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FREE UNIFORM MEASURES ON SUB-INVERSION-CIO3ED SPACES

Jan PACHL, Praha

Abstract: Any free uniform measure on any sub-inver-
sion~closed uniform space is represented by a Radon measure
with a compact support in the completion of the space.

Relation of free uniform, ¢ -additive and order-bounded
measures is discussed.
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additive functionals, sub-inversion-closed uniform spaces,
separable Riesz measures, Riesz measures.
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Secondary 54E15,60B05

$ 1. Introduction. The notion "free uniform measure"
on a uniform space [11,[31,[15] provides a common generali-
zation for both the notions "Riesz measure" and "separable
Riesz measure" (see § 7 below).

It is the aim of this paper to show that the theorem
about representation of these measures by means of certain
Radon measures - proved by Hewitt ([11], Th. 17) for Riesz
measures and by Haydon [10] for separable Riesz measures -
holds for free uniform measures on any sub-inversion-closed
uniform space (Theore?h 4.3 below).

In §§ 5,6 I discuss the conpections of free uniform me-
asures with order-bounded and € -additive fun;:tionals on the

space of uniform func*ions.
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Terminology and notation. Basic topies on uniform spa-

ces may be found in the Isbell’s book [12] but here we shall
work rather with pseudometrics than with coverings. All to-
pologies and uniformities are assumed to be Hausdorff.

For a compact topological space C, a Radon measure on
C is a (signed) re~gu]ar Borel measure on C., All Radon measu-
res on C are in one-to-one correspondence with &ll norm-con- .
tinuous linear‘ functionals on the Banach space of real-va-
lued functions om C ([17], II - § 2, Ex. 3).

In the whole paper R denotes the reals; X denotes an
arbitrary (Hausdorff) umiform space. % is the completion of
X, ®(X) is the system of all bounded uniformly continuous
pseudometrics on X. U(X) is the linear lattice of all uni-
form ( = uniformly continuous) real-valued functions on X,
endowed with the topology of pointwise convergence on X.

A set Sc U(X) is called U.E.-set iff it is equiuniform
( = uniformly equicontinuous) and pointwise bounded. A line-
ar form @ on the space U(X) is called free uniform measure
iff it is continuous on each U.E.- set in the topology of
pointwise convergence. The reader is referred to [15] for ba-
sic properties of the space ’m.F(X) of free uniform measures
on X; Here I shall only add that a set Sc U(X) is U.E. if
and only if its unigue extension 5 toX is a U.E.-set. Hence
the space MF(X) and 'mr(ﬁ) are canonically isomorphic.

The Banach space of bounded uniform functions on X will
be denoted Uy (X) (the norm is given by [ £l = sup {|£(x)| ’ xE
€ X3} ). Continuous linear forms on the spaces Uy (X) are call-

ed measures on X . Here I shall call "measure on X" also a
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iinear form on the space U(X) whose restriction to ub(x)'
is measure. Thus w : U(X)—> R is a measure iff « is li-
near and el = sup {1 ()| | £EU (D& £l £ 13 is
finite. It is easy to see that each free uniform measure is
actually a measure.

If {fﬂ’-%ceA is a net of real-valued functions on X in-
dexed by elements of a. directed set A then the symbol £, ™ O
‘means that lim £ = O pointwise (i.e. lim £ (x) = 0 for

<€A
any xeX) and £ _= for x £ 3.

%

§ 2. Sub-inversion-closed wmiform spaces. A ‘'subset C

of uniform space X is & Coz-set iff there exists a function
fe U(X) such that C = -fxe.xt £(x)> 03 . A real-valued funec-
tion g on X is a Coz-function iff the preimage of any open
subset of R under g is a Coz-set in X,

A space X is called inversion-closed iff every real-va-
lued Coz-function on X is uniform, The following theorem will
not be used below; it is included here just for th’e reader’s
orientation. The condition (b) explains the name "inversion-
closed"™ while the conditiom (c¢) suggests that this class of
uniform spaces should be important in the theory of & -addi-
tive measures,

Theorem. For a uniform space X the three conditions
are equivalent:

(a) X is inversion-closed;

(b) if fe U(X) and £(x)% O for each x& X then ;:1— €

€ U(X);
(¢) if £ € U (X) for n = 1,2,... and £, 40 then the
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set {f |n=1,2,...§ is equiuniform. ‘

Proof will not be repeated here. Implication (a) == (¢)
was proved by Preiss and Zahradnik {19). The other implica-
tions are proved in Frolik’s papers [61,L7) where slso other
characterizations of inversion-closed spaces are given.

The following property will be used below: any uniform
real-valued function on a subspace of an inversion-closed
space can be extended to a uniform function on the whole spa-
ce [8] (this follows from the fact that a Coz-function defi-
ned on complement of a Coz~set can be extended to a Coz-func-
tion on the whole space).

A uniform space will be called sub-inversion-closed iff

it is uniformly isomorphic with a subspace of an inversion-
closed space (this class of spaces was pointed out to me by
Zden8k Frolik).

Every inversion-closed space is sub-inversion-closed. Clear-
ly every precompact space is sub-inversion-closed. Moreover,
it can be deduced from ([12], VII.9) that every locally fine

space is sub-inversion-closed.

§ 3. Supports of uniform measures. Although we shall

work only with free uniform measures all results in this pa-~
ragraph hold for all uniform measures (with the same proofs).
3.1. Notation. If @& Px) put @(y) = (1 - @ (x,y))*
for x,ye X; obviously p*e U (X), @*=0. For any pe °(X)
and any @ e WML(X) put S(®,@) ={xeX| there exists a
function ge U(X) such that
02g &« @” and @w(@)+01}.
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Clearly, if @14 @, then ¢% 2z ¢ am S(, @) 2
DS(‘&’ ®o)e Put S(w) =@€/'ﬂ}(x)s(g.,go). .

Remark. Consider the associated Radon measure (&'. on
the Samuel compactification X of the space X [5]. It is ea-
sy to see that S(«) = Xnsuppit .

3.2, Proposition., Let M € Wp(X), @& P (X), £€U(X)
end £(x) = 0 for any x€S(&,@). Then w(f) =0,

Proof. As £ = £ - £~ one can assume £z 0, 48 («(f) =
= n?—-iﬁ (u,(f/\ n) one can assume f is bounded. Thus without any
loss of generality we shall assume that 04f £ 1.

For any finite set Fe X\ S( ) put £, = £A (max @% ).
“ @ F mx e

Order finite subsets of X\ S(&,@) by inclusion. Then lim fi=
) - F

= f pointwise, the set {fp|F finitecX\S(«,@)} is U.E.,
and hence w(f) = 1%m @(fp). But for any finite set

FcX\S(w,@ ) one can write £, = St where £, € U(X) and
« F xefp ™ X

0<% 4 @ for xeF.

Consequently ( (fp) = O for any finite set Fe X\ S(@,@)
and m(f) =0,

: Q.E.D.

3.3. Proposition. For any m & tp(X) we have S(w) =
= ? mﬁ, consequently the set S(w) is closed.

Proof. If xeX\S(x,@) and @ (y,x) < —-';T then y &
¢ S(@,2@). Hence S(u,p)o S(w,2¢ ).

The following lemma shows that the set S(u) supports
the measure @ if the se%s S(w ,@) are not "too large".
This helps to prove Theorem 4.2 below.

3.4. Lemma. Iet X be a comple te uniform space, let
@ € WMp(X). Suppese that for any @ € P (X) there exists
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a finite number of sets Rfcx i=1,2,...,n(p), such that
o -dism Bf< 6 for i = 1,2,...,n(p ), and S(@,p)c, u &,
Then the set S(.(u-) is compact and the following holds: if
feU(X) and f(x) = O for each x& S(w ) then w(f) = 0.

Proaf. I, The set S{w) is precompact, hence it is com-
pact according to 3.3.

II. Suppose that f& U(X) and f(x) = O for x€ S(w).
Choose any € > O. I claim that there exists a pseudometric
@ e $(X) such that |f(x)l< & for any xeS(w,p) (the
claim is proved below). Put g = (£' - eyt - (g7 -¢e)': one
has If - gll<¢ and g(x) =0 for any x€ S(w,@ Ve

Hence l@-(f)lé. l(w(g)l + luwE-glleelal .

As € >0 was arbitrary, the conelusion follows. ‘

III. It remains to prove the claim stated above. Suppo-

se it does not hold, i.e. there exists an € > Q such that

'S; =s(u,p)nixeX [1£x)| = €3 4 P . for each @ €
~
€ P (X). Then {SPl @ € P(X)} is a base of a filter and
there exists an ultrafilter § containing it. Now assump-
tion in Lemma implies that for any @ € P (X) there is an
i(@ ) such that Rg@)n {xeX| |fxX)I 2 e3€ F . Henc:»
% is a Cauchy filter and N { F| Fe 5 ? ={x } ; clearly
[£x)lz e .
On the other hand, x, e S(@w) and f(x;) =

This is the desired contradiction.

§ 4. Free uniform measures on sub-inversion-closed spaces.

The following property of sub-invewsion-closed spaces is

exactly what we need in the proof of Theorem 4.2 below.

- 296 ~



4.1, Lemma, Given a sub-inve;sion-clgsed space X, a
pseudometric @ & ¥ (X) and a countable set Yc X such that
@ (x,y)=3 for x,ye Y, x¥+y . Suppose further _f.hat for each
y&€ Y we are given a function fye U(X) and a real number Ky
such that 04 f <K . @Y. Then the functiom %gy £, is uni-
form on X.

Proof. Find an inversion~clwmsed space Z such that X is

a subspace of Z. fy ‘s and @ may be extended over Z: find

’f;s U(z) and @ e P (2) such that ¥, extends £, for any ye¥,
S ~ y o .
@ -extends @ , and 04 fyé. ®"v. Ky for ye Y (this certain-

ly can be done: if necessary, take (i,f;/\ Ky . @'y)*' instead of

Then ze:)’ 'f; is a Coz-function on an inversion-closed
of g
space Z, hence it is uniform and its restriction %‘?‘Y fy is.

uniform on X,
Q.E.D.

4.2. Theorem. Let X be a complete sub-inversion-closed
uniform space and let w & WZF(X). Then there exists a compact
set ,Cc X and & Radon measure m on C such that a(f) .~.f": fdam
for any fe U(X).

Proof. Put C = S((«,).
I. At first observe that the condition stated in 3.4

holds. Indeed, if it does not then there exists a pseudomet-
ric @ € P (X).such that the set S(a«,@’ is not covered by
any finite number of sets of ® ~diameter < 6. Hence one can
inductively construct an infinite countable set Y = { y;,¥5...
«votcS(w,p ) such that ®(yysyy 123 for k4 £ . For any
4 =1,2,... there exists a function 8, € U(X) such that
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g, £ So& and t(gp )#0. Choose real numbers Kp
£ =1,2,,.., such that [Kp .wl(g, )|z £ +z b Ko gy )l
[- -4
and put f,E =Kp <8¢ 5 f =£§4 fe -
Lemna 4.1 implies that the set -!k%, £ 1L =1,2,...3
is U,E., hence @(f) =,lim = w( 3 =,

On the other hand, for AL = 1,2,... we have
A L-1
| @l =, )l 2 [ Kp . wley )] -k§4[ Kk.(u(gk)\z £,
a contradiction.

II. Thus 3.4 applies and we have (u.(f) = 0 whenever
f(x) = 0 for each xeC, '

For any £feU(X) denote ¥ its restriction to C: if f, g€
€ U(X) and ¥ = ¥ then @A) = «(g), hence the formula
ﬁ(’i"l) = «(f) defines a continuous linear form on the Banach
space Ub(C) = the Banach space of all continuous functions
on C., Consequently (t?: is represented by a Radon measure m
on C, Q.E.D. ' ;

4.3, Reformulation., If X is any uniform space, denote
by ’mc(x), the space of “"Radon measures with a compact sup-
port in X": ue Wy (X) iff there exists a compact set Cc X
md a Radon measure m on C such that (f) = fc fdm for any
function fe U(X). ,

Now if X is any sub-inversion-closed space then the com-
pletiom )? of X is sub-inversion-closed as well and according
to 4.2 we have Wig(X) = WZF()?) = ??ZC()?).

§ 5. Order-bounded functionals. ¥

mob(x) will denote the space of order-bounded 1l inear
functionals on the space U(X). Thus @e W (X) iff for any
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feU(X),  is bounded on the set {geU(X) I lgle £38. It
is well-¥mown ([171, v-1.1,.1.4) that w € @, (X) if and
only if & is a dif:é‘erence of two positive linear functio-
nals on U(X). If this is so then w = @t - @~ where
(u,+(f) =sup { «(g) | g €UX) & 0£g£f3% for feU(X), £2
20. :

It is readily seen that any element of ??Zob(x) is a
measure in the sense of § 1.

5.1. Proposition. If we WL(X) is order-bounded then
the linear functional (u+(defined by cuf(f) = sup { u(g) | o

2g4f &% geU(X)} for feU(X), £20) belongs to the space
Wy (X)

Proof. See ({31, T.1).

5.2. Corollary. For any uniform space X, the inclusiom
W(X) 9t (X) holds if and only if the space Wl(X) is
spanned by its positive cone.

Remark. If R denotes the real line with the usual uni-
formity then the space W(R) is mt included in 9 (R)
({151, 3.3).

On the other hand, for sub-inversion-closed spaces we
have the following result:

5.3. Proposition. Iet X be a sub-inversion-closed uni-
form space. Then #p(X) c W (X) and the space WLp(X) is
spanned by its positive cone.

Proof. WILF(X) = mc(}/f) according to 4.3 and %Zc(ﬁc:
< mob(ﬁ) = mob(x) obviously. Thus 5.2 applies.
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§ 6. 6~additive functionals on U(X)
Denote by 'rm“(x) the linear space of those linear
functionals ¢ on the space U(X) that satisfy the following

condition:

If £ € UQX) for n = 1,2,... and £, 40 then l!iin @ (£,) = 0.

6.1. lemma. Let X be any uniform space, let we W .(X).
Then: '
U(X) 4 = i
a) for any g€ U(X) it holds () m-l_’mw '(.a(gAn)
b) @ is a measure,
Proof. a) is obvious,
As for b), assume that @ is not a measure in the sense of
§ 1, i.e. @ is not norm-continuous: for n = 1,2,... there
. . 1 n
exist furctions g € U, (X) such that \(gn <1 and @lgy)>2"
As g = g:; ~ 8, one can assume 0% g < 1; if this is the case
. & A4 . . N4
then the function g =m_§1 —E;; g, is uniform, m_§4 o= g, /'8
. ictionm.
as N— + o0 andg(mdd 2m gn)> N, a contradiction

2. Proposition. For any uniform space X we have
Wtee (X) c W, ob (X2

Proof. Assume w e W, (XN %Zolb(x). Then there ex-—
iste a function fe U(X) such that @« is not bounded on the
set {geU(X) [ |l gl £ £%. Using the decomposition g = g¥ -
- g and 6.1 (a) one sees that @« is not bounded on the set
{geU (X) |osgéry.

Construct inductively functiors g e Uy (X), n = 0,1,...,
such that g, = 0 and 04 g £f, |w(g) =2 @l .
o gn_lli +nforn=1,2,,.. .

Put hy =g v (lg _0Af) forn=1,2,....
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Then h € U, (X) and (£ - h )0,

On the other hand, we shall see that |@(h )|l> n for
n=1,2,,.. - this will be the contradiction.

In fact, one hes (@ (h) + w(g,Aallg 1) = wlg) +
+ @w(lgylAZL), hence @)l 2 lmig)l -2 0ul.
. gyl >n as claimed.

The proposition is proved.

For the converse inclusion, we must restrict ourselves;
even the class of sub-inversion-closed speces is too rich.
However, for inversion-closed spaces it is true; in fact, the
proaf is well-kmown ([21, 3.1.1).

- 6.3. Proposition. If a space X is inversion-closed then

Proof. It suffices to show that « e Wlgy (X) whenever
e U(X)* and @ 2 0 - let it be the case. Choose fn\()
and e > 0.

The sequence of Coz-sets {xeX| fn(x)‘f €% ,0=1,2,.0.,
© 1
covers X. Hence the sum £ = =, (£ -e)+ is finite.
=4 n
Consider any a,be R , a<b:
©
then {xeX|2(x)>a}=,/ fxeX [m_é:4 (£, (x) ~e)>a is
a Coz-set and {xeX| f(x)<b} =hq'l{ xeX| f(x)< £ &
U S * & <
2yEpx) —e)ebi= U d xeX| () <€ & =y (£y(x) -
- e)'<b % is a Coz-set as well.
Thus £ is a Coz-function on an inversion-closed space
+ =
and fe U(X). Consequently &i.?aa ! (i’n- €) ) =0 and as
@ (£) € €0 (1) + w((f, -¢)") and ¢ > 0 was arbitrary,
we get lim w(f ) = 0, Q.E.D.
n

i
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6.4. Let me sum up for the later use:
Theorem. For any inversion-closed space X we have
3y &~ =
Wo(X) & LX) & WL, (X) = Wty (X)e
6.5. Remark. The inclusiom Wp(X) e Wyg (X) for in-
version-closed spaces can be proved directly by the method of

the proof of 4.2 in (151, using Theorem from § 2 above.

§ 7. Riesz and separable Riesz measures

Let us begin with the following lemma.

7.1. Iemma (c£.[3], § 5)c Let X be & uniform space such
that countable uniform covers form a basis of its uniform co-
vers. Then Wlggs(X) © Wlyp(X).
' Proof. Let (w € Wgg(X)e Then = @ - & end stan-
dard argument shows that @', w” € Wz5(X); hence we can
and shall assume that « = O. Iet £ Q‘gzek be a net such that
the set 1%, [ & A3 is U.E. md lin £ = O pointwise. One
must prove that lim « (£, ) = 0.

Put g =(33§%,|f/5’ for any oc & A; the setfg, [oc € A%
is U.E. andgx\o. .

It follows from the assumption that there exists a count-
able set Dc X such that

(x) Ve>0 VzeXx HdeD VYaxealg . (x)~g ()<
< € .

By diagonal method one finds an increasing sequence
o (n) of indices such that nh}x&x(n)(d) = 0 for any de& D.
Now () implies that & (n)s 0 for n~—» @ and
Eﬁm « (gx(n)) = 0 because w is @& -additive.

Hence lim | w (£, )1 & lim @w(l£ 1) =0, Q.E.D.

-
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'

Now we are going io see howe the results of preceding
paragraphs yield known facts for the space of Riesz measures,
resp. separable Riesz ‘measures (denoted M,, , resp. M by
French authors and My, resp. Mg, by Kirk).

Besides fr;e uniform measures we shall need here so cal-

led uniform measures (see e.g. [41,[15]). Below I use the ca-

nonical one-to-one map ry: mF(X) —_ MU(X)" its proper-
ties are described in [15].

7.2. Notation. Given a Hausdorff completely regular to-
pological space T, consider two uniformities on the underly-
ing set: tf'.IZ is the fine uniform space associated with T (th
is the finest uniformity agreeing with the topology of T), cT
denotes the uniform space projectively generated by all real=
valued functions continuous on T (cT has the coarsest unifor-
mity such that all functions continuous “on T are uniform).

One has U(t,T) '= U(cT) = the space of real-valued func-
tions continuous on T, and consequently both the umiform spa-
ces th end eT are inversion-closed.

The elements of the space ’B?'ZU(th) are called separab-
le measures on T (see e.g. [18]). The elements of the epace

MWioptel) = mob(cT) are called Riesz messures on T by Ber-
ruyer and Ivol [21. v

7.3. Riesz measures. let me mnotice that gf is just the
Hewitt realcompactification of the space T; 6.4 and 7.1 yield
the equalities

M (e = WggleD) = Wple) X MMG(ED (see [2], 3.1
and (11], T. 14, 17).
7.4. As for the space t T we get the following result:
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Proposition. Let T be any Hausdorff completely regular
space, Then
I~
a) [10] We have ’mr(tfm) & (1,15
b) ({13], 9.4) Free uniform measures on the space 1T
are just the separable Riesz measures on T.
More exactly: Consider the canonical one-to-one maps in

the commuting diagram

My (1) —> W (cm)

' Trtfm T Tep

'mF(th) _— chcm

(horizontal arrows are induced by the identity map 1R —>
—>cT).
Identify the spaces Wl;(t,T), L (1,T) and ¥y (cT) with
linear subspaces of @l;(cT) by means of these maps. Then
Wo(ty?) = W (2,T) A WgleT).

Proof. a) follows from 4.3.

b) Obviously Wp(t,T) c Wy(t,T) N Mp(cT). Conver-
sely, if @& MW y(t,T) N Wg(el) then @ e Wy(tT)

and finite &13” @ ((-M)v (FA M}) exists for any fe U(cT)
= U(t,T); ([15], 4.5) implies that (w e mF(th).
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