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K-ESSENTIAL SUBGROUPS OF ABELIAN GROUPS II

Jind¥ich BEEVAR, Preha

Abstract: The purpose of this paper is to continue the
investigation of K-essential subgroups of abelian groups
begun in [11, There is given a generalization of the group-
socle and the intersections of K-essential subgroups of a
grouo G are investigated with respect to the existence of
thé smallest K-essential subgroup of G, The theorem 3.3 gi-
ves a description of the intersection of all the maximal
K-essential subgroups (a generalization of the Frattini-
subgroup). Finally, there is investigated the Galois-cor-
respondence on the power-set of all subgroups of G defined
by the relation "A is B-essential in G". Further, the notiom
of the pure-closure is generalized and the topologies of G
defined by the filters of K-essential subgroups for various
subgroups K of G are studied.

Key words: K-essential, maximal K-essential, essential
subgroups; K-socles, socles, elementary groups; K-nongenera-
tors, Frattini subgroups; 91 -closure and pure closure ope-
rators; essential topologies.

AMS: 20K99, 20K45 Ref. Z.: 2.722.1

0. Introduction. This paper develops the theory of K-
essential subgroups as it was introduced in [1]. All groups
considered here are abelian. Concerning the terminology and
notation we refer to [31,[4] and [1]. For convenience, we
are going to introduce the following definition from [11.

Definition: Let G be a group and K a subgroup of G,

A subgroup N of G is said to te K-esesential in G if for eve-

ry e G\ K there is an integer n>0 with nge N\ K,
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Notice that the set of all K-essential subgroups of G
is a filter (see 1.4 [11).

Let KC N be subgroups of a group G. Following Krivonos
[51, a subgroup A of G is said to be N-K-high in G if A is
maximal with respect to the property AnN = K,

Denote by -ﬁ the set of all square-free integers.

1. The K-socle and K-essential subxroups.

Definition l.1. ILet K be a subgroup of a group G. The
set of all g€ G such that there is n ¢ N with ngé K we
call K-socle of G and denote by GK.

Obviously, ek is a subgroup of G containing K. Purther,
6% is the socle of G. The group GK/K is the socle of G/K,
ie. ()0 = GKIK. The subgroup &K is generated by the fa-
mily of all elements g€ G that there is pe P with pgeK.

- Lemma 1.2. Let K be a subgroup of a group G. Then for
each element ge G\ GK there exists a K-essential subgroup N
of G with 6Xc N end &R,

Proof. Let ge G & ana p be a prime such that
(g + K)< oo implies p?lo (g + K). Now, s#(GK,P8> .
For, if g = s + kpg, where se¢ ok and k is an integer, then
(kp - 1)ge é&. Consequently, there is'n e N  such that
n(kp - 1)ge K. Hence p-2 | n(kp - 1), a contradiction.

Let N be a subgroup of G maximal with respect to the
properties: ¢ Gx,ps>c N, g¢éN. Then N is K-essential in G.
For, if x¢G\KuN then ge{x,N} , i.e. g = rx + n, where
neN and r is an integer. Now, prx = pg - pné N. If prxeKk

then rxe¢ GK and g €N, a contradiction., Hence prxe N\ K.
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lemma l.3. Let K and N be subgroups of a group G.
Then

(i) N is K-essential in G containing K iff N is es-
sential in G containing Gx;

(ii) If N is K-essential in G then N + K is an essen-
tial subgroup of G containing GK.

Proaf. (i) Let N be a K-essential subgroup of G con-
taining K. If ge G then either ge Kc N or there isne N
such that nge N\K ., Hence N is essential in G. Let g€ G\ N
and pge K for a prime p, Now, there is ke N with kge N\ K;
consequently (p,k) = 1, There are integers u,v such that
up + vk = 1 and g = upg + vkge N, a contradiction. Hence
cKen,

Let N be an essential subgroup of G containing GK. Let
g€ G\K and n be the least nonzero natural number with
ngeN. If nge K then n = pr for a prime p and a natural
number r. Now, rge Ke N and r<n, a contradiction. Hence
nge NMNK,

(ii) It follows from (i).

Proposition 1.4. Let K be a subgroup of a group G. The
following are equivalent:

(1) &= g

(ii) %K is an elementary group;

(iii) If N is K-essential in G then N+ K = G.

Proof. (i)==) (iii) If N is K-essential in G then
G_KCN + K by 1.3. Hence N+K = G by (i),

(iii) =) (i) If geG™\ GX then there is a K-essential
subgroup N of G such that GXc N and g¢XN by 1.2. Hence
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N + X = ¥&G, a contradiction.

(i)<== (ii) It is trivial.

Corollary 1.5. A group G has no proper essential sub-
groups iff G is elementary.

Proposition 1.6. ILet K and N be subgroups of a group

G, Then the following are equivalent:

(1) K is N - NnK-high in G;

(ii) N + K is K-essential in G;

(iii) N+ K is essential in G and G5c N + K.

Proof. (i)==>(ii) If geG\K then < g,K>nN3Z NnK,
i.e. there are ne N , keK and me N\ K such that ng + k =
= m. Hence nge (N + X)\NK,

(ii) = (i) If ge G\K then there isne N  such
that ng e (N + K)\K. Hence ng = m + k, where me N\ K and
keK; consequently <{ g, K>nN3F NnK,

(ii)¢==> (iii) By 1.3.

Corollary 1.7. Let X and N be subgroups of a group G.
Then K is N-high in G iff K® N is an essential subgroup of
G containing GK.

2. Intersections of K-essential subgroups.

Proposition 2.1, Let K be & subgroup of a group G. Then

the K-socle of G is the intersection of all K-essential sub=-
groups of G containing K.
Proof. It follows immediately from 1.2 and 1l.3.
Definition 2.2. Let K be a subgroup of a group G. Write

Ge =""(%‘PK (Gp) , where TP is the set of all primes p

with Kp+ Gp.
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Theorem 2.3, ILet K be a subgroup of a group G. Then
the intersection of all K-essential subgroups of G is con=-
tained in the K-socle (.‘vK of G and contains the group G’K'

Proof. The intersection of all K-essential subgroups
of G is contained in GX by 2.1.

Let N be a K-essential subgroup of G. If p € ]PK then

there is ge G\ K and there exists n e N with nge N\ K.
The element ng + KX aN of the group (N/Kn N)p is nonzero, hen-
ce &/kn N)p = 0 by 2.2 [11 (it is not Nc K). Comsequently,
if xe¢ Kp then xe KnN, i.e. Kpc N. Ilet ye (Gp) \Kp. Now,
there is m e N with mye N\ K, Since pye x:p, (p,m) = 1 and
there are integers u,v such that 1 = up + vm. Hence y = upy +

+ vmy e N. Consequently, (Gp) CE for every p e Py.

Corcllary 2.4. If the intersection of all K-essential
subgroups of a group G is zero then G K.

Theoren 2.5, Let K be & pure subgroup of a group G con-
taining Gt‘ Then the intersection of all the K-essential tor-
sion-free subgroups is zero.

Proof. Suppeme K4 G, otherwise it is trivial. Let ge G
be an element of infinite order and p prime. Let M be a sub-
group of G max:unal with respect to the properties: pge M,
&M, M, = O, Then M is G, -essential in G, For, if xe GN\G UM
then either < x,M > +0 or ge<{x,M? . In the first case,
nx +m = t; wheren e N , meM and teGy; hence o (t)nx €
€ M\G,. In the second case, g = nx + m, vhere n ¢ N and
meé M; hence pnx = pg - pme M\ Gt' Now, M is K-essential by
3.3 (iii) [11..

The investigation of the intersection of all K-essen-
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tial subgroups of a group G is connected with the existence-
question of the least K-essential subgroup of the group G.
If K is a subgroup of a group G then exactly one of the fol-
lowing two cases comea by 1.4 [11:

(i) There is the least K-essential subgroup N of G. A
subgroup M of G is K-essential in G iff Nc M.

(ii) There is no minimal K-essential subgroup of the
group G.

Theorem 2.6. Let K be a proper subgroup of a group G.
The following are equivalent:

(i) G is torsionm;

(ii) A subgroup N of G is K-essential in G iff N con-

tains G
(iii) G is the least K-essential subgroup of G.
Proof. (i) ==> (iii) If G is torsiom then Gy is K-

essential in G. For, if g€ G\K then there is p € \PK such

that we can write g = a + b, where ac G\ K, and b eq,?? Gq.
¥

Iet n be the greatest integer such that pnae Gp\ Kp, i.e.

plae (Gp)%. If m = o (b) then mp g = mpna. Now, mpnaéxp,

since (m,p) = 1. Hence mpngeGK\ K. The rest follows from

2.3.

(iii) ==> (i) See 1.2 T11.

(ii)¢==> (iii) It follows from 1.4 [ 11 .

For example, Z (p¥*1) is the least Z (pk)-esaential
subgroup of Z (p*®); Z (pkﬂ') is the least Z (pk)-essen-

tial subgroup of Z (pn), where n> k.

Theorem 2.7. Let K be a torsion subgroup of a mixed
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group G. Then the subgroup GK is the intersection of all K-
essential subgroups of G, Moreover, GK is not K-eaﬁential
in G, i.e. there is no least K-essential subgroup of G.

Proof. The intersection of all K-essential subgroups
of G is torsion by 2.3. On the other hand, the torsion part
of the intersection of all K-essential subgroups of G is Gx
by 1.8 [ 1] and 2.6.

Proposition 2.8. Let N and K be subgroups of a group G.

(i) If N is K-essential in G then No Gy ® M, where N
is an essential subgroup of some (GK + K)=high subgroup of
G. If K is torsion then the converse holds, too.

(ii) N is Gy-essential in G and torsion-free iff N is
essential in some Gt-high subgroup of G,

Proof. (i) If A is a (Gy + K)-high subgroup of G then
M = AnN is essential in A. Now, NO G ® M by 2.3.

Conversely, suppose that X is torsion and N> GIQ M,
where M is an essential subgroup of some (GK + K)-high sub-
group A of G. Let g€ G\K. If geG, then there isme N
such that nge Ge\K by 2.6. If g¢ G, then there isne N
such that ngeA ® (G + K) and consequently, there isme N
with mnge M.

(ii) It follows from (i),

The intersection of all Gt-high subgroups of a group G
is zero by Prop. 9(51 . Now, the intersection of all the
G -essential torsion-free subgroups is zero by 2.8 (ii).

Compare with 2.5.
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3. Intersections of maximal K-essential subgroups.
If X is a subgroup of a group G then the maximal sub-

groups of G that are K-essemntial in G are called maximal K-
essential subgroups of G. The maximal K-essential subgroups
of G are exactly maximal elememts of the filt er of all K~es-
sential subgroups of G,

Definition 3.1. If K is a subgroup of a group G and p
is a prime then we denote by KP the subgroup of G generated
by the subgroup pG and by the set of all xe G\ K with pxe K,

Lemma 3.2. If K is a subgroup of a group G and p is a
prime then

(i) KP is the least K-essential subgroup of G contain-
ing pG;

(ii) pG is K-essential in G iff kP = pG.

Proof. (i) If ge G\K then either pge pG\Kc KP\K or
pge K, i.e. g€ kKP\ K. Consequently, kP is K-essential in G.
Suppose N is K-essential in G contairning pG. If x¢ K and
px &K then there is ne€ N with nxe N\ X, Now, (p,n) =1 and
there are integers u,v such that 1 = up + vn. Hence x = upx +
+ voxe N and KPc N,

(ii) It follows from (i).

Theorem 3.3. If K is a subgroup of a group G then the

group QPKD is the intersection of all maximal K-essential

subgroupe of G.

Procf. If M is a maximal subgroup of G then G/'IIE Z (p)
for some prime p; hence pGc M. Moreover, if M is K-essential
in G then KPc M by 3.2. Let x¢Kp and N be a subgroup of G
maximal with respect to the properties: KPc N am x¢éN, If
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ge G\N then xe ¢(g,N> ,i.e. x = kg + n, where neN and k
is an integer. Hence kg € { x,N> . Now, (p,k) = 1 and there

are integers u,v such that 1 = up + vk. Consequently, g =

L]

=ug + vkge {x,N>, i.e. G = {x,N?. Hence N is a maxi-
mel subgroup of G. Since kPc N,I N is K-essential in G, Con=-
sequently, KP is the intersection of all maximal K-essential
subgroups of G that contain pG.

Definition 3.4. Let G be a group and K a subgroup of
G. An element g of G is said to be K-nongenerator of G if
G=<gM?» , and (M) being K-essential in G, imply G =
={M?.

Theorem 3.5, If K is a subgroup of a group’G then the
intersection of all maximal K-essential subgroups of G is
the set of all K-nongenerators of G.

Proof. If geG is not a K-nongenerator of G then there
is a proper K-essential subéroup N of G such that G =<{g,N)> .
Denote by M a subgroup of G maximal with respect to the pro-
perties: Nc M and g¢ M. The subgroup M is a maximal K-essen-
tial subgroup of G end g£¢ M. Conversely suppose that there
is a maximal K-essential subgroup M of G with gé& M. Hence
G = {M,gy and g is not a K-nongenerator.

Put K = G. It follows from 3.3 that the Frattini sub-
group of G is the intersection of all pG with p running over
all primes p (see ex. 4, § 3[31). By 3.5, the Frattini sub-
group of G is the set of all nongenerators of G (see § 62
Lel).

Proposition 3.6. Let K be a subgroup of a free éroup
G, If K is of finite rank then the intersection of all maxi-
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mal K-essential subgroups of G is zero.

Proof. Let g be & nonzero element of G. By 15.4 [31],

m , m

we ca’:vnte G=‘.'?1 {%2>® G, K =a@1 < mya; > and
g 3“.'?:4 ri‘i’ where n e N s By afe nonnegative integers
and r; are integers, i = l,...,n. Let Jj be an integer such
that 1< j4n and rj=|=0; let p be a prime such that (p,rj) =
=1 and (p,m;) = 1 for every i = 1,...,n. The group pé is

”y
K-essential in G, For, if xe G\K, where x =£§4 s;8; + x’,

s;jeZ , x’e G°, then pxepG. If pxeK then x’ = 0 and
m; | ps; for each i = 1,...,n. Now, m;| 8; for every i =
= 1,...,n and hence x¢€ K, a contradiction. Since g¢ pG, &
is not contained in the intersection of all maximal K-essen~-
tial subgroups of G by 3.2 and 3.3.

From 3.6, it follows that the pure-assumption of the
subgroup K of @ in 2.5 is not necessary.

4, YL -closures anl essential topologies. Let G be a
group. Let 7° be the set of all subgroups T of G such that

G/T is a torsion group, and ¥ be the set of all subgroups
F of G such that G/P is torsion-free. Consequently, J° is
the set of all Gt-esaential subgroups of G (see 3.3 [11)
and ¥ is the set of all pure subgroups of G containing G,.
The set J° is a filter (see 1.4 [1]) and the set F is clo-
sed under intersections and chain-unions.

For any two subgroups A and B of G defire A@ B if A
is B-essential in G, For a nonempty family 91 of subgroups
of Gput M@ ={B; AOB VAeNn}, ON =4{A; A B
VBe?l.
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Now, using 1.4, 1.5, 3.3 (1], it follows that the set
@M is a filter. If 2L =4{G3% then QL is the set of
all subgroups of G. Otherwise @21 is & subfilter of the
filter & and O =T ifr N c F.

The set 1@ is closed under intersections and chain-
unions and it contains both the largest and the least ele-
ments, Denote this least element by ¥ (21), or X (N), if
N=4iN}. KX(A) = NAO . On the other hand Lt c T~
implies Fc 9 ©® . If L =4{G% then L © is the set
of all subgroups of G; L = 7 implies @ = F .

Definition 4.1. let G be a group, 2. be a nonempty fa-
mily of subgroups of G and E be a subset of G, Then the in-
tersection of all subgroups K € 2@ with EcK is called
U —closure of E and denoted by 2L (E). The intersection of
all pure subgroups of G containing the group < E,Gt> is de~-
noted by (B>, -

Obviously, < E), is a pure subgroup of G for every
subset E of G, If Ne % , then 9L(N) =G,

Theorem 4.2. Let G be a group, 7L be a nonempty fa-
mily of subgroups of G and E be a subset of G. Then

(i) The map E +—> 7 (E) is an algebraic closure opera-
tor;

(ii) If ? & T then JL(E) = G;

(iii) If X c T then (E>c A (B)c {E D, ;

(iv) If 7L ={G% then ?L(E) =<EB);

(v) If &% =J then L(E) =<E>_.

Proof. Since A ® is closed under intersections and

chain-unions, the operator % (-) is an algebraic closure
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operator by II.1.2 [2]. The rest follows from the remarks
at the beginning of this section.

Theorem 4.3. Let 2! be a nonempty family of subgroups
of a group G. If A c 7 then X (.'ﬂ) =ﬂe®R G,, where R

is the set of all primes p with GI(pl& NIL , IP N ¢ T
then ¥ (21) = G.

Proof. The group K = ¥ (71) is the intersection of all
subgroups L of G, such that each Ne % is L-essential in
G. Let %t c 3 . Denote by R the set of all primes p with
GLplE NN and H =ﬂ?k Gp. If Kp* Gp then G (pl c (GP)KPc

c N for every N € 2L (by 2.3). Consequently, if p € R then
Kp = Gp and hence Hc K. For the rest it is sufficient to show
that every Ne 2L is H-essential in G, Let g€ G\H and Ne2l.
If g is of infinite order then there is ne N with ngeN\H,
since ®/N is torsion. If g is of finite ader then ¢(g) =

= gr, where e PN\R andre N . Now, rg€GIql c N and
rg¢H. The case 9L ¢ T is trivial,

Definition 4.4. Let 91 Dbe a nonempty family of sub-
groupé of a group G. The topology of G, that is determined by
the filter ©7?L as a base of open neighborhoods about O,
is said to be the 3L -topology of G, or K-topology of G, if
M =4K% . N -topologies, with #L running over all monem-
pty families of subgroups of G, are called the essential to-
pologies of G.

Theorem 4.5. Let G be a group. Then

(i) G-topology of G is discrete. If L *= 1G} then
the 7L -topology of G is nondiscrete;

(ii) If G is mt torsion then Gy-topology of G is the
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finest nondiscrete essentail topology of G. It is Hausdorff
and it is identical with each 21 -topology, where {G7%
+NcF;

(iii) If 21 -topology of G is Hausdorff then G,c K for
every K e 7L ;

(iv) If X is a proper sungroup of G then Kt-topology
of G is finer than K-topology of G.

Proof. It follows from 3.3 {11, 2.4 and 2.5.

Corollary 4.6. Torsion groups are exactly the groups
with no nondiscrete Hausdorff essential topology. Torsion-
free groups are exactly the groups with Hauwsdorff O-topolo-
&Y.

Remark 4.7. Denote by A the class of all groups
with Hausdorff K-topology, for any subgroup X. Then

(i) A is closed under subgroups;

(ii) Every free group of finite rank is contained in
A

(iii) Every group from A is torsion-free.

Proposition 4.8. let K and L be subgroups of a toraion

group G. Then the K-topology of G is finer than the IL~-topo-
logy of G iff Gg €& GL‘

Proof. It follows from 2.6.

Corollary 4.9. The K-topology and the L-topology of a

torsiom group G are identical iff

(1) K, =6, iff I = G,
(ii) (Gp)]% = (Gp)Lp for every prime p.

Proposition 4.10, Let k and m be nonnegative integers.
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Then

(i) The m Z -topology of the group Z is finer than
the k Z -topology of Z iff 1< hi(m) implies 14 h:(k) £
P2 h:(m);

(ii) The mZ -topology and k Z ~topology of the group
Z are identical iff m = k.

Proof. (i) If the m Z -topologyis not finer bhan the
k Z -topology then there is a subgroup nZ of Z , that is
k Z -essential in Z and is not m Z -essential in Z . By
1.10 L1], there is a prime p such that h:(n)z hi(m)ZI and
either h:(k) = 0 or h:(n)< hi';(k).

Conversely, if h%(m) =4iz1 and hz(k) = 0 then the sub-
group piZ is k Z -essential in Z and is not m Z -essen-
tial in Z by 1.10 [1]. In case that h:(m) =iz1 and
hﬁ(k)> h:(m) holds the same.

(ii) It follows from (i).
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