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ON IDEALS AND QUOTIENTS OF HERMITIAN AIGEBRAS
Nasanbujangijn NAMSRAJ, Ulan Bator and Praha

Abstract: We prove that a > -algebra A is hermitian
if and only if a closed two-sided ideal I and the quetient
A/1 are hermitian.
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Let A be a comple x Banach > -algebra possibly without
unit. The spectral radius and Pték’s function of the element
a€ A will be deneted respectively by la ‘s‘ and p(a). Here
by definition p(a) = |a* .‘61/2' The set of selfadjoint ele-
ments eof A (i.e. such that a* = a) is denoted by H(A). Let I
be a selfadjoimt closed ideal im A. Our purpese in this note
is to prove the mext theorem:

The algebra A islermitian if and only if I and A/I are
hermitian,

In the case of isometric imvelution this result has been
recently obtained by H. Leptin (1].

The recent Pt4k’s contribution to the theory ef hermi-
tian algetras [3) make it pessible to prove the result in
its full generality without any continuity assumption concer-

ning the involutiom.

- 87 -



For the proof of the main theorem we need the follo-
wing characterization of hermitian algebras.

Theorem 1. Let A be a Banach > -algebra. Then the

following properties are equivalent.

1° A is hermitian.

2° For every proper left ideal Lc A there exists a nn-ze-
ro positive linear functional f with f£(L) = O.

3° For every proper modular left ideal Lc A there exists

a non-zero positive linear functional f with £(L) = O.

Proof. Assume 1°, Set Ly =4{x+A:xel, A complex}
so that Ll is a linear subspace of Al (where Al ={fa +
: a€A, » complex§, i.e. the unitization of A),

Now define £ (x +1) = A for each x + A € L. Then
f, is a linear functional on Ly with £ (1) = 1, It is evi-
dent that L is a proper left ideal in Al' Therefore, we ha-
ve 0 ¢ & (x) for all xeL, hence Ae & (x +A). Hence
lf‘(x +A)l = Al £lx +9\.|5. .

Since, by definition, A is hermitian if and only if A,
is hermitian, we can use the fundamental inequality [3). It
follows

If(x+r) & lx+ Al & p“l(x +A).

The Ptdk’s function p being a pseudonorm on hermitian
algebras [3], we can extend f,, by Hahn-Banach extension
theorem, to @ linear functional f satisfying |f(a)l£ p(a)
for all ag A,. New by Theorem 6.4 of [3], £ is state on A
By definition f£(L) = O,

In this fashion we have obtained the implication 1°—

—+2°, The implication 2°—>3° is immediate.

- 88 -



Assume 3° and let us prove 1%, Let b€A and h = bk b,
e A(1 + h) would be a proper modular left ideal in A, then
there would exist, hy assumption, a non-zere positive defi-
nite linear functional f with £(A(1 + h}) = O,

It follows that f(a + h) = f£(a) + £(ah) = O for all
acA. Putting a = h, we obtain £(h) + £(h?) = 0. The func-
tional f being pesitive, this implies f£(h) = 0 = ().

From the Cauchy-Schwartz inequality we conclude f(sh) = Q
for all a€A and hence £ (a)== O, £ = 0, which is not the ca-
se. Therefore A(1 + h) = A, This means that -1 &6°(h) and se
A is hermitian. The proof is complete.

Remark. For locally continuous involution the implica-

tion 1°—»3° was proved in the monograph of C. Rickart
[4, p. 236 Jand the implication 3%—»1° is due to H. Leptin
[23.

Now using these results we can state our main

Theorem 2. Let A be a Banach X-algebra. The algebra
A is hermitian if and only if I and A/I are hermitian.

Proof., Let A be lermitian and let I be a closed self-
adjoint ideal of A, Then, it is well known that for each xe I
the following relations hold:

&, (x) c 64(x)
and

96:(x) c 36,(x)
where O stands for the boundary of the spectrum.
Now, if xe H(I) then we have the following inclusions:
O,(x)c R and 961(x) c ae"(x)ch. It follows that
G‘I(x)c Rl, i.e. I is hermitian,
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Now denote by Jr the canonical quotient sk-homemerp-
hism of A modulo I, i.e. 9r : A—>A/I, It is well known
that 6, ;(ar(a)) © 6,(a) for any ac A.

Let or (x)* = or(x). Then there exists ze I (x), which
is in H(A). Hence G'A/I(dr(x)) = G'A/I(dr(z)) c 8‘(z)c81,
i.e. A/I is hermitian.

Conversely, assume I and A/I are hermitian and shew
that any maximal modular left ideal L in A is annihilated
by some non-zero positive functional f on A. Let u be a unit
module L.

Without restriction of generality, we assume I#A, We
consider first the case when A%I + L. Then M=I + Lis a
prope r modular left ideal in A hence the set gor (M) is a
left ideal in A/I. We shew that gy (M) is proper. Indeed,
if or(u) @ or (M) then u ~ meIc M for some mé& M 8o that
ueM, which is a contradiction.

Thus I (M) is a proper left ideal in the hermitian &l-
gebra A/I. Hence there exists a nen-zero positive functional
F on A/I such that P(or(M)) = O. We define a non-zere posi-
tive functional £ on A by f£(a) = F(ar(a)).

Obviously f£(M) = O, This preves the first case,

It remains the case when A = I + L. Then L, = INL is
& proper left ideal in I, hence there exists a non-zere po-
sitive functional £, on I with £ (L)) = 0. If a = i+ £y =
=z + £, with jy,J,€T ana £), LyelL then j, - j, =
= £, - £,6 L. Hence £ (j;) = £,(Jy). So we can extend £
to the whole of A in the natural way: for a = j + £ with
jeI, Re L, put £(a) = £ (j). Hence £(L) = 0O, Obviously
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f is a non-zero functiomal and we show only that it is posi-
tive.

We have e* a = j¥* j+ £* j + a*f . Herea*d € 1,
se that f(a*£ ) = 0. To compute £(£* j), we observe that
2% 5 eI whence £( L% j) = fo('l* J). since £, is positive,
we have £ (2% j) = (£,(j*£)}* , but £,(j*L ) = 0 sirce
i*Le L. .

Thus £(a* a) = £,(j¥* j)2 O and the proof is complete.
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