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OOMMEKTAT330NES; MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,4 C1975) 

BAIRB FUNCTIONS AND CLASSES: BOUNDED BT FILTERS 

Miroslav KATČTOV, Rrah» 

Abstract: In [l]f[2]f certain classes of functions ge-
nerated by filters hate been examined. In the present note, 
we consider classes of spaces bounded (weakly bounded) by 
a filter on a countable set. Weakly bounded classes turn 
out to coincide with classes auch that there are "not to® 
many" metrizable images of spaces In the clasa. It la shown 
that, on weakly bounded classes, Balre functions coincide 
with those generated by a suitable filter, depending on the: 
class. This result corrects an error in 111, see 4*1 below* 

Key words: Baire functions, filter-generated function, 
descriptively bounded clasa. 

AMS: 54H05 Ref. 2.: 3.969.5 

1.1. We use the standard terminology and notation 

with alight modifications. The power of a aet M i s denoted 

by | VI • The? countable infinite cardinal la denoted by o , 

the f irst uncountable one by co* . If & la a cardinal, 

expcc atanda for 2*° . 

1.2. ffonventionsy "Space" always means a completely 

regular Hauadorff apace. "Mapping" means a mapping (conti­

nuous or not) of a space into a space or of a set into a 

set, "function" means a mapping into R , the apace of 

reals. The set of a l l natural numbers is denoted by N or 

co • Letters i , j , k, n denote natural numbers; $ , C^ , 
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Vt t *& t possibly with subscripts, denote f i l t e r s ; JP deno­

tes the Fr£chet f i l t e r on N ; P, S, T denote spaces. If 

f: s—.*T i s continuous, then fi t denotes the extension 

to a continuous mapping of |3 S into |3 T • 

1*3• The domain of a mapping f i s denoted by Df» 

If XcDf , then f I* X denotes the restriction of f to 

X • If f: S—*T , g: U—-*V are mappings of spaces, then 

the composition f o g i s defined i f f V is a subs pace of 

S • If T Is a space, then F(T) denotes the set of a l l 

functions on T f C(T) that of a l l continuous f e F(T) • The 

set F(T) i s endowed with the topology of the product R • 

1*4. The term "filter" has i t s usual meaning* If T 

i s a f i l t e r on A , called the support of T , and lAl <4 

£ o<s ( I A I =* eo ) , then we shall say that T i s an (_4 oc)-

f i l t e r (an ct - f i l t er )* (Obserte that, in ClJfC2Jf "filter" 

meara what is called a free o> - f i l t e r here.) - If ^ i s 

a f i l t e r on A , and McA intersects a l l F e f , then 

the f i l t e r 4 FnM \ F e W I , denoted by $ r M f i s called 

the trace of & on M • 

U5# A morphism (cf. [ 2 3 , 1.9) from 9* (on A ) to <^ 

(on B ) i s , by definition, a triple < 9 , 3% & > , where: 

<p : A—>& i s a mapping such that I e < ^ implies 

cp "* X € & . If there exists a morphism from f to <J-; 

we shall write ^ 5 ^ or ty £ # . The class of a l l 

f i l t e r s wil l be considered as quasi-ordered by the relation 

1.6. Let y be a f i l t e r on A • Let T be a space. 

If Axm\ a e A \ is a family of points of T , x e T and, 
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for every neighborhood V of x in T f there i s m set 

T c $ such that a c F implies x a * V f wtf shal l say that 

x i s the ^ - l i m i t of ix% ( in T ) and we shal l write 
a 

x « ^ - l i m i x Q | a c A ? or x » ^ - l i m x a • I f XcT , then 

#-Lim X denotes the set of a l l x€ T such that x -* 

y - l i m x for some 4x } c X • 

1.7. Let f be a f i l t e r on A . A function f wil l 

be called & -generated if f 6 ^-Lim C(.Df) . The d a s m of 

a l l f -genera ted functions wil l be denoted by C£(y) • 

1.8* If f i s ^-generated, then every f © g> f whe­

re $> i s a continuous mapping, i s ^ -generated. If W i s 

a f i l t e r on A f f is *T-generated, then there is a conti­

nuous Y : Df —> RA and an ^-generated g on y H Df3 such 

tha t f » g o y . 

Proof. Let f * f^-Iim f , faeC(Df) • Clearly, f oq =* 

« f - l i m f • 9 . Put y x -*-ffQx$ , for every x«Df • Then 

y : Df—> R^ i s continuous. Put X * if I Df J . Por y » 
* *ya* € Y » p u t *a*y* ~ ya an<* l e * g^y* b e d t : f i a e d ^ 
g ( y ( x ) ) » fx . Clearly, g%e C(Y) , g « r - l i m g a , f -

a g p -ttf • 

1.9* If 2T i s a f i l t e r on A , I A1 « o> f and S 

contains a dense countable se t , then l^-Lim C(S)l£expd> • 

Proof. I C(S)\ & exp o f hence l(C(S)JA I £ exp co . 

1.10. If 4MQ \ a c A ? is a family of s e t s , then 

2 - t M a \ a 6 A ^ or ^ M ^ denotes the set i< s ,x> | me A f 
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2»i» Definition. Let 4? \ meAl be a non-void fami-
a 

ly of filtera with aupporta M_ . The filter on g M , con-
a 9 

siating of all S f f where Tm m ^ a for every a , wi l l 

be called the sua of "C^T and wil l be denoted by 

IT 4 &a \ a * A} or by S ^ a . The f i l t e r on TT Ma with a 

eubbaae eonaiating of a l l flT^CF.l , where aeA , P c r , 
a a) a a 

sra ia the projection of TT Um onto Mm , wil l be called 

the carteaian product of i&ml and wil l be denoted by 

2 U &m\ mek% or TT^a . We write ?x • f 2 inatead 

of S j - t S ^ j i * 1,2} f ete» 
2- 2» -?ropoaltlon^ I f -if ml i« a non-void family of 

f i l t e ra , then THFm ia a join and %Tmi ia a meet of 

^3*a^ in the quaai-ordered class of a l l filtera» 

The proof ia atraightforward and may be omitted. 
2»3» Deflnition. The leaat power of a collection JLc 

c & anoh that f\M* ^Pif wi l l be called the pseudo-

weight of f . - Clearly, the paeudoweight of f i s a) 
i f f r & jf . 

2«4« Pronoeit^on. Let «c be an infinite cardinal. In 

the claaa of a l l (^ oc ) - f i l t ers , every set of power 

£ exp oo i s bounded. - Cf. E23, 1.11. 

.Proof* Let I A \ £ exp oc , A4-0 • For every a€A , 

le t 9m be a f i l t e r on Ba f iB Ifc oc • Qy a well known 

theorem, the product B « TT B of discrete spaces B 

contains a jienae set H of power 4k ©c . The injection 

W~~*W ia a morphiam from ( TTy#) f̂ ff to TT&m • 

2.5* Theorem. Let oc be an infinite cardinal. Every 

- 774 -



countable family of (^ «c)- f i l ters of pseudoweight <*> has 

a joint which i s an ( ^ oc)-f i l ter. 

Proof. Let 3"k , kcH , be f i l t er s of pseudoweight co 

on sets Mk , I Mkl £ et .Put M » TTM-̂  , V * T T ^ # Choose 

a sequence: 4 u-̂ J C M . Let H consist «of a l l 4 x-3 e M such 

that x^ ss Ufc for almost a l l k • Clearly, I Hi £ tc . Put 

38» 3 ^ H • Then every projection «rk i s a morphism from 

^ to r f e . Hence ^ £ f (see 2 .2) . 

Since ^ k are of pseudoweight o> , there exist mapp­

ings f^t lijj.—> H such that every 4 x \ xeM^ , fk(x) g q? 

i s in ^ k . Por every x * {xk$ e M let p(x) be the lar ­

gest peH such that t^Xy^&V whenever 0 £ k £ p « Put 

9>(x) * - iy^ where yk « x^ for ki.p(x) , y .̂ * u^ for 

k>p(x) • To prove that «p i s a morphism from W to *%€ 9 

i t is enough to show that, for every qeH and every P e 

e f , there i s a set 1" e f such that i f xetr , cp(x) s 

^ y ^ i i then y e P . Let U consists of a l l x ^-Cx^eM 

such that x eP f f^Cx^fe q for k£q . Clearly, 0 e f . 

If xeU , then p(x)gq , hence, with -Cyk? ** y ( x ) , wa 

have y^ -» x^ for k£q • This proves the theorem. 

2»6. Corollary. Every countable family of o>-f i l ters 

has a join which i s an co - f i l t e r . - Cf. 1 2 ] , 1.11. 

2.7. Remark. The note 121] contains a statement (4 .5) , 

which may be re-formulated as follows: Let 9*n , neH f be 

*>-f i l ters . Put &n « Oil &J . Then (1) in the class? of n n 
a l l o - f i l t e r s , ^&n\ has a join, (2) there exists a class 

5) of the form C#CĈ ) , where fy i s an a>- f i l t er , such 

that Ci) CACty*) o 3>n for a l l n , Cii) i f *H i s an <tt -
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f i l t e r and CJtC )̂ o &n for a l l n f then Ci(3e J ^ C £ ( g J , 

(3) the class 8) i s equal to QMS') where ? i s a -Join 

of -t^fll in the class of a l l o - f i l t e r s . 

We have proved the f i r s t assertion (in fact , s l ight ly 

more). As for assertions (2 ) f (3 ) f the intended proof f a i l s , 

and the question remains open whether (2) and (3) are valid. 

3 .1 . Definition. If ScT f then ^(S fT) or simply 

^S will denote the characteristic function of S in T . 

We shall say that ScT i s 3*-generated in T i f ?(,(SfT) 

i s #*-generated. We shall say that & bounds a class W 

of spaces i f every X e 09t is ?-generated in some com­

pact T . 

3.2. It i s easy to see that a space S i s T-boun­

ded iff i t i s T-generated in /3 S . 

3 .3 . A continuous mapping f: S —*• T i s called per­

fect i f (1) a l l f y f y e f S , are compact, (2) fll i s 

dosed in fS whenever M is closed in S • 

3.4. The following facts are well known: ( l ) every 

continuous mapping of a compact space is perfect; (2) i f 

f: X—i*I i s perfect, Met f then f Is (f"XM) i s perfect; 

(3) i f f- X"—-*X i s continuous, Z i s dense in X , 

ft*Z is perfect, then f t %lrsf ix - Z] -* 0 . 

3.5. Conventions. If there exists a continuous (per­

fect) mapping of S onto T , we shall say that S i s a 

continuous (perfect) counterimage of T and that T i s a 

continuous Cperfect) image of S . If, in addition, e .g . , 

$ i s metrizable, we shall say that S i s a metrizable 

continuous Cperfect) .cojanterimage of T , e tc . 



3.6. Every perfect counterimage of an ^-bounded spa­

ce is f -bounded. 

Proof. If f: X—* Y is perfect onto, then, by 3.4, 

(3) , t(ht)~l LX) = X , hence, by 1.8, X is r~gen®rat~ 

ed in (I X . 

3.7. Let $ be an ( i cc ) - f i l t e r . Every ^-bounded 

space i s a perfect counterimage of a space ^-generated 

in a compact space of weight § oc • 

Proof. Let S be r-bounded and le t 5(,(S,/5S) « 

* T-lim -Cf fl | a e A ? . For x 6 (h S put g> x » -if Qx 1 . Then 

9 : /3S—>RA i s continuous, S » y ^ C y S D . By 3.4, (2) , 

9 Is $ i s perfect . Clearly, y S is ^-generated in 

S>i.£S3. 

3.8. Let #fc be a class of separable metrizable spa­

ces such that ( l ) if X e Wl , XcX is closed in X , then 

X e W , (2) if K i s compact metrizable, X € WL, then 

KxX is homeomorphic to a space in l^t . Let S be a per­

fect counterimage of a space in WL . If g: S—>T i s con­

tinuous and T is separable metrizable, then gS is m 

continuous image of a space in 'Wt * 

Proof. We may assume that T is compact. There ex­

i s t s a perfect f: S—>K such that K is compact metriz­

able, Y s f S in VH , s » f"1! . For x e /3 S , put 

g>x * < (fBf)x , C/3g)x > . Then 9? : (3S—> K*T is con­

tinuous. Put Z -= 9>r/S S3 . By 3.4, (3) , C(3f) C(3S - S i n 

n f S = 0 , hence 9 $ - 2TnCX*T) , <p$ i s closed in 

t x T , and therefore <pS € 1fil . Clearly, the projection 

Kx T—-> T maps <pS onto gS • 
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3*9. Definition. A class 00t of spaces wi l l be called 

co -filter-bounded or descriptively bounded i t there is an 

co - f i l t e r bounding Wl . 

3.10. Proposition. A space X is descriptively boun­

ded i f and only i f i t i s a perfect counterimage of a separ­

able metrizable space. 

.Proof. "Only if" follows from 3 .7. If f: X—> X i s 

perfect onto a metrizable separable X , let KoX be com­

pact metrizable. Clearly, C(K) endowed with the sup-norm 

i s separable. Hence, for some co - f i l t e r & 9 T t». T-

generated! in K . By 3 .6, X i s ^-bounded* 

3 .11. Remark. I t i s well known that perfect counter-

images of metrizable spaces coincide with paracompact M-

spaces, introduced by K. Morita, and with paracompact p-

spaces, Introduced by A. Ahangelskil (for this theorem and 

further references see e .g . [4-0. I t i s easy to show that 

descriptively bounded spaces coincide with Lindelof M-

spaces ( p-spaces). 

3.12* Let W be a collection of separable metriza­

ble spaces, 1331! £ exp co . Let fl consist of a l l metri­

zable continuous images of spaces in ffi- . Then % i s des­

criptively bounded. 

Proof. Clearly, every X 6 $t i s separable. It Is 

easy to sea that l«CX( X c t * , X 6 3131 £ exp cO . For eve­

ry X € 9t , Xcrf1 , choose an co - f i l t e r y(X) bounding 

X . By 2.4, there i s an co - f i l t e r $ such that ?% & (X) 

for a l l X € #L , XeR* . Clearly, $ bounda f t . 
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3 .13 . For every o - f i l t e r # , there are exactly 

exp a & -bounded subspaces of RN . - This follows ea­

s i ly from 3.7 and 1.9. 

3.14. Proposition. For every & - f i l t e r $* there 

exists an cd - f i l t e r <L such that every descriptively 

bounded continuous image of an & -bounded space i s Q -

bounded. 

Proof. Consider the class fflt of al l f-bounded spsr 

ces ScR f and the class % of a l l metrizable continuous 

images of spaces in Wl .By 3.13 and 3 .1?, there exists 

an a - f i l t e r Q- which bounds tfi . Assume that S is? $ -

bounded, <p : S—.**P is continuous onto, P is descript i­

vely bounded. Then there exists?, by 3.10, a surjective per­

fect h: P-~>T , where TcRN . By 3 .7 , S i s a perfect 

counterimage of some space in 9HL . Put g * h « y , By 

3 .8, T =- hP'» gS is a continuous image of a space in Wt r 

hence T ia in 7ft , T is ^-bounded. By 3 .6, P is 

ty> -bounded. 

3-15. Theorem. The class of a l l descriptively bound­

ed continuous images of spaces from a given descriptively 

bounded class i s descriptively bounded. - This follows at 

once from 3 .14. 

3«16. Examples, l ) Compact spaces are bounded by eve­

ry f i l t e r . 2) The class of a l l *T-compact completely met­

rizable spaces consists exactly "of a l l ^-bounded metriz­

able spaces. 3) The class of a l l projective spaces, in the 

sense of N. Lusin, see e.g. 13], § 38, and their perfect 
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counter images i s descriptively bounded. 

4) Consider the smallest class *p of separable metrizable 

spaces such tha t : ( l ) RN i s in •# , (2) if X =* U Xk 

is separable metrizable, X^ are in 1p , then X e V 

(3) if X , X are in f , XpY , then X - T is in # , 

(4) i f X € *P f then every metrizable continuous image 

of X is in $ . Let a space be called & -projective if 

i t i s a perfect counterimage of a space in *p • I t can be 

shown that the class of a l l 6/—projective spaces is des­

cr ipt ively bounded. 

3.17* Descriptively bounded classes possess various 

nice propert ies . However, descriptive boundedness i s not 

preserved, in general, under continuous mappings (example: 

Nu(x) , where x e ^ N - N ) . Therefore, we introduce 

broader c lasses . I t wil l be shown th a t , on these classes 

(and, of course, on a l l narrower ones) Baire functions and 

suitable f i l ter-generated ones do coincide. 

3.18. Definition. Let 9 be an CO - f i l t e r . Let fflt 

be a class of spaces. If for every X € W and every des­

cr ipt ively bounded S such that Xc$C{3X there ex i s t s 

an 1?-bounded P such that X c P c S , we shal l say that 

& weakly bounds 'fflt . A class of spaces wil l be called 

weakly descript ively bounded if i t is weakly bounded by 

some co - f i l t e r . 

3*19# theorem. A class Wl of spaces is weakly des­

cr ipt ively bounded if and only if the class of a l l sepa'-

rable metrizable continuous images of spaces from 1$l con-
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ta ins expo) topologically d is t inc t spaces at most. 

Proof. I . Let $?t be weakly bounded by an c»> - f i l t e r 

y . Let ty possess properties described in 3.14. If T c 

c R , Xe 7fl , f: X—>•! is continuous onto, put g = 

= (3 f . By 3.4, (2) , and 3.10, £XX is descriptively 

bounded, hence there i s an if-bounded Z such that X c 

c %cgXX . By 3.14, Y » g-f i s (^-bounded. By 3.13, th i s 

proves the "only ifM pa r t . I I . Let f be a maximal col­

lect ion of topologically d is t inc t separable metrizable con­

tinuous images of spaces from tftfl. Assume \p\ £ expo). By 

3.12, there is an CJ - f i l t e r £ . which bounds *p . Let Xe 

e Wl and let S be descriptively bounded, XcSc(2X . 

By 3.10, there exists a perfect f: S—* BN . P u t Y =-= f S . 

By 3.4, (3) , S = g" 1 ! , where g =* £ f . Since fX is 

(^-bounded, g £ fX 3 is also Q*.-bounded. Clearly, Xc 

c g ^ t f X l c S . 

3.20. Examples. 1) The. class of a l l ^-compact spa­

ces is weakly descriptively bounded (cf. the example in 

3.17). - 2) A discrete space of infini te power cO i s weak­

ly descriptively bounded iff exp tc = exp c-> . 

4 . 1 . In H13, 5.4, i t was asserted tha t , under the 

continuum hypothesis (OH), there exists an co - f i l t e r W 

such that ( * ) Baire functions coincide with & -generat­

ed ones. This is fa lse , as the following elementary ex­

ample shows. Let & be an a) - f i l t e r generating a l l Bai­

re functions. Let T = -Cf \ f«<to***? be endowed with the 

discrete topology. For every f e T let f- e F(R) be 
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exactly of Baire class £ . For < f , x > € T x R put 

f <£ ,x> « f e x . Clearly, f i s ^-generated , but i s not 

a Baire function. 

However, i t can be shown that the assertion ( # ) is 

true (under CH) i f the class of spaces considered is s u i t ­

ably restricted. 

4 .2 . We recall the following lemma stated and proved 

in £13, 5.1 (for the definition of a Souslin f i l t e r , see 

£13, 3 . 1 , 3 . 2 ) . - Let *Wfc be a collection of spaces, \Wl\£ 

£ exp CO . For every S c Wt let Q ĉ S , Z^c S be of 

power 4 exp o * Assume that Z§ n <Ĵ -Lim Qs =- 0 for eve" 

TJ Souslin f i l t e r Q- • Let f be a Souslin f i l t e r on a set 

A • If the continuum hypothesis is assumed, then there ex­

i s t s a family -C 5^ } f «-" <*>+ ? such that (1) % m T , (2) 

every 7c i s a Souslin f i l t e r on A , C3) £ -c % «< o + 

implies Te c St^ , (4) i f | *. ^ *z co+ , then every Bai­

re function (on any space) of class £ i s SF -generated, 

(5) i f S eWC , z c Z § , x a € % for every acA , then 

there i s a neighborhood V of z in S and a set M e 

eUiTc \% ^ &+ I such that acM implies xQ noneV . 

4 . 3 . Assume CH • Let )̂ be a collection of separab­

le metrizable spaces, l # I £ exp c& . Let (^ be am o > - f i l ­

ter generating a l l Baire functions on spaces P e ^2 . Then 

there i s a f i l t e r 3S on N such that, on spaces in <p , 

Baire functions coincide with W$,+X)-generated ones when­

ever tIC i s a f i l t e r on N , 3C o Zt . 

Proof. Let Wl be the collection of a l l F(P) , P e 

e P . I f S * P(P) , put Q̂  =- C(P) , and let Z$ con-
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s 1st of a l l those f c Q,-Lim C(F) which are not Baire 

functions. Put $** JC . Then the assumptions of 4.2 are sa­

t i s f ied (since, by £11, 3 .10, a function generated by B 

Souslin f i l t e r i s & Baire function). Hence, by 4.2, thera 

i s a family-i^c ? with properties described in 4 .2 . Put 

W * U - C ^ I £ -c a>+ | m i f OC a 9̂ e is a f i l t e r on N „ 

then every Baire function i s 3C -generated and no (^-gene­

rated function on a space P c 13 is 3C-generated unless 

i t i s a Baire function. This proves the assertion, since, 

clearly, CJLt£•%) » CZ{ tyrsCUX) . 

4 .4 . If f is B Baire function of class £ «*- <-*>"** > 

then there is a continuous cp : X —> R such that f * 
38 # ° ? t where g is a Baire function of elas» | on 

cpX . 

This follows from 1.8, since, by t l j , 2.17, Baire func­

tions of clas# | coincide with Jf* -generated ones (for 

the f i l t e r s JF$ see [11, 2 .7 ) . 

4 .5. Let &i , i * 1,2 , be f i l ters on a set A . Then 

(1) ¥A+ f% £ tA rs #% f (2) i f there are X^e fy such 

that X%rs x2 - t , then ^ A ?% £ Tn + ^ . 

Proof. I . If g>< i , x > =* x , then 9 is a morphism 

from 7^ + 9£ to ^ A ^ . I I . Let X j c f , . be disjoint. 

Put n j r x » < l , x > i f x€Xx , y x « < 2 , x > i f xeA - X% . 

Then np la a morphism from ¥^ n f^ to SJJ • 9^ • 

*•$• Theorem. Assume the continuum hypothesis. Let Wt 

be a weakly descriptively bounded class of spaces. Let ty 

be a f i l t e r on a countable set A generating a l l Baire func­

t ions. Then there exists a f i l t e r 26 on A such that, for 
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every f i l t e r 9C a X on A , Baire functions and 

(<^n 3C )-generated ones coincide. 

Proof. Let # consist of al l those ScR which are 

continuous images of some space X 6 ffll . By 3 .19, f # I £ 

4 exp <tf . Let 36 be a f i l t e r on N with properties des­

cribed in 4 .3 . Let if : N—*-A be injective and such that 

A - i f l f € ^ , The collection of a l l Xc A such that X o 

^ Y E for some I c % i s a f i l t e r on A , which wil l 

be s t i l l denoted by 36 . It follows from 4.5 that, for eve" 

TJ f i l t e r X o 2£ on A , ItynX )-generated functions 

on spaces; S 6 ^ coincide with (G.*3C)-generated ones, 

hence, by 4#3, with Baire functions. By 4.4 and 1.8, th i s 

holds for every S s W, * 

4.7. Proposition. There exists an o> - f i l t e r genera­

ting a l l Baire functions. 

Proof. By 2#4, there is an co - f i l t e r & such that 

f * Jff far a l l f «- <&>* • 

4»8. Theorem. Assume the continuum hypothesis. Let 

H31 be a weakly descriptively bounded class 6?* spaces. Then 

there exist o> -ul traf l i ters &, ty such that, on spaces 

in 'Wt f Baire functions and (fr\ (^)-generated ones coin­

cide. 

This i s an immediate consequence of 4*7* 4.6. 
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