let k be a ring such that GL(s,k [X;,...
«e+3X,1 ) acts transitively on sets of unimodular columns far
all s, r. If £: Lyj—> L, is an epimorphism of free metabeli-
an Lie algebras over k, rkl; = n, rkL2 = d, then L; possesses
a free base uj,...,uy such that £(u;),...,f(uy) 18 a base for
L? and U310 Uy generate Kerf as an ideal. In particular,
the theorem holds for k = Kk, [Yl,...,rc,z{",...,zp“], where
k, 18 a Dedekind ring (see [81).

Corollary. Let k be as above with k, a principal ideal
ring, L a free metabelian Lie algebra over k, rkLL = n, and P
a retract of L, rkP =d (see [21,[7]). If £: L—> P is a pro-
Jection, then L possesses a free base Uyjyeee,ly with the pro-
perties of Theorem 4 such that in addition f£(u;)= u; mod Kerf,
1=1,...,d4. ,

Proof. By [21 P is free and f(a) - ae&Kerf for all ac L
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since f2 = £.

Now we need to prove Proposition 3. Following [2] consi-
der a more general situation: let ApC AjC ceeCApC ... be B
chain of commutative rings, 1€ A, and for all i
1) Ay is a retract of Ay, with kernel (X1+1)‘

2) each X; 1s not a zero divizor;

3) 1f My = (X3,...,%4) < Ay, then 'mi/mf is a free A -
module of rank i;

4) GL(t,Ai) acts transitively on sets of unimodular columns
for all t2Z1,

Propogition 4. Let H be a column of length t=n, that
is an element of a free A -module A;, J = (XgppreeerXp) < 4y
and

%

H=X = modJ

Xn
o]
0
If H 48 M p~modular then there exists Ce& D (definition D as
in Proposition 3) such that CH = X,

Proof. The case d = n 18 trivial. Suppose now that for
n - 1 the affirmation has been proved. By induction (see [2])
for n we can suppose that H=X mod Xn. Again by [2] there ex-

ists cle D such that H = ClHEX mod Xg and thus for some un-
imodular Qe A}l
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(o]
. n
1
(6) Q= 0 mod X,
0
the product
(6" Q*H = X,

By (6) and 4) as it is well known there exists C,e& GL(t,A,
X,) with Q as the n-th row. Hence by (6°) the n-th element
in the column I-I2 = 02H1 is Xn and still HZEX mod Xn. Even~-
tually applying matrices
(U v) » UeGL(d,A;), WeGL(t - d,a))
0 W

we obtain X. The proof is over.

In [5) it was shown that if L was a free algebra over a
field in a nilpotent variety and P retract of L, then P was
free and L = PXB, The following example shows that this con-
dition is not satisfied in metabelian Lie algebras, though
by (3] and (4] they are quite close to nilpotent algebras.
Let L be a free metabelian algebra over a ring k with the
base ej,e,. Define £: L—>1L, £ = (h,p) as in § 1 by

(7 h(e;) =e; + Xe, - Yey, hley) =0, @(X) =X, ¢(¥) =0.

Then f2 = f. Suppose that there exists a base uy = h(el), u,
0. By

in M such that £(u) =X, £(u,) =Y and h(y,)

Theorem 3
u = (4 + X¥gle; + ngez gek[X,Y]

Via (7) this is not possible. Hence Imf is not a free factor
of L.
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§ 4. Homomorphisms of free metabelian A Azgroups. Let
qZ 0 and q#l. If C, is a free abelian group with free ge-
nerators X;,...,X, consider a group ring K = Z/qZ C, =
=2Z/q2 [Xf‘,...,x;f'] with the augmentation ideal M =
= (X3 = 1,...,X; = 1). Let M be a free K-module with the ba-
8e @)yee+se,. Define R : M—> 70 by [L(ey) =X, - 1. Fol-

lowing [1],[2] a free AqA-group F of rank n is a group of all

matrices

a O
(8) ( ) ael,, beM, £L(v) =a-1.
b 1

The free generators of F are
(Xi 0) i=1,...,n,
e 1
Note that by (1] F* consists of all matrices (8) with a = 1,
or equally £(b) = 0.

We are going to show that the results similar to those
of § 1, 3 hold for metabelian groups. Let C, be a free abe-
lian group with the base xl....,xn; C, with the base Yl,...
eess¥p; Ky = 2/qZ C3, My, My, £4, 1 = 1,2, correspond to
free AqA-groups Fy and Fz. Let £: Fj—> F, be a group homo-
morphism. As in [1] define ¢ : Kj—> K, and h: M; —> M, by

a © «(a),0
(9) f( . = (

b 1 h(v),1
Thus by (9) we define group homomorphism ¢ : C; —> C, which
in its turn determines ring homomorphism ¢ : Kl-—* Kz. An

easy calculation based on matrix multiplication shows that h
is a g -semilinear homomorphism h: M;—> M,. Note that by (9)
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(99 2£,(nlb)) = @la) -1 = @(£,(b))

or equally, the following diagram is commutative
—_—
My m

1
, e zl
(979 h l l £

¥, y L

2

2

Conversely, 1f c¢p: Cl—> 02 is a group homomorphism, h:

: ﬁl—-hllz is & ¢p -semilinear morphism and (9°°) is commu-
tative, then by (9) the pair (h,¢ ) determines group homomor-
phism £ = (h,g): F;—> F,. It is clear that this correspon-
dence is one-to-one and is functorial.

Theorem 5. Let f: Fl——i F2 be an epimorphism of free
AqA-groups, qZ0, q#1, rkfy = n, rkf, = d. Then there exists
a base 2zy,..e1Zy in F} such that £(z;),...,f(z3) is a base
for Fz and Zaepr°e°9Zp generate Kerf as a normal subgroup.

Corollary. Let P be a retract of a free AqA—group F
with & projection f: F—>P. Then F possesses a base Zysese
<1z, as in Theorem 5 and in addition f£(z;)=z; mod Kerf,
i=1,...,d.

The proof follows immediately from freeness of P (see
[21).

Proof of Theorem 5. First we assume that q = O or q is

a prime. If f: Fj—>F, is onto as in § 3 we can assume that

X3, 1 = 1,...,4,

(10 gx)) =
l,i=4+1,...,n

+1
PutJ=(Xd¢1‘1,..-,Xn-1)4 ch If A1=Z/qz IX]_ goes
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«++,X; "1 ,then by [8] the conditions 1) - 4) in § 3, where
X4 stands for Xi - 1, are satisfied. Hence, as in the proof
of Theorem 4 we can choose in M; a new base uy,...,u, such

that if £ = (h, ), then

—el(ui) = Xi -1, 1i= 1,...,n;

uJ: Kerh, j=4+ 1,...,n,

and h(uy),...,hluy) is the base for M,. By (9),(97),(9"") and

(10)
X o0
1

b |
is the necessary base for F; (see [1, 2]). Thus in the case
q =20 or q prime the theorem is proved.
Suppose now that q = pt, where p is a prime, and f: Fl"’
—-"Fz a8 in the theorem., Let N1< Fy be a verbal subgroup in

Fy corresponding to the subveriety A Ac A A, Then £ induces

P q

£ F/N)—* F,/N,. By the preceding results there exists a
base 2),...,z, in F)/N, associated with £'. By [2] there is
a base Zyj..e,z, in Fy such that z= zi mod N;. By the same

argument £(z;),...,£(z4) is a base for F,. Thus,

f(z‘.’) = gJ(f(zl),...,f(zd)), J =4 + 1,-.-,!1
and hence, '
Zlgcoa,zd, ZJ 831(21,.o.,zd), J =4 + 1,.--,!‘1

is the base we need.

Finelly we have to consider the case of arbitrary g>2.
Let q have a prime-power factorization q = TT qy with prime
powers q;. Note that qq are coprime for distinct i. Let £,

- 156 -



Fy,Cy,Ky My, My, £y, 1 = 1,2, be as above. Put sy = qqj’
and consider a Z /qJZ Cy-module s4M; with epimorphism of
Z/qJZ C;-modules

SJ Aei: SJMi——' SJ lmi-
As in [2] the group FiJ of all matrices

0
( ? ) ’ aSCi, beMi, BJ(B -1) =sjzi(b)
sdb 1 .

forms a free A_ A-group with free generators

93
Xy 0
s, 1=1,..0,n.

84ey 1l
The epimorphism f: Fl-—-b- FZ induces epimorphism fJ: Fld—-b FZJ
for all J. Ffrom a prime power case for every J there is a ba-
Se 2y g1eveyZpy in Fl,j such that images of the first 4 of them

form a base in sz, the others generate Ker fJ as a normal

subgroup. Moreover, as it follows from the preceding case
ziJ = E] i = 1’ LN ’n.
By [2] there exist free generators z;,...,2, in Fy such that
Xy 0
zi =
uy 1

and 84Uy = 84Uy for all i, J. The same argument shows that
images of ZyyesesZg form a free generating set for FZ‘ Thus

as in prime=-power case we can construct the necessary base
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Z)yeserZqs 2.1831 y J =4+ 1,...,n, where gy = 33(‘1"“

..-,Zd)u
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