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COMMENTATIONES MATHEMTICAE UN1VERSITATIS CAROLINAE 

17,4 (1976) 

K-ESSENTIAL SUBGROUPS OF ABELIAN GROUPS I I 

J i n d ř i c h BEČVÁŘ, Praha 

A b s t r a c t : The purpose of t h i s paper i s to continue t h e 
i n v e s t i g a t i o n of K - e s s e n t i a l subgroups of a b e l i a n groups 
begun i n t i l . There i s g iven a g e n e r a l i z a t i o n of t h e group-
s o c l e and the i n t e r s e c t i o n s of K-essent ia l subgroups of a 
grout) G a r e i n v e s t i g a t e d wi th r e s p e c t t o t h e ex i s tence of 
t h£ sma l l e s t K - e s s e n t i a l subgroup of G. The theorem 3»3 g i ­
ves a d e s c r i p t i o n of t h e i n t e r s e c t i o n of a l l the maximal 
K - e s s e n t i a l subgroups (a g e n e r a l i z a t i o n of t h e . P r a t t i n i -
subgroup) . F i n a l l y j» t h e r e i s i n v e s t i g a t e d t h e Gal p i s - c o r ­
respondence on the power-set of a l l subgroups of G defined 
by the r e l a t i o n "A i s B - e s s e n t i a l i n Gw. Fur ther , the no t ion 
of the pu re - c lo su re i s gene ra l i zed and the topologies of G 
def ined by t h e f i l t e r s of K - e s s e n t i a l subgroups for various 
subgroups K of G a r e studied« 

Key words: K - e s s e n t i a l , maximal K-essen t i a l f essential 
subgroups| K-soclesf socles, elementary groups| K-nongenera-
tors, Frattini subgroups j 9t -closure and pure closure ope­
rators | essential topologies. 

AMS: 20K99, 20K45 Ref. 2 . : 2.722.1 

0. Introduction. This paper develops the theory of K-

essential subgroups as it was introduced in Ell. All groups 

considered here are abelian. Concerning the terminology and 

notation we refer to [33,[4] and Ell. For convenience, we 

are going to introduce the following definition from til. 

Definition: Let G be a group and K a subgroup of G. 

A subgroup N of G is said to be K-eesential in G if for eve­

ry g €. G \ K there is an integer n > 0 with ng € N \ K. 
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Notice that the set of a l l K-essential sufegroups of G 

is a f i l t e r (see 1.4 Cll)» 

Let KcN fee sufegroups of a group G. Following Krivonos 

t 51, a sufegroup A of G i s said to fee N-K-high in G if A i s 

maximal with respect to the property An N = K. 

Denote fey N the set of a l l square-free integers . 

1 . The K-socle and K-essential sufegroups. 

Definition l . l * Let K fee a sufegroup of a group G. The 

set of a l l g€ G such that there i s n € IN with nge K we 

ca l l K-socle of G and denote by Gr. 

Obviously, G i s a subgroup of G containing K. Further, 

G° i s the socle of G. The group /K i s the socle of /K$ 
m r\ fir** "tT 

i . e . ( /K) * /K. The subgroup Qt i s generated ^y the f a ­

mily of a l l elements gcG that there i s p € P with pgeK. 
Lemma 1.2. Let K fee a subgroup of a group G. Then foa? 

K 

each element ge G\G there ex is t s a K-essential sufegroup N 

of G with GKc N and g#N. 

Proof* Let g e G ^ S and p be a prime such that 

C(g • K)-< oo implies p 2 I or (g + K). Now, g <| < GK,pg > . 
K 

For, i f g s s + kpg, where s e G * and k i s an integer, then 

(kp - l)g6<3r# Consequently, there i s n € IM such that 

n(kp - l )g« K. Hence p 1 n(kp - 1 ) , a contradict ion. 

Let N fee a subgroup of G maximal with .respect to the 

proper t ies : < G , p g > c N , g^N. Then N i s K-essential in G. 

For, i f xc G\ KuN then g € < x,N > , i . e . g s rx * n, where 

n€N and r i s an integer . Now, prx - pg - pn€ N. I f prx£K 

then rxcG and g € N, a contradiction. Hence p r x e N \ K . 
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Lemma 1.3* Let K and N be subgroups of a group G* 

Then 

(i) N i® K-essential in G containing K iff N is e®~ 
K sential in G containing G f 

(ii) If N is K-essential in G then N • K is an essen-
K 

tial subgroup of G containing G * 

Proof, (i) Let N be a K-essential subgroup of G con­

taining K« If gc G then either ge KcN or there is n e W 

such that ngeNNK . Hence N is essential in G« Let gn-GNN 

and pg € K for a prime p» Nowf there is k e IN with kg€ N\ K| 

consequently (pfk) » 1. There are integers ufv such that 

up + vk * 1 and g « upg * vkg€ Nf a contradiction* Hence 

G KcH # 

Let N be an essential subgroup of G containing GF% Let 

g 6 G \ K and n be the least nonzero natural number with 

ng € N. If ng e K then n = pr for a prime p and a natural 

number r« Now, Tge (TcN and r< nf a contradiction. Hence 

nge N^K» 

(ii) It follows from (i). 

Proposition 1.4. Let K be a subgroup of a group G* The 

following are equivalent: 

(i) GK • G$ 

Cii) /K i s an elementary group f 

( i i i ) I f N i s K-essent ia l in G then N + K a- G. 

Proof. (i).s==-> ( i i i ) I f N i s K-essential in G then 

# c V + K. IQT 1 . 3 . Hence N+K » G ^y ( i ) . 
IT 

( i i i ) « = s ^ ( i ) I f geGNG then there i s a K-essential 

subgroup N of G such that G c N and g £ N by 1 .2 . Hence 
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N + K s !4-Gf a contradiction. 

(!)<«=-> (ii) it is trivial. 

Corollary 1.5. A group G has no proper essent ia l sub­

groups i f f G i s elementary. 

Proposition 1.6. Let K and N be subgroups of a group 

G. Then the following are equivalents 

( i ) K i s N - NnK-high in G| 

( i i ) N * K i s K-essential in G| 

( i i i ) N+ K i s essent ia l in G and Ore. N I K , 

Proof. ( i ) * * > ( i i ) If g e G \ K then < gsK >n N $ NnK, 

i . e . there are n _ IN , keK and meN^K such that ng * k * 

- m. Hence ng s (M + K)N K. 

( i i ) .=•=-> ( i ) I f geGNK then there i s n s W such 

that nge(N + K)\K. Hence ng * m + kf where meM\K and 

k € K; consequently < g,K > n IK^ I n K. 

(ii)<3_«:> ( i i i ) By 1.3• 

Corollary 1»7« Let K and N be subgroups of a group G. 

Then K is H-high in G iff K ® H is an essential subgroup of 
K G containing G . 

2. Intersections of K-essential subgroups. 

Proposition 2.1. Let K be a subgroup of a group G. Then 

the K-socle of G is the intersection of all K-essential sub­

groups of G containing K. 

Proof. It follows immediately from 1.2 and 1.3. 

Definition 2.2. Let K be a subgroup of a group G. Write 

GK - ® K O > where 1PK is the set of all primes p 

with _«*» G_. 
P P 
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Theorem 2 . 3 . Let K fee a subgroup of a group G. Then 

the intersect ion of a l l K-essential subgroups of G i s con­

tained in the K-socle G of G and contains the group Ggr. 

Proof. The intersect ion of a l l K-essential subgroups 
K of G i s contained in G by 2 . 1 . 

Let N be a K-essential subgroup of G. If p e P ^ then 

there is ge G N K and there ex i s t s n e N with nge N N K. 

The element ng * KnN of the group ( /KnN) i s nonzero, hen­

ce (K /Knl) = 0 "by 2.2 C 11 ( i t is not I c K ) . Consequently., 

if x£K then l e l n H , i . e . K c I . Let y e (G ) ^NK^. Now* 

there is m e IN with myc N^ K. Since pye K~$ (pfm) - 1 and 

there are integers u,v such that 1 =up + m . Hence y - upy • 

+ vmyeN. Consequently. (G_)^cS ' fo r every p e f K* 

Corollary 2 .4 . If the intersection of a l l K-essential 

subgroups of a group G i s zero then G^c K. 

Theorem 2 .5 . Let K he a pure subgroup of a group G con­

taining G.. Then the intersection of a l l the K-essential t o r ­

sion-free subgroups i s ze ro . 

Proof. Suppose K4=G, otherwise i t is t r i v i a l . Let g€G 

be an element of inf ini te order and p prime. Let M be a sub­

group of G maximal with respect to the properties: pgc M, 

g^M, Mt = 0. Then M is G^-essential in G. For, i f x e G x t ^ u M 

then ei ther < x,M >^4s 0 or g e < x,M > . In the f i r s t case* 

nx 4- m * t ; where n c IN" f l e B and t eG+ | hence <r(t)nx e 

€ M\G^. In the second case, g « nx + m, where n e IN and 

me M; hence pnx * pg - p i eM\G^ . Mow, M i s K-essential by 

3.3 ( i i i ) t i l . 

The investigation of the intersection of a l l K-essen-
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tial subgroups of a group G is connected with the existence-

question of the least K-essential sufegroup of the group G« 

If K is a sufegroup of a group G then exactly one of the fol­

lowing two cases comes fey 1.4 Ells 

(i) There is the least K-essential sufegroup H of G. A 

subgroup M of G is K-essential in G iff IfcM, 

(ii) There is no minimal K-essential sufegroup of the 

group G* 

Theorem 2.6. Let K fee a proper sufegroup of a group G. 

The following are equivalent; 

(i) G is torsion; 

(ii) k sufegroup H of G is K-essential in G iff M con­

tains Gg| 

(iii) GK is the least K-essential sufegroup of G« 

Proof, (i) =-> (iii) If G is torsion then GK is K~ 

essential in G* Porf if ge G\K then there is p e IP-r such 

that we can write g * a + fe. where ae G_\ K_ and b € €> G„. 
* P P $,€ W Q. 

Let n fee the g r e a t e s t i n t e g e r such t h a t p ' a c C L s K , i.e© 

pna\e (G ) *). I f .m * <r(fe) then mpng » mpna. Now, m i > \ ^ . L f 

s ince (m,p) « 1 . Hence mpng6Gg>* K. The r e s t fo l lows from 

2 . 3 . 

( i i i ) =.-»> ( i ) See 1.2 1 1 3 . 

(ii)<-aasss> ( i i i ) I t fo l lows from 1.4 t i l . 

For example, Z (p ) i s t he l e a s t 2 (p ) - e s s e n t i a l 

sufegroup of 2T ( p ° ° H -2 (P > i s th« l e a s t j? (p ^ e s s e n ­

t i a l sufegroup of % ( p n ) f where n > k . 

Theorem 2.7* Let K be a t o r s i o n subgroup of a mixed 
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group G. Then the subgroup Gg i s the intersection of a l l K-

essent ia l subgroups of G. Moreover, Gg i s not K-essential 

in G, i . e . there i s no l e a s t K-essential subgroup of G» 

Proof. The intersect ion of a l l K-essential subgroups 

of G i s tors ion by 2«3« On the other hand, the torsion pa r t 

of the in tersect ion of a l l K-essential subgroups of G i s (^ 

by 1.8 [ 11 and 2.6« 

Proposition 2 . 8 . Let H and K be subgroups of a group G. 

( i ) I f I i s K-essential in G then N J G^€) Mf where M 

i s an essent ia l subgroup of some (G~ + K)-high subgroup of 

G. I f K i s torsion then the converse holds, too* 

( i i ) I i s G^-essential in G and torsion-fre® i f f H i s 

essen t ia l im some G^-hign subgroup of G. 

Proof, ( i ) If A i s a (Gg-. + K)-high subgroup of G then 

M » AAM is essent ia l in A. How, I o ( ^ © M ly 2.3* 

Conversely, suppose tha t K i s torsion and NDG £ (© M, 

where M i s an essential subgroup of some (G^ * K)-iiigm sub­

group A of G. Let g€ G\K. I f g ;€§ t then there i s m € N 

such that mg€ % X K by 2 .6 . If g#G^ then there is n e N 

such that ngeA © tCU + K) and consequently, there i s a e N 

with mmgeig* 

(ii) It follows from (i)# 

The intersect ion of a l l G^-high subgroups of a group G 

i s aero by Prop* 9 £ 52 « low, the intersection of a l l the 

0 t - e s sen t i a l torsion-free subgroups is zero by 2.8 ( i i ) * 

Compare with 2 .5 . 
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3. Intersections of maximal K-essential subgroups 0 

If K is a subgroup of a group G then the maximal sub­

groups of G that are K-esse ntial in G are calle d maximal K-

essential subgroups of G. The maximal K-essential subgroups 

of G are exactly maximal elements of the f i3t er of all K-es­

sential subgroups of G. 

Definition 3.1. If K is a subgroup of a group G and p 

is a prime then we denote by K*5 the subgroup of G generated 

by the subgroup pG and by the set of all x£ G\ K with pxe K. 

Lemma 3.2. If K is a subgroup of a group G and p is a 

prime then 

(i) Kp is the least K-essential subgroup of G contain­

ing pG; 

(ii) pG is K-essential in G iff K^ = pG. 

Proof, (i) If g£ G\K then either pg€ pG\Kc K P \ K or 

pg€ K, i.e. geK p\ K. Consequently., Kp is K-essential in G. 

Suppose N is K-essential in G containing pG. If x<£K and 

px€K then there is n e N with nx€N\K* Now, (p,n) = 1 and 

there are integers u,v such that 1 = up + TO. Hence x * upx + 

+ vnxc N and Kpc N. 

(ii) It follows from (i). 

Theorem 3*3* If K is a subgroup of a group G then the 

group ^ - Q K P is the intersection of all maximal K-essential 

subgroups of G. 

Proof. If M is a maximal subgroup of G then M& It (p) 

for some prime p; hence pGc M. Moreover, if M is K-essential 

in G then Kpc M by 3.2. Let x$1& and N be a subgroup of G 

maximal with respect to the properties: Kpc N ana x^N. If 
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ge G\N then x 6 <g,N > fi.e. x = kg * n, where n€ N and k 

is an integer. Hence kg € < xfN > . Now, (pfk) » 1 and there 

are integers u,v such that 1 » up + vk. Consequently, g « 

= upg + vkg € < xfN> ,. i.e. G * < xfN> . Hence N is a maxi­

mal subgroup of G. Since K^c Nf N is K-essential in G. Con­

sequently, K^ is the intersection of all maximal K-essential 

subgroups of G that contain pG. 

Definition 3«4. Let G be a group and K a subgroup of 

G. An element g of G is said to be K-nongenerator of G if 

G * < gfM > f and < M > being K-essential in Gf imply G m 

*<M>. 

Theorem 3.5. If K is a subgroup of a group G then the 

intersection of all maximal K-essential subgroups of G is 

the set of all K-nongen era tors of G. 

Proof. If gcG is not a K-nongenerator of G then there 

is a proper K-essential subgroup N of G such that G **<g9My • 

Denote by M a subgroup of G maximal with respect to the pro­

perties: Nc M and g#M. The subgroup M is a maximal K-essen­

tial subgroup of G and g#M. Conversely suppose that there 

is a maximal K-essential subgroup M of G with g$M. Hence 

G * < Mfg> and g is not a K-nongenerator. 

Put K « G. It follows from 3.3 that the Erattini sub­

group of G is the intersection of all pG with p running over 

all primes p (see ex. 4f § 2C33). By 3.5f the Prattini sub­

group of G is the set of all nongenerators of & (see § 62 

C61). 

Proposition 3*6. Let K be a subgroup of a free group 

G. If K is of finite rank then the intersection of all maxi-
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mal K-essential subgroups of G i s zero* 

Proof. Let g be a nonzero element of G. By 13.4 C33f 
*f\* # rty 

we can write G » . ®„ < a* > €) G t K *. © . < m* a* > and 
/n, 

g * . 2 . --V^f where n e !W , m̂  ate nonnegatiTe integers 

and r^ are in tegers , i = l f . . . f n . Let j be an integer such 

that l£j-£rm a n d r . t + 0 | l e t p be a prime such that (p fr«) * 

« 1 and (pfmi) * i f0T eTery i « l f . . . f n . The group pG i s 

K-essential in G. For, i f x e G \ K , where x S ^ S ^ s ^ + x'9 

s^e 2 9 x*€ G#, then pxc pG. If pxeK then x ' * 0 and 

rn^l ps^ for each i » l , . . . f n . Now, m^l s^ for eTery i -

* l , » . . f n and hence x€ Kf a contradict ion. Since g$ pGf g 

i s not contained in the in tersect ion of a l l maximal K-essen­

t i a l subgroups of G by 3.2 and 3 . 3 . 

From 3*6, i t follows that the pure-assumption of the 

subgroup K of G in 2.5 i s not necessary• 

4* *&-closures and essent ia l topologies . Let G be m 

group. Let T be the set of a l l subgroups T of G such that 

A is a torsion group, and & be the se t of a l i subgroups 

F of G such than: /F i s tors ion-f ree . Consequently, 3* i s 

the set of a l l G^-essential subgroups of G (see 3.3 ill) 

and J* i s the set of a l l pure subgroups of G containing G^. 

The set 7* i s a f i l t e r (see 1.4 £13) and the set & i s c lo­

sed under intersections and chain-unions. 

For any two subgroups A and B of G define A © B i f A 

i s B-essential in G, For a nonempty family 9t of subgroups 

of 8 put 3t<8> » ( B ; A 9 B V A e ^ l y , &7t - - U | AG B 

VBctf l . 
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Now9 using 1«4, 1.5* 3o3 dig it follows that the set 

Q7C is a filter. If at *-£G J then 031 is the set of 

all subgroups of G* Otherwise <39t is a subfilter of the 

filter T and 091 * T iff a t e ? . 

The set 3t® is closed under intersection® and chain-

unions and it contains both the largest and the least ele­

ments* Denote thij® least element fey 3C (3t)s or % (N), if 

n • iM} . X (at) " fl at 0 . On the other hand dt c T 

implies 3̂. c 9£ © • If 9t *-£<H then at 0 is the set 

of all subgroups of Gf at * T implies 2t © * T » 

Definition 4.1* Let G be a groupf at be a nonempty fa­

mily of subgroups of G and E be a subset of G» Then the in­

tersection of all subgroups K e VtQ with EcK is called 

at-closure of E and denoted by 9t(B)» The intersection of 

all pure subgroups of G containing the group <EsGt> is de­

noted by < B >£ • 

Obviously, < E >^ is a pure subgroup of G for every 

subset E of G. If N 6 at , then n (H) = G. 

Theorem 4*2« Let G be a groupf at be a nonempty fa­

mily of subgroups of G and E be a subset of G. Then 

(i) The map E .—» 9t (E) is an algebraic closure opera­

tor; 

(ii) If at $ T then 91(B) » Gj 

(iii) If at c T then <E > c at (E) c <E >̂  5 

(iv) Iflt-KG* then at(E)=*<E>£ 

(v) If at = J" then 9t(E) *<E>^ . 

Proofs Since at © is closed under intersections and 

chain-unionsf the operator 9t(-) is an algebraic closure 
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operator by II.1.2 C2J. The rest follows from the remarks 

at the beginning of this section. 

Theorem 4*3* Let 21 be a nonempty family of subgroups 

of a group G. If 2t c T then X (#) * ©-, Gn, where R 

is the set of all primes p with G Ipl <£ r\VL . If 7L <fr T 

then % (It) * G. 

Proof. The group K » 3C(#£) is the intersection of all 

subgroups L of G, such that each N £ 71 is L-essential in 

G. Let 1tl c T . Denote by H the set of all primes p with 

G Cpl £ A W and H * <£>R Gp. If Kp* Gp then G tpl c (Gp) *>c 

c H for every N € 3£ (by 2.3)# Consequently, if j> e TR then 

ItL - G^ and hence He K. For the rest it is sufficient to show 
P P 

that every N £ 31 is H-essential in G. Let ge G\H and N e # . 

If g is of infinite order then there is n £ M with ngeNSH, 

since M is torsion. If g is of finite order then cr(g) * 

* qr, where q e 1P\ TR and r e N . Now, rg€ G £ q3 c N and 

rg^-H. The case 3t £ T is trivial. 

Definition 4.4. Let ?l be a nonempty family of sub­

groups of a group G. The topology of G, that is determined fey 

the filter 031 as a base of open neighborhoods about 0, 

is said to be the HI -topology of G, or K-topology of Q9 it 

Hi • A K 3r • 91 -topologies, with 2t running over all nonem­

pty families of subgroups of G, are called the essential to­

pologies of G. 

Theorem 4.5* Let G be a group. Then 

(i) G-topology of G is discrete. If It* iG} then 

the Hi -topology of G is nondiscrete; 

(ii) If G is not torsion then G^-topology of G is the 
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finest nondiscrete easentail topology of G. It is Hausdorff 

and it is identical with each 71 -topology, where 4G1 + 

4. n c r 5 

(iii) If 71 -topology of G is Hausdorff then G+c K for 

every K e 71 5 

(iv) If K is a proper sungroup of G then K^.-topology 

of G is finer than K-topology of G. 

Proof. It follow from 3.3 £11, 2.4 and 2.5. 

Corollary 4.6. Torsion groups are exactly the groups 

with no nondiscrete Hausdorff essential topology. Torsion-

free groups are exactly the groups with Hausdorff O-topolo-

gy* 

Remark 4.7. Denote by *A the class of all groups 

with Hausdorff K-topology, for any subgroup K. Then 

(i) A is closed under subgroups$ 

(ii) Every free group of finite rank is contained in 
A , 

(iii) Every group from Ji is torsion-free. 

Proposition 4.8. Let K and L be subgroups of a torsion 

group G. Then the K-topologyof G is finer than the L-topo-

logy of G iff GgC G-*. 

Proof. I t follows from 2.6. 

Corollary 4 .9 . The K-topology and the L-topology of a 

tors ion group G are identical i f f 

( i ) Kp * Gp i ff Lp = Gp, 

IL Lu 
(ii) (G ) p = (G ) p for every prime p. 

Proposition 4.10. Let k and m be nonnegative integers. 
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Then 

(i) The a l -topology of the group Z is finer than 
HE W. 

the kZ- topo logy of Z i f f 1-4 h ( m ) implies 1* hZ(k) & 

^h^(m) | 

(ii) The i l -topology and k l -topology of the group 

Z are identical iff m * k. 

Proof, (i) If the mZ -topology 5s not finer Dham the 

k J" -topology then there is a subgroup mJT of f , that is 

k Z -essential in Z and is not m Z -essential in Z . By 
w w 

1.10 £1], there is a prime p such that fo^(n)£ h^im)2:1 and 

either h?(k) * 0 or h^(n)<: h^(k). 

Conversely, i f h?(m) = £i>l and h?(k) » 0 then the sub­

group p 2 i s k 12 -essen t ia l in Z and i s not m Z -essen-
w 

t i a l i t Z ^y 1.10 CU. In case that iu(m) = i > l and 
2 2 

h (k)>h (m) holds the same. 
( i i ) I t follows from ( i ) . 
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